linux/fs/xfs/xfs_log.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24kmem_zone_t     *xfs_log_ticket_zone;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29        struct xfs_mount        *mp,
  30        struct xfs_buftarg      *log_target,
  31        xfs_daddr_t             blk_offset,
  32        int                     num_bblks);
  33STATIC int
  34xlog_space_left(
  35        struct xlog             *log,
  36        atomic64_t              *head);
  37STATIC void
  38xlog_dealloc_log(
  39        struct xlog             *log);
  40
  41/* local state machine functions */
  42STATIC void xlog_state_done_syncing(
  43        struct xlog_in_core     *iclog);
  44STATIC void xlog_state_do_callback(
  45        struct xlog             *log);
  46STATIC int
  47xlog_state_get_iclog_space(
  48        struct xlog             *log,
  49        int                     len,
  50        struct xlog_in_core     **iclog,
  51        struct xlog_ticket      *ticket,
  52        int                     *continued_write,
  53        int                     *logoffsetp);
  54STATIC void
  55xlog_grant_push_ail(
  56        struct xlog             *log,
  57        int                     need_bytes);
  58STATIC void
  59xlog_sync(
  60        struct xlog             *log,
  61        struct xlog_in_core     *iclog);
  62#if defined(DEBUG)
  63STATIC void
  64xlog_verify_dest_ptr(
  65        struct xlog             *log,
  66        void                    *ptr);
  67STATIC void
  68xlog_verify_grant_tail(
  69        struct xlog *log);
  70STATIC void
  71xlog_verify_iclog(
  72        struct xlog             *log,
  73        struct xlog_in_core     *iclog,
  74        int                     count);
  75STATIC void
  76xlog_verify_tail_lsn(
  77        struct xlog             *log,
  78        struct xlog_in_core     *iclog);
  79#else
  80#define xlog_verify_dest_ptr(a,b)
  81#define xlog_verify_grant_tail(a)
  82#define xlog_verify_iclog(a,b,c)
  83#define xlog_verify_tail_lsn(a,b)
  84#endif
  85
  86STATIC int
  87xlog_iclogs_empty(
  88        struct xlog             *log);
  89
  90static int
  91xfs_log_cover(struct xfs_mount *);
  92
  93static void
  94xlog_grant_sub_space(
  95        struct xlog             *log,
  96        atomic64_t              *head,
  97        int                     bytes)
  98{
  99        int64_t head_val = atomic64_read(head);
 100        int64_t new, old;
 101
 102        do {
 103                int     cycle, space;
 104
 105                xlog_crack_grant_head_val(head_val, &cycle, &space);
 106
 107                space -= bytes;
 108                if (space < 0) {
 109                        space += log->l_logsize;
 110                        cycle--;
 111                }
 112
 113                old = head_val;
 114                new = xlog_assign_grant_head_val(cycle, space);
 115                head_val = atomic64_cmpxchg(head, old, new);
 116        } while (head_val != old);
 117}
 118
 119static void
 120xlog_grant_add_space(
 121        struct xlog             *log,
 122        atomic64_t              *head,
 123        int                     bytes)
 124{
 125        int64_t head_val = atomic64_read(head);
 126        int64_t new, old;
 127
 128        do {
 129                int             tmp;
 130                int             cycle, space;
 131
 132                xlog_crack_grant_head_val(head_val, &cycle, &space);
 133
 134                tmp = log->l_logsize - space;
 135                if (tmp > bytes)
 136                        space += bytes;
 137                else {
 138                        space = bytes - tmp;
 139                        cycle++;
 140                }
 141
 142                old = head_val;
 143                new = xlog_assign_grant_head_val(cycle, space);
 144                head_val = atomic64_cmpxchg(head, old, new);
 145        } while (head_val != old);
 146}
 147
 148STATIC void
 149xlog_grant_head_init(
 150        struct xlog_grant_head  *head)
 151{
 152        xlog_assign_grant_head(&head->grant, 1, 0);
 153        INIT_LIST_HEAD(&head->waiters);
 154        spin_lock_init(&head->lock);
 155}
 156
 157STATIC void
 158xlog_grant_head_wake_all(
 159        struct xlog_grant_head  *head)
 160{
 161        struct xlog_ticket      *tic;
 162
 163        spin_lock(&head->lock);
 164        list_for_each_entry(tic, &head->waiters, t_queue)
 165                wake_up_process(tic->t_task);
 166        spin_unlock(&head->lock);
 167}
 168
 169static inline int
 170xlog_ticket_reservation(
 171        struct xlog             *log,
 172        struct xlog_grant_head  *head,
 173        struct xlog_ticket      *tic)
 174{
 175        if (head == &log->l_write_head) {
 176                ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 177                return tic->t_unit_res;
 178        } else {
 179                if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 180                        return tic->t_unit_res * tic->t_cnt;
 181                else
 182                        return tic->t_unit_res;
 183        }
 184}
 185
 186STATIC bool
 187xlog_grant_head_wake(
 188        struct xlog             *log,
 189        struct xlog_grant_head  *head,
 190        int                     *free_bytes)
 191{
 192        struct xlog_ticket      *tic;
 193        int                     need_bytes;
 194        bool                    woken_task = false;
 195
 196        list_for_each_entry(tic, &head->waiters, t_queue) {
 197
 198                /*
 199                 * There is a chance that the size of the CIL checkpoints in
 200                 * progress at the last AIL push target calculation resulted in
 201                 * limiting the target to the log head (l_last_sync_lsn) at the
 202                 * time. This may not reflect where the log head is now as the
 203                 * CIL checkpoints may have completed.
 204                 *
 205                 * Hence when we are woken here, it may be that the head of the
 206                 * log that has moved rather than the tail. As the tail didn't
 207                 * move, there still won't be space available for the
 208                 * reservation we require.  However, if the AIL has already
 209                 * pushed to the target defined by the old log head location, we
 210                 * will hang here waiting for something else to update the AIL
 211                 * push target.
 212                 *
 213                 * Therefore, if there isn't space to wake the first waiter on
 214                 * the grant head, we need to push the AIL again to ensure the
 215                 * target reflects both the current log tail and log head
 216                 * position before we wait for the tail to move again.
