linux/fs/pipe.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/pipe.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/file.h>
  10#include <linux/poll.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/fs.h>
  15#include <linux/log2.h>
  16#include <linux/mount.h>
  17#include <linux/pseudo_fs.h>
  18#include <linux/magic.h>
  19#include <linux/pipe_fs_i.h>
  20#include <linux/uio.h>
  21#include <linux/highmem.h>
  22#include <linux/pagemap.h>
  23#include <linux/audit.h>
  24#include <linux/syscalls.h>
  25#include <linux/fcntl.h>
  26#include <linux/memcontrol.h>
  27#include <linux/watch_queue.h>
  28
  29#include <linux/uaccess.h>
  30#include <asm/ioctls.h>
  31
  32#include "internal.h"
  33
  34/*
  35 * New pipe buffers will be restricted to this size while the user is exceeding
  36 * their pipe buffer quota. The general pipe use case needs at least two
  37 * buffers: one for data yet to be read, and one for new data. If this is less
  38 * than two, then a write to a non-empty pipe may block even if the pipe is not
  39 * full. This can occur with GNU make jobserver or similar uses of pipes as
  40 * semaphores: multiple processes may be waiting to write tokens back to the
  41 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
  42 *
  43 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
  44 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
  45 * emptied.
  46 */
  47#define PIPE_MIN_DEF_BUFFERS 2
  48
  49/*
  50 * The max size that a non-root user is allowed to grow the pipe. Can
  51 * be set by root in /proc/sys/fs/pipe-max-size
  52 */
  53unsigned int pipe_max_size = 1048576;
  54
  55/* Maximum allocatable pages per user. Hard limit is unset by default, soft
  56 * matches default values.
  57 */
  58unsigned long pipe_user_pages_hard;
  59unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
  60
  61/*
  62 * We use head and tail indices that aren't masked off, except at the point of
  63 * dereference, but rather they're allowed to wrap naturally.  This means there
  64 * isn't a dead spot in the buffer, but the ring has to be a power of two and
  65 * <= 2^31.
  66 * -- David Howells 2019-09-23.
  67 *
  68 * Reads with count = 0 should always return 0.
  69 * -- Julian Bradfield 1999-06-07.
  70 *
  71 * FIFOs and Pipes now generate SIGIO for both readers and writers.
  72 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
  73 *
  74 * pipe_read & write cleanup
  75 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
  76 */
  77
  78static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
  79{
  80        if (pipe->files)
  81                mutex_lock_nested(&pipe->mutex, subclass);
  82}
  83
  84void pipe_lock(struct pipe_inode_info *pipe)
  85{
  86        /*
  87         * pipe_lock() nests non-pipe inode locks (for writing to a file)
  88         */
  89        pipe_lock_nested(pipe, I_MUTEX_PARENT);
  90}
  91EXPORT_SYMBOL(pipe_lock);
  92
  93void pipe_unlock(struct pipe_inode_info *pipe)
  94{
  95        if (pipe->files)
  96                mutex_unlock(&pipe->mutex);
  97}
  98EXPORT_SYMBOL(pipe_unlock);
  99
 100static inline void __pipe_lock(struct pipe_inode_info *pipe)
 101{
 102        mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
 103}
 104
 105static inline void __pipe_unlock(struct pipe_inode_info *pipe)
 106{
 107        mutex_unlock(&pipe->mutex);
 108}
 109
 110void pipe_double_lock(struct pipe_inode_info *pipe1,
 111                      struct pipe_inode_info *pipe2)
 112{
 113        BUG_ON(pipe1 == pipe2);
 114
 115        if (pipe1 < pipe2) {
 116                pipe_lock_nested(pipe1, I_MUTEX_PARENT);
 117                pipe_lock_nested(pipe2, I_MUTEX_CHILD);
 118        } else {
 119                pipe_lock_nested(pipe2, I_MUTEX_PARENT);
 120                pipe_lock_nested(pipe1, I_MUTEX_CHILD);
 121        }
 122}
 123
 124static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
 125                                  struct pipe_buffer *buf)
 126{
 127        struct page *page = buf->page;
 128
 129        /*
 130         * If nobody else uses this page, and we don't already have a
 131         * temporary page, let's keep track of it as a one-deep
 132         * allocation cache. (Otherwise just release our reference to it)
 133         */
 134        if (page_count(page) == 1 && !pipe->tmp_page)
 135                pipe->tmp_page = page;
 136        else
 137                put_page(page);
 138}
 139
 140static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 141                struct pipe_buffer *buf)
 142{
 143        struct page *page = buf->page;
 144
 145        if (page_count(page) != 1)
 146                return false;
 147        memcg_kmem_uncharge_page(page, 0);
 148        __SetPageLocked(page);
 149        return true;
 150}
 151
 152/**
 153 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
 154 * @pipe:       the pipe that the buffer belongs to
 155 * @buf:        the buffer to attempt to steal
 156 *
 157 * Description:
 158 *      This function attempts to steal the &struct page attached to
 159 *      @buf. If successful, this function returns 0 and returns with
 160 *      the page locked. The caller may then reuse the page for whatever
 161 *      he wishes; the typical use is insertion into a different file
 162 *      page cache.
 163 */
 164bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 165                struct pipe_buffer *buf)
 166{
 167        struct page *page = buf->page;
 168
 169        /*
 170         * A reference of one is golden, that means that the owner of this
 171         * page is the only one holding a reference to it. lock the page
 172         * and return OK.