 217                 */
 218
 219                need_bytes = xlog_ticket_reservation(log, head, tic);
 220                if (*free_bytes < need_bytes) {
 221                        if (!woken_task)
 222                                xlog_grant_push_ail(log, need_bytes);
 223                        return false;
 224                }
 225
 226                *free_bytes -= need_bytes;
 227                trace_xfs_log_grant_wake_up(log, tic);
 228                wake_up_process(tic->t_task);
 229                woken_task = true;
 230        }
 231
 232        return true;
 233}
 234
 235STATIC int
 236xlog_grant_head_wait(
 237        struct xlog             *log,
 238        struct xlog_grant_head  *head,
 239        struct xlog_ticket      *tic,
 240        int                     need_bytes) __releases(&head->lock)
 241                                            __acquires(&head->lock)
 242{
 243        list_add_tail(&tic->t_queue, &head->waiters);
 244
 245        do {
 246                if (xlog_is_shutdown(log))
 247                        goto shutdown;
 248                xlog_grant_push_ail(log, need_bytes);
 249
 250                __set_current_state(TASK_UNINTERRUPTIBLE);
 251                spin_unlock(&head->lock);
 252
 253                XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 254
 255                trace_xfs_log_grant_sleep(log, tic);
 256                schedule();
 257                trace_xfs_log_grant_wake(log, tic);
 258
 259                spin_lock(&head->lock);
 260                if (xlog_is_shutdown(log))
 261                        goto shutdown;
 262        } while (xlog_space_left(log, &head->grant) < need_bytes);
 263
 264        list_del_init(&tic->t_queue);
 265        return 0;
 266shutdown:
 267        list_del_init(&tic->t_queue);
 268        return -EIO;
 269}
 270
 271/*
 272 * Atomically get the log space required for a log ticket.
 273 *
 274 * Once a ticket gets put onto head->waiters, it will only return after the
 275 * needed reservation is satisfied.
 276 *
 277 * This function is structured so that it has a lock free fast path. This is
 278 * necessary because every new transaction reservation will come through this
 279 * path. Hence any lock will be globally hot if we take it unconditionally on
 280 * every pass.
 281 *
 282 * As tickets are only ever moved on and off head->waiters under head->lock, we
 283 * only need to take that lock if we are going to add the ticket to the queue
 284 * and sleep. We can avoid taking the lock if the ticket was never added to
 285 * head->waiters because the t_queue list head will be empty and we hold the
 286 * only reference to it so it can safely be checked unlocked.
 287 */
 288STATIC int
 289xlog_grant_head_check(
 290        struct xlog             *log,
 291        struct xlog_grant_head  *head,
 292        struct xlog_ticket      *tic,
 293        int                     *need_bytes)
 294{
 295        int                     free_bytes;
 296        int                     error = 0;
 297
 298        ASSERT(!xlog_in_recovery(log));
 299
 300        /*
 301         * If there are other waiters on the queue then give them a chance at
 302         * logspace before us.  Wake up the first waiters, if we do not wake
 303         * up all the waiters then go to sleep waiting for more free space,
 304         * otherwise try to get some space for this transaction.
 305         */
 306        *need_bytes = xlog_ticket_reservation(log, head, tic);
 307        free_bytes = xlog_space_left(log, &head->grant);
 308        if (!list_empty_careful(&head->waiters)) {
 309                spin_lock(&head->lock);
 310                if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 311                    free_bytes < *need_bytes) {
 312                        error = xlog_grant_head_wait(log, head, tic,
 313                                                     *need_bytes);
 314                }
 315                spin_unlock(&head->lock);
 316        } else if (free_bytes < *need_bytes) {
 317                spin_lock(&head->lock);
 318                error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 319                spin_unlock(&head->lock);
 320        }
 321
 322        return error;
 323}
 324
 325static void
 326xlog_tic_reset_res(xlog_ticket_t *tic)
 327{
 328        tic->t_res_num = 0;
 329        tic->t_res_arr_sum = 0;
 330        tic->t_res_num_ophdrs = 0;
 331}
 332
 333static void
 334xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 335{
 336        if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 337                /* add to overflow and start again */
 338                tic->t_res_o_flow += tic->t_res_arr_sum;
 339                tic->t_res_num = 0;
 340                tic->t_res_arr_sum = 0;
 341        }
 342
 343        tic->t_res_arr[tic->t_res_num].r_len = len;
 344        tic->t_res_arr[tic->t_res_num].r_type = type;
 345        tic->t_res_arr_sum += len;
 346        tic->t_res_num++;
 347}
 348
 349bool
 350xfs_log_writable(
 351        struct xfs_mount        *mp)
 352{
 353        /*
 354         * Do not write to the log on norecovery mounts, if the data or log
 355         * devices are read-only, or if the filesystem is shutdown. Read-only
 356         * mounts allow internal writes for log recovery and unmount purposes,
 357         * so don't restrict that case.
 358         */
 359        if (xfs_has_norecovery(mp))
 360                return false;
 361        if (xfs_readonly_buftarg(mp->m_ddev_targp))
 362                return false;
 363        if (xfs_readonly_buftarg(mp->m_log->l_targ))
 364                return false;
 365        if (xlog_is_shutdown(mp->m_log))
 366                return false;
 367        return true;
 368}
 369
 370/*
 371 * Replenish the byte reservation required by moving the grant write head.
 372 */
 373int
 374xfs_log_regrant(
 375        struct xfs_mount        *mp,
 376        struct xlog_ticket      *tic)
 377{
 378        struct xlog             *log = mp->m_log;
 379        int                     need_bytes;
 380        int                     error = 0;
 381
 382        if (xlog_is_shutdown(log))
 383                return -EIO;
 384
 385        XFS_STATS_INC(mp, xs_try_logspace);
 386
 387        /*
 388         * This is a new transaction on the ticket, so we need to change the
 389         * transaction ID so that the next transaction has a different TID in
 390         * the log. Just add one to the existing tid so that we can see chains
 391         * of rolling transactions in the log easily.
 392         */
 393        tic->t_tid++;
 394
 395        xlog_grant_push_ail(log, tic->t_unit_res);
 396
 397        tic->t_curr_res = tic->t_unit_res;
 398        xlog_tic_reset_res(tic);
 399
 400        if (tic->t_cnt > 0)
 401                return 0;
 402
 403        trace_xfs_log_regrant(log, tic);
 404
 405        error = xlog_grant_head_check(log, &log->l_write_head, tic,
 406                                      &need_bytes);
 407        if (error)
 408                goto out_error;
 409
 410        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 411        trace_xfs_log_regrant_exit(log, tic);
 412        xlog_verify_grant_tail(log);
 413        return 0;
 414
 415out_error:
 416        /*
 417         * If we are failing, make sure the ticket doesn't have any current
 418         * reservations.  We don't want to add this back when the ticket/
 419         * transaction gets cancelled.
 420         */
 421        tic->t_curr_res = 0;
 422        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 423        return error;
 424}
 425
 426/*
 427 * Reserve log space and return a ticket corresponding to the reservation.
 428 *
 429 * Each reservation is going to reserve extra space for a log record header.
 430 * When writes happen to the on-disk log, we don't subtract the length of the
 431 * log record header from any reservation.  By wasting space in each
 432 * reservation, we prevent over allocation problems.
 433 */
 434int
 435xfs_log_reserve(
 436        struct xfs_mount        *mp,
 437        int                     unit_bytes,
 438        int                     cnt,
 439        struct xlog_ticket      **ticp,
 440        uint8_t                 client,
 441        bool                    permanent)
 442{
 443        struct xlog             *log = mp->m_log;
 444        struct xlog_ticket      *tic;
 445        int                     need_bytes;
 446        int                     error = 0;
 447
 448        ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 449
 450        if (xlog_is_shutdown(log))
 451                return -EIO;
 452
 453        XFS_STATS_INC(mp, xs_try_logspace);
 454
 455        ASSERT(*ticp == NULL);
 456        tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
 457        *ticp = tic;
 458
 459        xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 460                                            : tic->t_unit_res);
 461
 462        trace_xfs_log_reserve(log, tic);
 463
 464        error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 465                                      &need_bytes);
 466        if (error)
 467                goto out_error;
 468
 469        xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 470        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 471        trace_xfs_log_reserve_exit(log, tic);
 472        xlog_verify_grant_tail(log);
 473        return 0;
 474
 475out_error:
 476        /*
 477         * If we are failing, make sure the ticket doesn't have any current
 478         * reservations.  We don't want to add this back when the ticket/
 479         * transaction gets cancelled.
 480         */
 481        tic->t_curr_res = 0;
 482        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 483        return error;
 484}
 485
 486/*
 487 * Run all the pending iclog callbacks and wake log force waiters and iclog
 488 * space waiters so they can process the newly set shutdown state. We really
 489 * don't care what order we process callbacks here because the log is shut down
 490 * and so state cannot change on disk anymore.
 491 *
 492 * We avoid processing actively referenced iclogs so that we don't run callbacks
 493 * while the iclog owner might still be preparing the iclog for IO submssion.
 494 * These will be caught by xlog_state_iclog_release() and call this function
 495 * again to process any callbacks that may have been added to that iclog.
 496 */
 497static void
 498xlog_state_shutdown_callbacks(
 499        struct xlog             *log)
 500{
 501        struct xlog_in_core     *iclog;
 502        LIST_HEAD(cb_list);
 503
 504        spin_lock(&log->l_icloglock);
 505        iclog = log->l_iclog;
 506        do {
 507                if (atomic_read(&iclog->ic_refcnt)) {
 508                        /* Reference holder will re-run iclog callbacks. */
 509                        continue;
 510                }
 511                list_splice_init(&iclog->ic_callbacks, &cb_list);
 512                wake_up_all(&iclog->ic_write_wait);
 513                wake_up_all(&iclog->ic_force_wait);
 514        } while ((iclog = iclog->ic_next) != log->l_iclog);
 515
 516        wake_up_all(&log->l_flush_wait);
 517        spin_unlock(&log->l_icloglock);
 518
 519        xlog_cil_process_committed(&cb_list);
 520}
 521
 522/*
 523 * Flush iclog to disk if this is the last reference to the given iclog and the
 524 * it is in the WANT_SYNC state.
 525 *
 526 * If the caller passes in a non-zero @old_tail_lsn and the current log tail
 527 * does not match, there may be metadata on disk that must be persisted before
 528 * this iclog is written.  To satisfy that requirement, set the
 529 * XLOG_ICL_NEED_FLUSH flag as a condition for writing this iclog with the new
 530 * log tail value.
 531 *
 532 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
 533 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
 534 * written to stable storage, and implies that a commit record is contained
 535 * within the iclog. We need to ensure that the log tail does not move beyond
 536 * the tail that the first commit record in the iclog ordered against, otherwise
 537 * correct recovery of that checkpoint becomes dependent on future operations
 538 * performed on this iclog.
 539 *
 540 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
 541 * current tail into iclog. Once the iclog tail is set, future operations must
 542 * not modify it, otherwise they potentially violate ordering constraints for
 543 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
 544 * the iclog will get zeroed on activation of the iclog after sync, so we
 545 * always capture the tail lsn on the iclog on the first NEED_FUA release
 546 * regardless of the number of active reference counts on this iclog.
 547 */
 548
 549int
 550xlog_state_release_iclog(
 551        struct xlog             *log,
 552        struct xlog_in_core     *iclog,
 553        xfs_lsn_t               old_tail_lsn)
 554{
 555        xfs_lsn_t               tail_lsn;
 556        bool                    last_ref;
 557
 558        lockdep_assert_held(&log->l_icloglock);
 559
 560        trace_xlog_iclog_release(iclog, _RET_IP_);
 561        /*
 562         * Grabbing the current log tail needs to be atomic w.r.t. the writing
 563         * of the tail LSN into the iclog so we guarantee that the log tail does
 564         * not move between deciding if a cache flush is required and writing
 565         * the LSN into the iclog below.
 566         */
 567        if (old_tail_lsn || iclog->ic_state == XLOG_STATE_WANT_SYNC) {
 568                tail_lsn = xlog_assign_tail_lsn(log->l_mp);
 569
 570                if (old_tail_lsn && tail_lsn != old_tail_lsn)
 571                        iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
 572
 573                if ((iclog->ic_flags & XLOG_ICL_NEED_FUA) &&
 574                    !iclog->ic_header.h_tail_lsn)
 575                        iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 576        }
 577
 578        last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
 579
 580        if (xlog_is_shutdown(log)) {
 581                /*
 582                 * If there are no more references to this iclog, process the
 583                 * pending iclog callbacks that were waiting on the release of
 584                 * this iclog.