 173         */
 174        if (page_count(page) == 1) {
 175                lock_page(page);
 176                return true;
 177        }
 178        return false;
 179}
 180EXPORT_SYMBOL(generic_pipe_buf_try_steal);
 181
 182/**
 183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
 184 * @pipe:       the pipe that the buffer belongs to
 185 * @buf:        the buffer to get a reference to
 186 *
 187 * Description:
 188 *      This function grabs an extra reference to @buf. It's used in
 189 *      the tee() system call, when we duplicate the buffers in one
 190 *      pipe into another.
 191 */
 192bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 193{
 194        return try_get_page(buf->page);
 195}
 196EXPORT_SYMBOL(generic_pipe_buf_get);
 197
 198/**
 199 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
 200 * @pipe:       the pipe that the buffer belongs to
 201 * @buf:        the buffer to put a reference to
 202 *
 203 * Description:
 204 *      This function releases a reference to @buf.
 205 */
 206void generic_pipe_buf_release(struct pipe_inode_info *pipe,
 207                              struct pipe_buffer *buf)
 208{
 209        put_page(buf->page);
 210}
 211EXPORT_SYMBOL(generic_pipe_buf_release);
 212
 213static const struct pipe_buf_operations anon_pipe_buf_ops = {
 214        .release        = anon_pipe_buf_release,
 215        .try_steal      = anon_pipe_buf_try_steal,
 216        .get            = generic_pipe_buf_get,
 217};
 218
 219/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
 220static inline bool pipe_readable(const struct pipe_inode_info *pipe)
 221{
 222        unsigned int head = READ_ONCE(pipe->head);
 223        unsigned int tail = READ_ONCE(pipe->tail);
 224        unsigned int writers = READ_ONCE(pipe->writers);
 225
 226        return !pipe_empty(head, tail) || !writers;
 227}
 228
 229static ssize_t
 230pipe_read(struct kiocb *iocb, struct iov_iter *to)
 231{
 232        size_t total_len = iov_iter_count(to);
 233        struct file *filp = iocb->ki_filp;
 234        struct pipe_inode_info *pipe = filp->private_data;
 235        bool was_full, wake_next_reader = false;
 236        ssize_t ret;
 237
 238        /* Null read succeeds. */
 239        if (unlikely(total_len == 0))
 240                return 0;
 241
 242        ret = 0;
 243        __pipe_lock(pipe);
 244
 245        /*
 246         * We only wake up writers if the pipe was full when we started
 247         * reading in order to avoid unnecessary wakeups.
 248         *
 249         * But when we do wake up writers, we do so using a sync wakeup
 250         * (WF_SYNC), because we want them to get going and generate more
 251         * data for us.
 252         */
 253        was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
 254        for (;;) {
 255                unsigned int head = pipe->head;
 256                unsigned int tail = pipe->tail;
 257                unsigned int mask = pipe->ring_size - 1;
 258
 259#ifdef CONFIG_WATCH_QUEUE
 260                if (pipe->note_loss) {
 261                        struct watch_notification n;
 262
 263                        if (total_len < 8) {
 264                                if (ret == 0)
 265                                        ret = -ENOBUFS;
 266                                break;
 267                        }
 268
 269                        n.type = WATCH_TYPE_META;
 270                        n.subtype = WATCH_META_LOSS_NOTIFICATION;
 271                        n.info = watch_sizeof(n);
 272                        if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
 273                                if (ret == 0)
 274                                        ret = -EFAULT;
 275                                break;
 276                        }
 277                        ret += sizeof(n);
 278                        total_len -= sizeof(n);
 279                        pipe->note_loss = false;
 280                }
 281#endif
 282
 283                if (!pipe_empty(head, tail)) {
 284                        struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 285                        size_t chars = buf->len;
 286                        size_t written;
 287                        int error;
 288
 289                        if (chars > total_len) {
 290                                if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
 291                                        if (ret == 0)
 292                                                ret = -ENOBUFS;
 293                                        break;
 294                                }
 295                                chars = total_len;
 296                        }
 297
 298                        error = pipe_buf_confirm(pipe, buf);
 299                        if (error) {
 300                                if (!ret)
 301                                        ret = error;
 302                                break;
 303                        }
 304
 305                        written = copy_page_to_iter(buf->page, buf->offset, chars, to);
 306                        if (unlikely(written < chars)) {
 307                                if (!ret)
 308                                        ret = -EFAULT;
 309                                break;
 310                        }
 311                        ret += chars;
 312                        buf->offset += chars;
 313                        buf->len -= chars;
 314
 315                        /* Was it a packet buffer? Clean up and exit */
 316                        if (buf->flags & PIPE_BUF_FLAG_PACKET) {
 317                                total_len = chars;
 318                                buf->len = 0;
 319                        }
 320
 321                        if (!buf->len) {
 322                                pipe_buf_release(pipe, buf);
 323                                spin_lock_irq(&pipe->rd_wait.lock);
 324#ifdef CONFIG_WATCH_QUEUE
 325                                if (buf->flags & PIPE_BUF_FLAG_LOSS)
 326                                        pipe->note_loss = true;
 327#endif
 328                                tail++;
 329                                pipe->tail = tail;
 330                                spin_unlock_irq(&pipe->rd_wait.lock);
 331                        }
 332                        total_len -= chars;
 333                        if (!total_len)
 334                                break;  /* common path: read succeeded */
 335                        if (!pipe_empty(head, tail))    /* More to do? */
 336                                continue;
 337                }
 338
 339                if (!pipe->writers)
 340                        break;
 341                if (ret)
 342                        break;
 343                if (filp->f_flags & O_NONBLOCK) {
 344                        ret = -EAGAIN;
 345                        break;
 346                }
 347                __pipe_unlock(pipe);
 348
 349                /*
 350                 * We only get here if we didn't actually read anything.
 351                 *
 352                 * However, we could have seen (and removed) a zero-sized
 353                 * pipe buffer, and might have made space in the buffers
 354                 * that way.
 355                 *
 356                 * You can't make zero-sized pipe buffers by doing an empty
 357                 * write (not even in packet mode), but they can happen if
 358                 * the writer gets an EFAULT when trying to fill a buffer
 359                 * that already got allocated and inserted in the buffer
 360                 * array.
 361                 *
 362                 * So we still need to wake up any pending writers in the
 363                 * _very_ unlikely case that the pipe was full, but we got
 364                 * no data.
 365                 */
 366                if (unlikely(was_full))
 367                        wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 368                kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 369
 370                /*
 371                 * But because we didn't read anything, at this point we can
 372                 * just return directly with -ERESTARTSYS if we're interrupted,
 373                 * since we've done any required wakeups and there's no need
 374                 * to mark anything accessed. And we've dropped the lock.
 375                 */
 376                if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
 377                        return -ERESTARTSYS;
 378
 379                __pipe_lock(pipe);
 380                was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
 381                wake_next_reader = true;
 382        }
 383        if (pipe_empty(pipe->head, pipe->tail))
 384                wake_next_reader = false;
 385        __pipe_unlock(pipe);
 386
 387        if (was_full)
 388                wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 389        if (wake_next_reader)
 390                wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 391        kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 392        if (ret > 0)
 393                file_accessed(filp);
 394        return ret;
 395}
 396
 397static inline int is_packetized(struct file *file)
 398{
 399        return (file->f_flags & O_DIRECT) != 0;
 400}
 401
 402/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
 403static inline bool pipe_writable(const struct pipe_inode_info *pipe)
 404{
 405        unsigned int head = READ_ONCE(pipe->head);
 406        unsigned int tail = READ_ONCE(pipe->tail);
 407        unsigned int max_usage = READ_ONCE(pipe->max_usage);
 408
 409        return !pipe_full(head, tail, max_usage) ||
 410                !READ_ONCE(pipe->readers);
 411}
 412
 413static ssize_t
 414pipe_write(struct kiocb *iocb, struct iov_iter *from)
 415{
 416        struct file *filp = iocb->ki_filp;
 417        struct pipe_inode_info *pipe = filp->private_data;
 418        unsigned int head;
 419        ssize_t ret = 0;
 420        size_t total_len = iov_iter_count(from);
 421        ssize_t chars;
 422        bool was_empty = false;
 423        bool wake_next_writer = false;
 424
 425        /* Null write succeeds. */
 426        if (unlikely(total_len == 0))
 427                return 0;
 428
 429        __pipe_lock(pipe);
 430
 431        if (!pipe->readers) {
 432                send_sig(SIGPIPE, current, 0);
 433                ret = -EPIPE;
 434                goto out;
 435        }
 436
 437#ifdef CONFIG_WATCH_QUEUE
 438        if (pipe->watch_queue) {
 439                ret = -EXDEV;
 440                goto out;
 441        }
 442#endif
 443
 444        /*
 445         * If it wasn't empty we try to merge new data into
 446         * the last buffer.
 447         *
 448         * That naturally merges small writes, but it also
 449         * page-aligns the rest of the writes for large writes
 450         * spanning multiple pages.
 451         */
 452        head = pipe->head;
 453        was_empty = pipe_empty(head, pipe->tail);
 454        chars = total_len & (PAGE_SIZE-1);
 455        if (chars && !was_empty) {
 456                unsigned int mask = pipe->ring_size - 1;
 457                struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
 458                int offset = buf->offset + buf->len;
 459
 460                if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
 461                    offset + chars <= PAGE_SIZE) {
 462                        ret = pipe_buf_confirm(pipe, buf);
 463                        if (ret)
 464                                goto out;
 465
 466                        ret = copy_page_from_iter(buf->page, offset, chars, from);
 467                        if (unlikely(ret < chars)) {
 468                                ret = -EFAULT;
 469                                goto out;
 470                        }
 471
 472                        buf->len += ret;
 473                        if (!iov_iter_count(from))
 474                                goto out;
 475                }
 476        }
 477
 478        for (;;) {
 479                if (!pipe->readers) {
 480                        send_sig(SIGPIPE, current, 0);
 481                        if (!ret)
 482                                ret = -EPIPE;
 483                        break;
 484                }
 485
 486                head = pipe->head;
 487                if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
 488                        unsigned int mask = pipe->ring_size - 1;
 489                        struct pipe_buffer *buf = &pipe->bufs[head & mask];
 490                        struct page *page = pipe->tmp_page;
 491                        int copied;
 492
 493                        if (!page) {
 494                                page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
 495                                if (unlikely(!page)) {
 496                                        ret = ret ? : -ENOMEM;
 497                                        break;
 498                                }
 499                                pipe->tmp_page = page;
 500                        }
 501
 502                        /* Allocate a slot in the ring in advance and attach an
 503                         * empty buffer.  If we fault or otherwise fail to use
 504                         * it, either the reader will consume it or it'll still
 505                         * be there for the next write.