 585                 */
 586                if (last_ref) {
 587                        spin_unlock(&log->l_icloglock);
 588                        xlog_state_shutdown_callbacks(log);
 589                        spin_lock(&log->l_icloglock);
 590                }
 591                return -EIO;
 592        }
 593
 594        if (!last_ref)
 595                return 0;
 596
 597        if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
 598                ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 599                return 0;
 600        }
 601
 602        iclog->ic_state = XLOG_STATE_SYNCING;
 603        if (!iclog->ic_header.h_tail_lsn)
 604                iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 605        xlog_verify_tail_lsn(log, iclog);
 606        trace_xlog_iclog_syncing(iclog, _RET_IP_);
 607
 608        spin_unlock(&log->l_icloglock);
 609        xlog_sync(log, iclog);
 610        spin_lock(&log->l_icloglock);
 611        return 0;
 612}
 613
 614/*
 615 * Mount a log filesystem
 616 *
 617 * mp           - ubiquitous xfs mount point structure
 618 * log_target   - buftarg of on-disk log device
 619 * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 620 * num_bblocks  - Number of BBSIZE blocks in on-disk log
 621 *
 622 * Return error or zero.
 623 */
 624int
 625xfs_log_mount(
 626        xfs_mount_t     *mp,
 627        xfs_buftarg_t   *log_target,
 628        xfs_daddr_t     blk_offset,
 629        int             num_bblks)
 630{
 631        struct xlog     *log;
 632        bool            fatal = xfs_has_crc(mp);
 633        int             error = 0;
 634        int             min_logfsbs;
 635
 636        if (!xfs_has_norecovery(mp)) {
 637                xfs_notice(mp, "Mounting V%d Filesystem",
 638                           XFS_SB_VERSION_NUM(&mp->m_sb));
 639        } else {
 640                xfs_notice(mp,
 641"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 642                           XFS_SB_VERSION_NUM(&mp->m_sb));
 643                ASSERT(xfs_is_readonly(mp));
 644        }
 645
 646        log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 647        if (IS_ERR(log)) {
 648                error = PTR_ERR(log);
 649                goto out;
 650        }
 651        mp->m_log = log;
 652
 653        /*
 654         * Validate the given log space and drop a critical message via syslog
 655         * if the log size is too small that would lead to some unexpected
 656         * situations in transaction log space reservation stage.
 657         *
 658         * Note: we can't just reject the mount if the validation fails.  This
 659         * would mean that people would have to downgrade their kernel just to
 660         * remedy the situation as there is no way to grow the log (short of
 661         * black magic surgery with xfs_db).
 662         *
 663         * We can, however, reject mounts for CRC format filesystems, as the
 664         * mkfs binary being used to make the filesystem should never create a
 665         * filesystem with a log that is too small.
 666         */
 667        min_logfsbs = xfs_log_calc_minimum_size(mp);
 668
 669        if (mp->m_sb.sb_logblocks < min_logfsbs) {
 670                xfs_warn(mp,
 671                "Log size %d blocks too small, minimum size is %d blocks",
 672                         mp->m_sb.sb_logblocks, min_logfsbs);
 673                error = -EINVAL;
 674        } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 675                xfs_warn(mp,
 676                "Log size %d blocks too large, maximum size is %lld blocks",
 677                         mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 678                error = -EINVAL;
 679        } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 680                xfs_warn(mp,
 681                "log size %lld bytes too large, maximum size is %lld bytes",
 682                         XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 683                         XFS_MAX_LOG_BYTES);
 684                error = -EINVAL;
 685        } else if (mp->m_sb.sb_logsunit > 1 &&
 686                   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 687                xfs_warn(mp,
 688                "log stripe unit %u bytes must be a multiple of block size",
 689                         mp->m_sb.sb_logsunit);
 690                error = -EINVAL;
 691                fatal = true;
 692        }
 693        if (error) {
 694                /*
 695                 * Log check errors are always fatal on v5; or whenever bad
 696                 * metadata leads to a crash.
 697                 */
 698                if (fatal) {
 699                        xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 700                        ASSERT(0);
 701                        goto out_free_log;
 702                }
 703                xfs_crit(mp, "Log size out of supported range.");
 704                xfs_crit(mp,
 705"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 706        }
 707
 708        /*
 709         * Initialize the AIL now we have a log.
 710         */
 711        error = xfs_trans_ail_init(mp);
 712        if (error) {
 713                xfs_warn(mp, "AIL initialisation failed: error %d", error);
 714                goto out_free_log;
 715        }
 716        log->l_ailp = mp->m_ail;
 717
 718        /*
 719         * skip log recovery on a norecovery mount.  pretend it all
 720         * just worked.
 721         */
 722        if (!xfs_has_norecovery(mp)) {
 723                /*
 724                 * log recovery ignores readonly state and so we need to clear
 725                 * mount-based read only state so it can write to disk.
 726                 */
 727                bool    readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
 728                                                &mp->m_opstate);
 729                error = xlog_recover(log);
 730                if (readonly)
 731                        set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
 732                if (error) {
 733                        xfs_warn(mp, "log mount/recovery failed: error %d",
 734                                error);
 735                        xlog_recover_cancel(log);
 736                        goto out_destroy_ail;
 737                }
 738        }
 739
 740        error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 741                               "log");
 742        if (error)
 743                goto out_destroy_ail;
 744
 745        /* Normal transactions can now occur */
 746        clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
 747
 748        /*
 749         * Now the log has been fully initialised and we know were our
 750         * space grant counters are, we can initialise the permanent ticket
 751         * needed for delayed logging to work.
 752         */
 753        xlog_cil_init_post_recovery(log);
 754
 755        return 0;
 756
 757out_destroy_ail:
 758        xfs_trans_ail_destroy(mp);
 759out_free_log:
 760        xlog_dealloc_log(log);
 761out:
 762        return error;
 763}
 764
 765/*
 766 * Finish the recovery of the file system.  This is separate from the
 767 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 768 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 769 * here.
 770 *
 771 * If we finish recovery successfully, start the background log work. If we are
 772 * not doing recovery, then we have a RO filesystem and we don't need to start
 773 * it.