 506                         */
 507                        spin_lock_irq(&pipe->rd_wait.lock);
 508
 509                        head = pipe->head;
 510                        if (pipe_full(head, pipe->tail, pipe->max_usage)) {
 511                                spin_unlock_irq(&pipe->rd_wait.lock);
 512                                continue;
 513                        }
 514
 515                        pipe->head = head + 1;
 516                        spin_unlock_irq(&pipe->rd_wait.lock);
 517
 518                        /* Insert it into the buffer array */
 519                        buf = &pipe->bufs[head & mask];
 520                        buf->page = page;
 521                        buf->ops = &anon_pipe_buf_ops;
 522                        buf->offset = 0;
 523                        buf->len = 0;
 524                        if (is_packetized(filp))
 525                                buf->flags = PIPE_BUF_FLAG_PACKET;
 526                        else
 527                                buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
 528                        pipe->tmp_page = NULL;
 529
 530                        copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
 531                        if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
 532                                if (!ret)
 533                                        ret = -EFAULT;
 534                                break;
 535                        }
 536                        ret += copied;
 537                        buf->offset = 0;
 538                        buf->len = copied;
 539
 540                        if (!iov_iter_count(from))
 541                                break;
 542                }
 543
 544                if (!pipe_full(head, pipe->tail, pipe->max_usage))
 545                        continue;
 546
 547                /* Wait for buffer space to become available. */
 548                if (filp->f_flags & O_NONBLOCK) {
 549                        if (!ret)
 550                                ret = -EAGAIN;
 551                        break;
 552                }
 553                if (signal_pending(current)) {
 554                        if (!ret)
 555                                ret = -ERESTARTSYS;
 556                        break;
 557                }
 558
 559                /*
 560                 * We're going to release the pipe lock and wait for more
 561                 * space. We wake up any readers if necessary, and then
 562                 * after waiting we need to re-check whether the pipe
 563                 * become empty while we dropped the lock.
 564                 */
 565                __pipe_unlock(pipe);
 566                if (was_empty)
 567                        wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 568                kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 569                wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
 570                __pipe_lock(pipe);
 571                was_empty = pipe_empty(pipe->head, pipe->tail);
 572                wake_next_writer = true;
 573        }
 574out:
 575        if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
 576                wake_next_writer = false;
 577        __pipe_unlock(pipe);
 578
 579        /*
 580         * If we do do a wakeup event, we do a 'sync' wakeup, because we
 581         * want the reader to start processing things asap, rather than
 582         * leave the data pending.
 583         *
 584         * This is particularly important for small writes, because of
 585         * how (for example) the GNU make jobserver uses small writes to
 586         * wake up pending jobs
 587         *
 588         * Epoll nonsensically wants a wakeup whether the pipe
 589         * was already empty or not.
 590         */
 591        if (was_empty || pipe->poll_usage)
 592                wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 593        kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 594        if (wake_next_writer)
 595                wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 596        if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
 597                int err = file_update_time(filp);
 598                if (err)
 599                        ret = err;
 600                sb_end_write(file_inode(filp)->i_sb);
 601        }
 602        return ret;
 603}
 604
 605static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 606{
 607        struct pipe_inode_info *pipe = filp->private_data;
 608        int count, head, tail, mask;
 609
 610        switch (cmd) {
 611        case FIONREAD:
 612                __pipe_lock(pipe);
 613                count = 0;
 614                head = pipe->head;
 615                tail = pipe->tail;
 616                mask = pipe->ring_size - 1;
 617
 618                while (tail != head) {
 619                        count += pipe->bufs[tail & mask].len;
 620                        tail++;
 621                }
 622                __pipe_unlock(pipe);
 623
 624                return put_user(count, (int __user *)arg);
 625
 626#ifdef CONFIG_WATCH_QUEUE
 627        case IOC_WATCH_QUEUE_SET_SIZE: {
 628                int ret;
 629                __pipe_lock(pipe);
 630                ret = watch_queue_set_size(pipe, arg);
 631                __pipe_unlock(pipe);
 632                return ret;
 633        }
 634
 635        case IOC_WATCH_QUEUE_SET_FILTER:
 636                return watch_queue_set_filter(
 637                        pipe, (struct watch_notification_filter __user *)arg);
 638#endif
 639
 640        default:
 641                return -ENOIOCTLCMD;
 642        }
 643}
 644
 645/* No kernel lock held - fine */
 646static __poll_t
 647pipe_poll(struct file *filp, poll_table *wait)
 648{
 649        __poll_t mask;
 650        struct pipe_inode_info *pipe = filp->private_data;
 651        unsigned int head, tail;
 652
 653        /* Epoll has some historical nasty semantics, this enables them */
 654        pipe->poll_usage = 1;
 655
 656        /*
 657         * Reading pipe state only -- no need for acquiring the semaphore.
 658         *
 659         * But because this is racy, the code has to add the
 660         * entry to the poll table _first_ ..
 661         */
 662        if (filp->f_mode & FMODE_READ)
 663                poll_wait(filp, &pipe->rd_wait, wait);
 664        if (filp->f_mode & FMODE_WRITE)
 665                poll_wait(filp, &pipe->wr_wait, wait);
 666
 667        /*
 668         * .. and only then can you do the racy tests. That way,
 669         * if something changes and you got it wrong, the poll
 670         * table entry will wake you up and fix it.
 671         */
 672        head = READ_ONCE(pipe->head);
 673        tail = READ_ONCE(pipe->tail);
 674
 675        mask = 0;
 676        if (filp->f_mode & FMODE_READ) {
 677                if (!pipe_empty(head, tail))
 678                        mask |= EPOLLIN | EPOLLRDNORM;
 679                if (!pipe->writers && filp->f_version != pipe->w_counter)
 680                        mask |= EPOLLHUP;
 681        }
 682
 683        if (filp->f_mode & FMODE_WRITE) {
 684                if (!pipe_full(head, tail, pipe->max_usage))
 685                        mask |= EPOLLOUT | EPOLLWRNORM;
 686                /*
 687                 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
 688                 * behave exactly like pipes for poll().
 689                 */
 690                if (!pipe->readers)
 691                        mask |= EPOLLERR;
 692        }
 693
 694        return mask;
 695}
 696
 697static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
 698{
 699        int kill = 0;
 700
 701        spin_lock(&inode->i_lock);
 702        if (!--pipe->files) {
 703                inode->i_pipe = NULL;
 704                kill = 1;
 705        }
 706        spin_unlock(&inode->i_lock);
 707
 708        if (kill)
 709                free_pipe_info(pipe);
 710}
 711
 712static int
 713pipe_release(struct inode *inode, struct file *file)
 714{
 715        struct pipe_inode_info *pipe = file->private_data;
 716
 717        __pipe_lock(pipe);
 718        if (file->f_mode & FMODE_READ)
 719                pipe->readers--;
 720        if (file->f_mode & FMODE_WRITE)
 721                pipe->writers--;
 722
 723        /* Was that the last reader or writer, but not the other side? */
 724        if (!pipe->readers != !pipe->writers) {
 725                wake_up_interruptible_all(&pipe->rd_wait);
 726                wake_up_interruptible_all(&pipe->wr_wait);
 727                kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 728                kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 729        }
 730        __pipe_unlock(pipe);
 731
 732        put_pipe_info(inode, pipe);
 733        return 0;
 734}
 735
 736static int
 737pipe_fasync(int fd, struct file *filp, int on)
 738{
 739        struct pipe_inode_info *pipe = filp->private_data;
 740        int retval = 0;
 741
 742        __pipe_lock(pipe);
 743        if (filp->f_mode & FMODE_READ)
 744                retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
 745        if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
 746                retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
 747                if (retval < 0 && (filp->f_mode & FMODE_READ))
 748                        /* this can happen only if on == T */
 749                        fasync_helper(-1, filp, 0, &pipe->fasync_readers);
 750        }
 751        __pipe_unlock(pipe);
 752        return retval;
 753}
 754
 755unsigned long account_pipe_buffers(struct user_struct *user,
 756                                   unsigned long old, unsigned long new)
 757{
 758        return atomic_long_add_return(new - old, &user->pipe_bufs);
 759}
 760
 761bool too_many_pipe_buffers_soft(unsigned long user_bufs)
 762{
 763        unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
 764
 765        return soft_limit && user_bufs > soft_limit;
 766}
 767
 768bool too_many_pipe_buffers_hard(unsigned long user_bufs)
 769{
 770        unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
 771
 772        return hard_limit && user_bufs > hard_limit;
 773}
 774
 775bool pipe_is_unprivileged_user(void)
 776{
 777        return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
 778}
 779
 780struct pipe_inode_info *alloc_pipe_info(void)
 781{
 782        struct pipe_inode_info *pipe;
 783        unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
 784        struct user_struct *user = get_current_user();
 785        unsigned long user_bufs;
 786        unsigned int max_size = READ_ONCE(pipe_max_size);
 787
 788        pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
 789        if (pipe == NULL)
 790                goto out_free_uid;
 791
 792        if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
 793                pipe_bufs = max_size >> PAGE_SHIFT;
 794
 795        user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
 796
 797        if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
 798                user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
 799                pipe_bufs = PIPE_MIN_DEF_BUFFERS;
 800        }
 801
 802        if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
 803                goto out_revert_acct;
 804
 805        pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
 806                             GFP_KERNEL_ACCOUNT);
 807
 808        if (pipe->bufs) {
 809                init_waitqueue_head(&pipe->rd_wait);
 810                init_waitqueue_head(&pipe->wr_wait);
 811                pipe->r_counter = pipe->w_counter = 1;
 812                pipe->max_usage = pipe_bufs;
 813                pipe->ring_size = pipe_bufs;
 814                pipe->nr_accounted = pipe_bufs;
 815                pipe->user = user;
 816                mutex_init(&pipe->mutex);
 817                return pipe;
 818        }
 819
 820out_revert_acct:
 821        (void) account_pipe_buffers(user, pipe_bufs, 0);
 822        kfree(pipe);
 823out_free_uid:
 824        free_uid(user);
 825        return NULL;
 826}
 827
 828void free_pipe_info(struct pipe_inode_info *pipe)
 829{
 830        int i;
 831
 832#ifdef CONFIG_WATCH_QUEUE
 833        if (pipe->watch_queue) {
 834                watch_queue_clear(pipe->watch_queue);
 835                put_watch_queue(pipe->watch_queue);
 836        }
 837#endif
 838
 839        (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
 840        free_uid(pipe->user);
 841        for (i = 0; i < pipe->ring_size; i++) {
 842                struct pipe_buffer *buf = pipe->bufs + i;
 843                if (buf->ops)
 844                        pipe_buf_release(pipe, buf);
 845        }
 846        if (pipe->tmp_page)
 847                __free_page(pipe->tmp_page);
 848        kfree(pipe->bufs);
 849        kfree(pipe);
 850}
 851
 852static struct vfsmount *pipe_mnt __read_mostly;
 853
 854/*
 855 * pipefs_dname() is called from d_path().
 856 */
 857static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
 858{
 859        return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
 860                                d_inode(dentry)->i_ino);
 861}
 862
 863static const struct dentry_operations pipefs_dentry_operations = {
 864        .d_dname        = pipefs_dname,
 865};
 866
 867static struct inode * get_pipe_inode(void)
 868{
 869        struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
 870        struct pipe_inode_info *pipe;
 871
 872        if (!inode)
 873                goto fail_inode;
 874
 875        inode->i_ino = get_next_ino();
 876
 877        pipe = alloc_pipe_info();
 878        if (!pipe)
 879                goto fail_iput;
 880
 881        inode->i_pipe = pipe;
 882        pipe->files = 2;
 883        pipe->readers = pipe->writers = 1;
 884        inode->i_fop = &pipefifo_fops;
 885
 886        /*
 887         * Mark the inode dirty from the very beginning,
 888         * that way it will never be moved to the dirty
 889         * list because "mark_inode_dirty()" will think
 890         * that it already _is_ on the dirty list.