 774 */
 775int
 776xfs_log_mount_finish(
 777        struct xfs_mount        *mp)
 778{
 779        struct xlog             *log = mp->m_log;
 780        bool                    readonly;
 781        int                     error = 0;
 782
 783        if (xfs_has_norecovery(mp)) {
 784                ASSERT(xfs_is_readonly(mp));
 785                return 0;
 786        }
 787
 788        /*
 789         * log recovery ignores readonly state and so we need to clear
 790         * mount-based read only state so it can write to disk.
 791         */
 792        readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
 793
 794        /*
 795         * During the second phase of log recovery, we need iget and
 796         * iput to behave like they do for an active filesystem.
 797         * xfs_fs_drop_inode needs to be able to prevent the deletion
 798         * of inodes before we're done replaying log items on those
 799         * inodes.  Turn it off immediately after recovery finishes
 800         * so that we don't leak the quota inodes if subsequent mount
 801         * activities fail.
 802         *
 803         * We let all inodes involved in redo item processing end up on
 804         * the LRU instead of being evicted immediately so that if we do
 805         * something to an unlinked inode, the irele won't cause
 806         * premature truncation and freeing of the inode, which results
 807         * in log recovery failure.  We have to evict the unreferenced
 808         * lru inodes after clearing SB_ACTIVE because we don't
 809         * otherwise clean up the lru if there's a subsequent failure in
 810         * xfs_mountfs, which leads to us leaking the inodes if nothing
 811         * else (e.g. quotacheck) references the inodes before the
 812         * mount failure occurs.
 813         */
 814        mp->m_super->s_flags |= SB_ACTIVE;
 815        if (xlog_recovery_needed(log))
 816                error = xlog_recover_finish(log);
 817        if (!error)
 818                xfs_log_work_queue(mp);
 819        mp->m_super->s_flags &= ~SB_ACTIVE;
 820        evict_inodes(mp->m_super);
 821
 822        /*
 823         * Drain the buffer LRU after log recovery. This is required for v4
 824         * filesystems to avoid leaving around buffers with NULL verifier ops,
 825         * but we do it unconditionally to make sure we're always in a clean
 826         * cache state after mount.
 827         *
 828         * Don't push in the error case because the AIL may have pending intents
 829         * that aren't removed until recovery is cancelled.
 830         */
 831        if (xlog_recovery_needed(log)) {
 832                if (!error) {
 833                        xfs_log_force(mp, XFS_LOG_SYNC);
 834                        xfs_ail_push_all_sync(mp->m_ail);
 835                }
 836                xfs_notice(mp, "Ending recovery (logdev: %s)",
 837                                mp->m_logname ? mp->m_logname : "internal");
 838        } else {
 839                xfs_info(mp, "Ending clean mount");
 840        }
 841        xfs_buftarg_drain(mp->m_ddev_targp);
 842
 843        clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
 844        if (readonly)
 845                set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
 846
 847        /* Make sure the log is dead if we're returning failure. */
 848        ASSERT(!error || xlog_is_shutdown(log));
 849
 850        return error;
 851}
 852
 853/*
 854 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 855 * the log.
 856 */
 857void
 858xfs_log_mount_cancel(
 859        struct xfs_mount        *mp)
 860{
 861        xlog_recover_cancel(mp->m_log);
 862        xfs_log_unmount(mp);
 863}
 864
 865/*
 866 * Flush out the iclog to disk ensuring that device caches are flushed and
 867 * the iclog hits stable storage before any completion waiters are woken.
 868 */
 869static inline int
 870xlog_force_iclog(
 871        struct xlog_in_core     *iclog)
 872{
 873        atomic_inc(&iclog->ic_refcnt);
 874        iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
 875        if (iclog->ic_state == XLOG_STATE_ACTIVE)
 876                xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
 877        return xlog_state_release_iclog(iclog->ic_log, iclog, 0);
 878}
 879
 880/*
 881 * Wait for the iclog and all prior iclogs to be written disk as required by the
 882 * log force state machine. Waiting on ic_force_wait ensures iclog completions
 883 * have been ordered and callbacks run before we are woken here, hence
 884 * guaranteeing that all the iclogs up to this one are on stable storage.
 885 */
 886int
 887xlog_wait_on_iclog(
 888        struct xlog_in_core     *iclog)
 889                __releases(iclog->ic_log->l_icloglock)
 890{
 891        struct xlog             *log = iclog->ic_log;
 892
 893        trace_xlog_iclog_wait_on(iclog, _RET_IP_);
 894        if (!xlog_is_shutdown(log) &&
 895            iclog->ic_state != XLOG_STATE_ACTIVE &&
 896            iclog->ic_state != XLOG_STATE_DIRTY) {
 897                XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 898                xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 899        } else {
 900                spin_unlock(&log->l_icloglock);
 901        }
 902
 903        if (xlog_is_shutdown(log))
 904                return -EIO;
 905        return 0;
 906}
 907
 908/*
 909 * Write out an unmount record using the ticket provided. We have to account for
 910 * the data space used in the unmount ticket as this write is not done from a
 911 * transaction context that has already done the accounting for us.
 912 */
 913static int
 914xlog_write_unmount_record(
 915        struct xlog             *log,
 916        struct xlog_ticket      *ticket)
 917{
 918        struct xfs_unmount_log_format ulf = {
 919                .magic = XLOG_UNMOUNT_TYPE,
 920        };
 921        struct xfs_log_iovec reg = {
 922                .i_addr = &ulf,
 923                .i_len = sizeof(ulf),
 924                .i_type = XLOG_REG_TYPE_UNMOUNT,
 925        };
 926        struct xfs_log_vec vec = {
 927                .lv_niovecs = 1,
 928                .lv_iovecp = &reg,
 929        };
 930
 931        /* account for space used by record data */
 932        ticket->t_curr_res -= sizeof(ulf);
 933
 934        return xlog_write(log, NULL, &vec, ticket, XLOG_UNMOUNT_TRANS);
 935}
 936
 937/*
 938 * Mark the filesystem clean by writing an unmount record to the head of the
 939 * log.