 891         */
 892        inode->i_state = I_DIRTY;
 893        inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
 894        inode->i_uid = current_fsuid();
 895        inode->i_gid = current_fsgid();
 896        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 897
 898        return inode;
 899
 900fail_iput:
 901        iput(inode);
 902
 903fail_inode:
 904        return NULL;
 905}
 906
 907int create_pipe_files(struct file **res, int flags)
 908{
 909        struct inode *inode = get_pipe_inode();
 910        struct file *f;
 911        int error;
 912
 913        if (!inode)
 914                return -ENFILE;
 915
 916        if (flags & O_NOTIFICATION_PIPE) {
 917                error = watch_queue_init(inode->i_pipe);
 918                if (error) {
 919                        free_pipe_info(inode->i_pipe);
 920                        iput(inode);
 921                        return error;
 922                }
 923        }
 924
 925        f = alloc_file_pseudo(inode, pipe_mnt, "",
 926                                O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
 927                                &pipefifo_fops);
 928        if (IS_ERR(f)) {
 929                free_pipe_info(inode->i_pipe);
 930                iput(inode);
 931                return PTR_ERR(f);
 932        }
 933
 934        f->private_data = inode->i_pipe;
 935
 936        res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
 937                                  &pipefifo_fops);
 938        if (IS_ERR(res[0])) {
 939                put_pipe_info(inode, inode->i_pipe);
 940                fput(f);
 941                return PTR_ERR(res[0]);
 942        }
 943        res[0]->private_data = inode->i_pipe;
 944        res[1] = f;
 945        stream_open(inode, res[0]);
 946        stream_open(inode, res[1]);
 947        return 0;
 948}
 949
 950static int __do_pipe_flags(int *fd, struct file **files, int flags)
 951{
 952        int error;
 953        int fdw, fdr;
 954
 955        if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
 956                return -EINVAL;
 957
 958        error = create_pipe_files(files, flags);
 959        if (error)
 960                return error;
 961
 962        error = get_unused_fd_flags(flags);
 963        if (error < 0)
 964                goto err_read_pipe;
 965        fdr = error;
 966
 967        error = get_unused_fd_flags(flags);
 968        if (error < 0)
 969                goto err_fdr;
 970        fdw = error;
 971
 972        audit_fd_pair(fdr, fdw);
 973        fd[0] = fdr;
 974        fd[1] = fdw;
 975        return 0;
 976
 977 err_fdr:
 978        put_unused_fd(fdr);
 979 err_read_pipe:
 980        fput(files[0]);
 981        fput(files[1]);
 982        return error;
 983}
 984
 985int do_pipe_flags(int *fd, int flags)
 986{
 987        struct file *files[2];
 988        int error = __do_pipe_flags(fd, files, flags);
 989        if (!error) {
 990                fd_install(fd[0], files[0]);
 991                fd_install(fd[1], files[1]);
 992        }
 993        return error;
 994}
 995
 996/*
 997 * sys_pipe() is the normal C calling standard for creating
 998 * a pipe. It's not the way Unix traditionally does this, though.
 999 */
1000static int do_pipe2(int __user *fildes, int flags)
1001{
1002        struct file *files[2];
1003        int fd[2];
1004        int error;
1005
1006        error = __do_pipe_flags(fd, files, flags);
1007        if (!error) {
1008                if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1009                        fput(files[0]);
1010                        fput(files[1]);
1011                        put_unused_fd(fd[0]);
1012                        put_unused_fd(fd[1]);
1013                        error = -EFAULT;
1014                } else {
1015                        fd_install(fd[0], files[0]);
1016                        fd_install(fd[1], files[1]);
1017                }
1018        }
1019        return error;
1020}
1021
1022SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1023{
1024        return do_pipe2(fildes, flags);
1025}
1026
1027SYSCALL_DEFINE1(pipe, int __user *, fildes)
1028{
1029        return do_pipe2(fildes, 0);
1030}
1031
1032/*
1033 * This is the stupid "wait for pipe to be readable or writable"
1034 * model.
1035 *
1036 * See pipe_read/write() for the proper kind of exclusive wait,
1037 * but that requires that we wake up any other readers/writers
1038 * if we then do not end up reading everything (ie the whole
1039 * "wake_next_reader/writer" logic in pipe_read/write()).
1040 */
1041void pipe_wait_readable(struct pipe_inode_info *pipe)
1042{
1043        pipe_unlock(pipe);
1044        wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1045        pipe_lock(pipe);
1046}
1047
1048void pipe_wait_writable(struct pipe_inode_info *pipe)
1049{
1050        pipe_unlock(pipe);
1051        wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1052        pipe_lock(pipe);
1053}
1054
1055/*
1056 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1057 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1058 * race with the count check and waitqueue prep.
1059 *
1060 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1061 * then check the condition you're waiting for, and only then sleep. But
1062 * because of the pipe lock, we can check the condition before being on
1063 * the wait queue.
1064 *
1065 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1066 */
1067static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1068{
1069        DEFINE_WAIT(rdwait);
1070        int cur = *cnt;
1071
1072        while (cur == *cnt) {
1073                prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1074                pipe_unlock(pipe);
1075                schedule();
1076                finish_wait(&pipe->rd_wait, &rdwait);
1077                pipe_lock(pipe);
1078                if (signal_pending(current))
1079                        break;
1080        }
1081        return cur == *cnt ? -ERESTARTSYS : 0;
1082}
1083
1084static void wake_up_partner(struct pipe_inode_info *pipe)
1085{
1086        wake_up_interruptible_all(&pipe->rd_wait);
1087}
1088
1089static int fifo_open(struct inode *inode, struct file *filp)
1090{
1091        struct pipe_inode_info *pipe;
1092        bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1093        int ret;
1094
1095        filp->f_version = 0;
1096
1097        spin_lock(&inode->i_lock);
1098        if (inode->i_pipe) {
1099                pipe = inode->i_pipe;
1100                pipe->files++;
1101                spin_unlock(&inode->i_lock);
1102        } else {
1103                spin_unlock(&inode->i_lock);
1104                pipe = alloc_pipe_info();
1105                if (!pipe)
1106                        return -ENOMEM;
1107                pipe->files = 1;
1108                spin_lock(&inode->i_lock);
1109                if (unlikely(inode->i_pipe)) {
1110                        inode->i_pipe->files++;
1111                        spin_unlock(&inode->i_lock);
1112                        free_pipe_info(pipe);
1113                        pipe = inode->i_pipe;
1114                } else {
1115                        inode->i_pipe = pipe;
1116                        spin_unlock(&inode->i_lock);
1117                }
1118        }
1119        filp->private_data = pipe;
1120        /* OK, we have a pipe and it's pinned down */
1121
1122        __pipe_lock(pipe);
1123
1124        /* We can only do regular read/write on fifos */
1125        stream_open(inode, filp);
1126
1127        switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1128        case FMODE_READ:
1129        /*
1130         *  O_RDONLY
1131         *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1132         *  opened, even when there is no process writing the FIFO.
1133         */
1134                pipe->r_counter++;
1135                if (pipe->readers++ == 0)
1136                        wake_up_partner(pipe);
1137
1138                if (!is_pipe && !pipe->writers) {
1139                        if ((filp->f_flags & O_NONBLOCK)) {
1140                                /* suppress EPOLLHUP until we have
1141                                 * seen a writer */
1142                                filp->f_version = pipe->w_counter;
1143                        } else {
1144                                if (wait_for_partner(pipe, &pipe->w_counter))
1145                                        goto err_rd;
1146                        }
1147                }
1148                break;
1149
1150        case FMODE_WRITE:
1151        /*
1152         *  O_WRONLY
1153         *  POSIX.1 says that O_NONBLOCK means return -1 with
1154         *  errno=ENXIO when there is no process reading the FIFO.
1155         */
1156                ret = -ENXIO;
1157                if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1158                        goto err;
1159
1160                pipe->w_counter++;
1161                if (!pipe->writers++)
1162                        wake_up_partner(pipe);
1163
1164                if (!is_pipe && !pipe->readers) {
1165                        if (wait_for_partner(pipe, &pipe->r_counter))
1166                                goto err_wr;
1167                }
1168                break;
1169
1170        case FMODE_READ | FMODE_WRITE:
1171        /*
1172         *  O_RDWR
1173         *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1174         *  This implementation will NEVER block on a O_RDWR open, since
1175         *  the process can at least talk to itself.
1176         */
1177
1178                pipe->readers++;
1179                pipe->writers++;
1180                pipe->r_counter++;
1181                pipe->w_counter++;
1182                if (pipe->readers == 1 || pipe->writers == 1)
1183                        wake_up_partner(pipe);
1184                break;
1185
1186        default:
1187                ret = -EINVAL;
1188                goto err;
1189        }
1190
1191        /* Ok! */
1192        __pipe_unlock(pipe);
1193        return 0;
1194
1195err_rd:
1196        if (!--pipe->readers)
1197                wake_up_interruptible(&pipe->wr_wait);
1198        ret = -ERESTARTSYS;
1199        goto err;
1200
1201err_wr:
1202        if (!--pipe->writers)
1203                wake_up_interruptible_all(&pipe->rd_wait);
1204        ret = -ERESTARTSYS;
1205        goto err;
1206
1207err:
1208        __pipe_unlock(pipe);
1209
1210        put_pipe_info(inode, pipe);
1211        return ret;
1212}
1213
1214const struct file_operations pipefifo_fops = {
1215        .open           = fifo_open,
1216        .llseek         = no_llseek,
1217        .read_iter      = pipe_read,
1218        .write_iter     = pipe_write,
1219        .poll           = pipe_poll,
1220        .unlocked_ioctl = pipe_ioctl,
1221        .release        = pipe_release,
1222        .fasync         = pipe_fasync,
1223        .splice_write   = iter_file_splice_write,
1224};
1225
1226/*
1227 * Currently we rely on the pipe array holding a power-of-2 number
1228 * of pages. Returns 0 on error.
1229 */
1230unsigned int round_pipe_size(unsigned long size)
1231{
1232        if (size > (1U << 31))
1233                return 0;
1234
1235        /* Minimum pipe size, as required by POSIX */
1236        if (size < PAGE_SIZE)
1237                return PAGE_SIZE;
1238
1239        return roundup_pow_of_two(size);
1240}
1241
1242/*
1243 * Resize the pipe ring to a number of slots.
1244 */
1245int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1246{
1247        struct pipe_buffer *bufs;
1248        unsigned int head, tail, mask, n;
1249
1250        /*
1251         * We can shrink the pipe, if arg is greater than the ring occupancy.
1252         * Since we don't expect a lot of shrink+grow operations, just free and
1253         * allocate again like we would do for growing.  If the pipe currently
1254         * contains more buffers than arg, then return busy.
1255         */
1256        mask = pipe->ring_size - 1;
1257        head = pipe->head;
1258        tail = pipe->tail;
1259        n = pipe_occupancy(pipe->head, pipe->tail);
1260        if (nr_slots < n)
1261                return -EBUSY;
1262
1263        bufs = kcalloc(nr_slots, sizeof(*bufs),
1264                       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1265        if (unlikely(!bufs))
1266                return -ENOMEM;
1267
1268        /*
1269         * The pipe array wraps around, so just start the new one at zero
1270         * and adjust the indices.