 940 */
 941static void
 942xlog_unmount_write(
 943        struct xlog             *log)
 944{
 945        struct xfs_mount        *mp = log->l_mp;
 946        struct xlog_in_core     *iclog;
 947        struct xlog_ticket      *tic = NULL;
 948        int                     error;
 949
 950        error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 951        if (error)
 952                goto out_err;
 953
 954        error = xlog_write_unmount_record(log, tic);
 955        /*
 956         * At this point, we're umounting anyway, so there's no point in
 957         * transitioning log state to shutdown. Just continue...
 958         */
 959out_err:
 960        if (error)
 961                xfs_alert(mp, "%s: unmount record failed", __func__);
 962
 963        spin_lock(&log->l_icloglock);
 964        iclog = log->l_iclog;
 965        error = xlog_force_iclog(iclog);
 966        xlog_wait_on_iclog(iclog);
 967
 968        if (tic) {
 969                trace_xfs_log_umount_write(log, tic);
 970                xfs_log_ticket_ungrant(log, tic);
 971        }
 972}
 973
 974static void
 975xfs_log_unmount_verify_iclog(
 976        struct xlog             *log)
 977{
 978        struct xlog_in_core     *iclog = log->l_iclog;
 979
 980        do {
 981                ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 982                ASSERT(iclog->ic_offset == 0);
 983        } while ((iclog = iclog->ic_next) != log->l_iclog);
 984}
 985
 986/*
 987 * Unmount record used to have a string "Unmount filesystem--" in the
 988 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 989 * We just write the magic number now since that particular field isn't
 990 * currently architecture converted and "Unmount" is a bit foo.
 991 * As far as I know, there weren't any dependencies on the old behaviour.
 992 */
 993static void
 994xfs_log_unmount_write(
 995        struct xfs_mount        *mp)
 996{
 997        struct xlog             *log = mp->m_log;
 998
 999        if (!xfs_log_writable(mp))
1000                return;
1001
1002        xfs_log_force(mp, XFS_LOG_SYNC);
1003
1004        if (xlog_is_shutdown(log))
1005                return;
1006
1007        /*
1008         * If we think the summary counters are bad, avoid writing the unmount
1009         * record to force log recovery at next mount, after which the summary
1010         * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1011         * more details.
1012         */
1013        if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1014                        XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1015                xfs_alert(mp, "%s: will fix summary counters at next mount",
1016                                __func__);
1017                return;
1018        }
1019
1020        xfs_log_unmount_verify_iclog(log);
1021        xlog_unmount_write(log);
1022}
1023
1024/*
1025 * Empty the log for unmount/freeze.
1026 *
1027 * To do this, we first need to shut down the background log work so it is not
1028 * trying to cover the log as we clean up. We then need to unpin all objects in
1029 * the log so we can then flush them out. Once they have completed their IO and
1030 * run the callbacks removing themselves from the AIL, we can cover the log.
1031 */
1032int
1033xfs_log_quiesce(
1034        struct xfs_mount        *mp)
1035{
1036        /*
1037         * Clear log incompat features since we're quiescing the log.  Report
1038         * failures, though it's not fatal to have a higher log feature
1039         * protection level than the log contents actually require.
1040         */
1041        if (xfs_clear_incompat_log_features(mp)) {
1042                int error;
1043
1044                error = xfs_sync_sb(mp, false);
1045                if (error)
1046                        xfs_warn(mp,
1047        "Failed to clear log incompat features on quiesce");
1048        }
1049
1050        cancel_delayed_work_sync(&mp->m_log->l_work);
1051        xfs_log_force(mp, XFS_LOG_SYNC);
1052
1053        /*
1054         * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1055         * will push it, xfs_buftarg_wait() will not wait for it. Further,
1056         * xfs_buf_iowait() cannot be used because it was pushed with the
1057         * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1058         * the IO to complete.
1059         */
1060        xfs_ail_push_all_sync(mp->m_ail);
1061        xfs_buftarg_wait(mp->m_ddev_targp);
1062        xfs_buf_lock(mp->m_sb_bp);
1063        xfs_buf_unlock(mp->m_sb_bp);
1064
1065        return xfs_log_cover(mp);
1066}
1067
1068void
1069xfs_log_clean(
1070        struct xfs_mount        *mp)
1071{
1072        xfs_log_quiesce(mp);
1073        xfs_log_unmount_write(mp);
1074}
1075
1076/*
1077 * Shut down and release the AIL and Log.
1078 *
1079 * During unmount, we need to ensure we flush all the dirty metadata objects
1080 * from the AIL so that the log is empty before we write the unmount record to
1081 * the log. Once this is done, we can tear down the AIL and the log.
1082 */
1083void
1084xfs_log_unmount(
1085        struct xfs_mount        *mp)
1086{
1087        xfs_log_clean(mp);
1088
1089        xfs_buftarg_drain(mp->m_ddev_targp);
1090
1091        xfs_trans_ail_destroy(mp);
1092
1093        xfs_sysfs_del(&mp->m_log->l_kobj);
1094
1095        xlog_dealloc_log(mp->m_log);
1096}
1097
1098void
1099xfs_log_item_init(
1100        struct xfs_mount        *mp,
1101        struct xfs_log_item     *item,
1102        int                     type,
1103        const struct xfs_item_ops *ops)
1104{
1105        item->li_mountp = mp;
1106        item->li_ailp = mp->m_ail;
1107        item->li_type = type;
1108        item->li_ops = ops;
1109        item->li_lv = NULL;
1110
1111        INIT_LIST_HEAD(&item->li_ail);
1112        INIT_LIST_HEAD(&item->li_cil);
1113        INIT_LIST_HEAD(&item->li_bio_list);
1114        INIT_LIST_HEAD(&item->li_trans);
1115}
1116
1117/*
1118 * Wake up processes waiting for log space after we have moved the log tail.
1119 */
1120void
1121xfs_log_space_wake(
1122        struct xfs_mount        *mp)
1123{
1124        struct xlog             *log = mp->m_log;
1125        int                     free_bytes;
1126
1127        if (xlog_is_shutdown(log))
1128                return;
1129
1130        if (!list_empty_careful(&log->l_write_head.waiters)) {
1131                ASSERT(!xlog_in_recovery(log));
1132
1133                spin_lock(&log->l_write_head.lock);
1134                free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1135                xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1136                spin_unlock(&log->l_write_head.lock);
1137        }
1138
1139        if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1140                ASSERT(!xlog_in_recovery(log));
1141
1142                spin_lock(&log->l_reserve_head.lock);
1143                free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1144                xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1145                spin_unlock(&log->l_reserve_head.lock);
1146        }
1147}
1148
1149/*
1150 * Determine if we have a transaction that has gone to disk that needs to be
1151 * covered. To begin the transition to the idle state firstly the log needs to
1152 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1153 * we start attempting to cover the log.