1271         */
1272        if (n > 0) {
1273                unsigned int h = head & mask;
1274                unsigned int t = tail & mask;
1275                if (h > t) {
1276                        memcpy(bufs, pipe->bufs + t,
1277                               n * sizeof(struct pipe_buffer));
1278                } else {
1279                        unsigned int tsize = pipe->ring_size - t;
1280                        if (h > 0)
1281                                memcpy(bufs + tsize, pipe->bufs,
1282                                       h * sizeof(struct pipe_buffer));
1283                        memcpy(bufs, pipe->bufs + t,
1284                               tsize * sizeof(struct pipe_buffer));
1285                }
1286        }
1287
1288        head = n;
1289        tail = 0;
1290
1291        kfree(pipe->bufs);
1292        pipe->bufs = bufs;
1293        pipe->ring_size = nr_slots;
1294        if (pipe->max_usage > nr_slots)
1295                pipe->max_usage = nr_slots;
1296        pipe->tail = tail;
1297        pipe->head = head;
1298
1299        /* This might have made more room for writers */
1300        wake_up_interruptible(&pipe->wr_wait);
1301        return 0;
1302}
1303
1304/*
1305 * Allocate a new array of pipe buffers and copy the info over. Returns the
1306 * pipe size if successful, or return -ERROR on error.
1307 */
1308static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1309{
1310        unsigned long user_bufs;
1311        unsigned int nr_slots, size;
1312        long ret = 0;
1313
1314#ifdef CONFIG_WATCH_QUEUE
1315        if (pipe->watch_queue)
1316                return -EBUSY;
1317#endif
1318
1319        size = round_pipe_size(arg);
1320        nr_slots = size >> PAGE_SHIFT;
1321
1322        if (!nr_slots)
1323                return -EINVAL;
1324
1325        /*
1326         * If trying to increase the pipe capacity, check that an
1327         * unprivileged user is not trying to exceed various limits
1328         * (soft limit check here, hard limit check just below).
1329         * Decreasing the pipe capacity is always permitted, even
1330         * if the user is currently over a limit.
1331         */
1332        if (nr_slots > pipe->max_usage &&
1333                        size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1334                return -EPERM;
1335
1336        user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1337
1338        if (nr_slots > pipe->max_usage &&
1339                        (too_many_pipe_buffers_hard(user_bufs) ||
1340                         too_many_pipe_buffers_soft(user_bufs)) &&
1341                        pipe_is_unprivileged_user()) {
1342                ret = -EPERM;
1343                goto out_revert_acct;
1344        }
1345
1346        ret = pipe_resize_ring(pipe, nr_slots);
1347        if (ret < 0)
1348                goto out_revert_acct;
1349
1350        pipe->max_usage = nr_slots;
1351        pipe->nr_accounted = nr_slots;
1352        return pipe->max_usage * PAGE_SIZE;
1353
1354out_revert_acct:
1355        (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1356        return ret;
1357}
1358
1359/*
1360 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1361 * not enough to verify that this is a pipe.
1362 */
1363struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1364{
1365        struct pipe_inode_info *pipe = file->private_data;
1366
1367        if (file->f_op != &pipefifo_fops || !pipe)
1368                return NULL;
1369#ifdef CONFIG_WATCH_QUEUE
1370        if (for_splice && pipe->watch_queue)
1371                return NULL;
1372#endif
1373        return pipe;
1374}
1375
1376long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1377{
1378        struct pipe_inode_info *pipe;
1379        long ret;
1380
1381        pipe = get_pipe_info(file, false);
1382        if (!pipe)
1383                return -EBADF;
1384
1385        __pipe_lock(pipe);
1386
1387        switch (cmd) {
1388        case F_SETPIPE_SZ:
1389                ret = pipe_set_size(pipe, arg);
1390                break;
1391        case F_GETPIPE_SZ:
1392                ret = pipe->max_usage * PAGE_SIZE;
1393                break;
1394        default:
1395                ret = -EINVAL;
1396                break;
1397        }
1398
1399        __pipe_unlock(pipe);
1400        return ret;
1401}
1402
1403static const struct super_operations pipefs_ops = {
1404        .destroy_inode = free_inode_nonrcu,
1405        .statfs = simple_statfs,
1406};
1407
1408/*
1409 * pipefs should _never_ be mounted by userland - too much of security hassle,
1410 * no real gain from having the whole whorehouse mounted. So we don't need
1411 * any operations on the root directory. However, we need a non-trivial
1412 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1413 */
1414
1415static int pipefs_init_fs_context(struct fs_context *fc)
1416{
1417        struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1418        if (!ctx)
1419                return -ENOMEM;
1420        ctx->ops = &pipefs_ops;
1421        ctx->dops = &pipefs_dentry_operations;
1422        return 0;
1423}
1424
1425static struct file_system_type pipe_fs_type = {
1426        .name           = "pipefs",
1427        .init_fs_context = pipefs_init_fs_context,
1428        .kill_sb        = kill_anon_super,
1429};
1430
1431static int __init init_pipe_fs(void)
1432{
1433        int err = register_filesystem(&pipe_fs_type);
1434
1435        if (!err) {
1436                pipe_mnt = kern_mount(&pipe_fs_type);
1437                if (IS_ERR(pipe_mnt)) {
1438                        err = PTR_ERR(pipe_mnt);
1439                        unregister_filesystem(&pipe_fs_type);
1440                }
1441        }
1442        return err;
1443}
1444
1445fs_initcall(init_pipe_fs);
1446