1154 *
1155 * Only if we are then in a state where covering is needed, the caller is
1156 * informed that dummy transactions are required to move the log into the idle
1157 * state.
1158 *
1159 * If there are any items in the AIl or CIL, then we do not want to attempt to
1160 * cover the log as we may be in a situation where there isn't log space
1161 * available to run a dummy transaction and this can lead to deadlocks when the
1162 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1163 * there's no point in running a dummy transaction at this point because we
1164 * can't start trying to idle the log until both the CIL and AIL are empty.
1165 */
1166static bool
1167xfs_log_need_covered(
1168        struct xfs_mount        *mp)
1169{
1170        struct xlog             *log = mp->m_log;
1171        bool                    needed = false;
1172
1173        if (!xlog_cil_empty(log))
1174                return false;
1175
1176        spin_lock(&log->l_icloglock);
1177        switch (log->l_covered_state) {
1178        case XLOG_STATE_COVER_DONE:
1179        case XLOG_STATE_COVER_DONE2:
1180        case XLOG_STATE_COVER_IDLE:
1181                break;
1182        case XLOG_STATE_COVER_NEED:
1183        case XLOG_STATE_COVER_NEED2:
1184                if (xfs_ail_min_lsn(log->l_ailp))
1185                        break;
1186                if (!xlog_iclogs_empty(log))
1187                        break;
1188
1189                needed = true;
1190                if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1191                        log->l_covered_state = XLOG_STATE_COVER_DONE;
1192                else
1193                        log->l_covered_state = XLOG_STATE_COVER_DONE2;
1194                break;
1195        default:
1196                needed = true;
1197                break;
1198        }
1199        spin_unlock(&log->l_icloglock);
1200        return needed;
1201}
1202
1203/*
1204 * Explicitly cover the log. This is similar to background log covering but
1205 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1206 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1207 * must all be empty.
1208 */
1209static int
1210xfs_log_cover(
1211        struct xfs_mount        *mp)
1212{
1213        int                     error = 0;
1214        bool                    need_covered;
1215
1216        ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1217                !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1218                xlog_is_shutdown(mp->m_log));
1219
1220        if (!xfs_log_writable(mp))
1221                return 0;
1222
1223        /*
1224         * xfs_log_need_covered() is not idempotent because it progresses the
1225         * state machine if the log requires covering. Therefore, we must call
1226         * this function once and use the result until we've issued an sb sync.
1227         * Do so first to make that abundantly clear.
1228         *
1229         * Fall into the covering sequence if the log needs covering or the
1230         * mount has lazy superblock accounting to sync to disk. The sb sync
1231         * used for covering accumulates the in-core counters, so covering
1232         * handles this for us.
1233         */
1234        need_covered = xfs_log_need_covered(mp);
1235        if (!need_covered && !xfs_has_lazysbcount(mp))
1236                return 0;
1237
1238        /*
1239         * To cover the log, commit the superblock twice (at most) in
1240         * independent checkpoints. The first serves as a reference for the
1241         * tail pointer. The sync transaction and AIL push empties the AIL and
1242         * updates the in-core tail to the LSN of the first checkpoint. The
1243         * second commit updates the on-disk tail with the in-core LSN,
1244         * covering the log. Push the AIL one more time to leave it empty, as
1245         * we found it.
1246         */
1247        do {
1248                error = xfs_sync_sb(mp, true);
1249                if (error)
1250                        break;
1251                xfs_ail_push_all_sync(mp->m_ail);
1252        } while (xfs_log_need_covered(mp));
1253
1254        return error;
1255}
1256
1257/*
1258 * We may be holding the log iclog lock upon entering this routine.
1259 */
1260xfs_lsn_t
1261xlog_assign_tail_lsn_locked(
1262        struct xfs_mount        *mp)
1263{
1264        struct xlog             *log = mp->m_log;
1265        struct xfs_log_item     *lip;
1266        xfs_lsn_t               tail_lsn;
1267
1268        assert_spin_locked(&mp->m_ail->ail_lock);
1269
1270        /*
1271         * To make sure we always have a valid LSN for the log tail we keep
1272         * track of the last LSN which was committed in log->l_last_sync_lsn,
1273         * and use that when the AIL was empty.
1274         */
1275        lip = xfs_ail_min(mp->m_ail);
1276        if (lip)
1277                tail_lsn = lip->li_lsn;
1278        else
1279                tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1280        trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1281        atomic64_set(&log->l_tail_lsn, tail_lsn);
1282        return tail_lsn;
1283}
1284
1285xfs_lsn_t
1286xlog_assign_tail_lsn(
1287        struct xfs_mount        *mp)
1288{
1289        xfs_lsn_t               tail_lsn;
1290
1291        spin_lock(&mp->m_ail->ail_lock);
1292        tail_lsn = xlog_assign_tail_lsn_locked(mp);
1293        spin_unlock(&mp->m_ail->ail_lock);
1294
1295        return tail_lsn;
1296}
1297
1298/*
1299 * Return the space in the log between the tail and the head.  The head
1300 * is passed in the cycle/bytes formal parms.  In the special case where
1301 * the reserve head has wrapped passed the tail, this calculation is no
1302 * longer valid.  In this case, just return 0 which means there is no space
1303 * in the log.  This works for all places where this function is called
1304 * with the reserve head.  Of course, if the write head were to ever
1305 * wrap the tail, we should blow up.  Rather than catch this case here,
1306 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1307 *
1308 * If reservation head is behind the tail, we have a problem. Warn about it,
1309 * but then treat it as if the log is empty.
1310 *
1311 * If the log is shut down, the head and tail may be invalid or out of whack, so
1312 * shortcut invalidity asserts in this case so that we don't trigger them
1313 * falsely.
1314 */
1315STATIC int
1316xlog_space_left(
1317        struct xlog     *log,
1318        atomic64_t      *head)
1319{
1320        int             tail_bytes;
1321        int             tail_cycle;
1322        int             head_cycle;
1323        int             head_bytes;
1324
1325        xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1326        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1327        tail_bytes = BBTOB(tail_bytes);
1328        if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1329                return log->l_logsize - (head_bytes - tail_bytes);
1330        if (tail_cycle + 1 < head_cycle)
1331                return 0;
1332
1333        /* Ignore potential inconsistency when shutdown. */
1334        if (xlog_is_shutdown(log))
1335                return log->l_logsize;
1336
1337        if (tail_cycle < head_cycle) {
1338                ASSERT(tail_cycle == (head_cycle - 1));
1339                return tail_bytes - head_bytes;
1340        }
1341
1342        /*
1343         * The reservation head is behind the tail. In this case we just want to
1344         * return the size of the log as the amount of space left.
1345         */
1346        xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1347        xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1348                  tail_cycle, tail_bytes);
1349        xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1350                  head_cycle, head_bytes);
1351        ASSERT(0);
1352        return log->l_logsize;
1353}
1354
1355
1356static void
1357xlog_ioend_work(
1358        struct work_struct      *work)
1359{
1360        struct xlog_in_core     *iclog =
1361                container_of(work, struct xlog_in_core, ic_end_io_work);
1362        struct xlog             *log = iclog->ic_log;
1363        int                     error;
1364
1365        error = blk_status_to_errno(iclog->ic_bio.bi_status);
1366#ifdef DEBUG
1367        /* treat writes with injected CRC errors as failed */
1368        if (iclog->ic_fail_crc)
1369                error = -EIO;
1370#endif
1371
1372        /*
1373         * Race to shutdown the filesystem if we see an error.
1374         */
1375        if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1376                xfs_alert(log->l_mp, "log I/O error %d", error);
1377                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1378        }
1379
1380        xlog_state_done_syncing(iclog);
1381        bio_uninit(&iclog->ic_bio);
1382
1383        /*
1384         * Drop the lock to signal that we are done. Nothing references the
1385         * iclog after this, so an unmount waiting on this lock can now tear it
1386         * down safely. As such, it is unsafe to reference the iclog after the
1387         * unlock as we could race with it being freed.
1388         */
1389        up(&iclog->ic_sema);
1390}
1391
1392/*
1393 * Return size of each in-core log record buffer.
1394 *
1395 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1396 *
1397 * If the filesystem blocksize is too large, we may need to choose a
1398 * larger size since the directory code currently logs entire blocks.
1399 */
1400STATIC void
1401xlog_get_iclog_buffer_size(
1402        struct xfs_mount        *mp,
1403        struct xlog             *log)
1404{
1405        if (mp->m_logbufs <= 0)
1406                mp->m_logbufs = XLOG_MAX_ICLOGS;
1407        if (mp->m_logbsize <= 0)
1408                mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1409
1410        log->l_iclog_bufs = mp->m_logbufs;
1411        log->l_iclog_size = mp->m_logbsize;
1412
1413        /*
1414         * # headers = size / 32k - one header holds cycles from 32k of data.
1415         */
1416        log->l_iclog_heads =
1417                DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1418        log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1419}
1420
1421void
1422xfs_log_work_queue(
1423        struct xfs_mount        *mp)
1424{
1425        queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1426                                msecs_to_jiffies(xfs_syncd_centisecs * 10));
1427}
1428
1429/*
1430 * Clear the log incompat flags if we have the opportunity.
1431 *
1432 * This only happens if we're about to log the second dummy transaction as part
1433 * of covering the log and we can get the log incompat feature usage lock.
1434 */
1435static inline void
1436xlog_clear_incompat(
1437        struct xlog             *log)
1438{
1439        struct xfs_mount        *mp = log->l_mp;
1440
1441        if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1442                                XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1443                return;
1444
1445        if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1446                return;
1447
1448        if (!down_write_trylock(&log->l_incompat_users))
1449                return;
1450
1451        xfs_clear_incompat_log_features(mp);
1452        up_write(&log->l_incompat_users);
1453}
1454
1455/*
1456 * Every sync period we need to unpin all items in the AIL and push them to
1457 * disk. If there is nothing dirty, then we might need to cover the log to
1458 * indicate that the filesystem is idle.
1459 */
1460static void
1461xfs_log_worker(
1462        struct work_struct      *work)
1463{
1464        struct xlog             *log = container_of(to_delayed_work(work),
1465                                                struct xlog, l_work);
1466        struct xfs_mount        *mp = log->l_mp;
1467
1468        /* dgc: errors ignored - not fatal and nowhere to report them */
1469        if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1470                /*
1471                 * Dump a transaction into the log that contains no real change.
1472                 * This is needed to stamp the current tail LSN into the log
1473                 * during the covering operation.
1474                 *
1475                 * We cannot use an inode here for this - that will push dirty
1476                 * state back up into the VFS and then periodic inode flushing
1477                 * will prevent log covering from making progress. Hence we
1478                 * synchronously log the superblock instead to ensure the
1479                 * superblock is immediately unpinned and can be written back.
1480                 */
1481                xlog_clear_incompat(log);
1482                xfs_sync_sb(mp, true);
1483        } else
1484                xfs_log_force(mp, 0);
1485
1486        /* start pushing all the metadata that is currently dirty */
1487        xfs_ail_push_all(mp->m_ail);
1488
1489        /* queue us up again */
1490        xfs_log_work_queue(mp);
1491}
1492
1493/*
1494 * This routine initializes some of the log structure for a given mount point.
1495 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1496 * some other stuff may be filled in too.
1497 */
1498STATIC struct xlog *
1499xlog_alloc_log(
1500        struct xfs_mount        *mp,
1501        struct xfs_buftarg      *log_target,
1502        xfs_daddr_t             blk_offset,
1503        int                     num_bblks)
1504{
1505        struct xlog             *log;
1506        xlog_rec_header_t       *head;
1507        xlog_in_core_t          **iclogp;
1508        xlog_in_core_t          *iclog, *prev_iclog=NULL;
1509        int                     i;
1510        int                     error = -ENOMEM;
1511        uint                    log2_size = 0;
1512
1513        log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1514        if (!log) {
1515                xfs_warn(mp, "Log allocation failed: No memory!");
1516                goto out;
1517        }
1518
1519        log->l_mp          = mp;
1520        log->l_targ        = log_target;
1521        log->l_logsize     = BBTOB(num_bblks);
1522        log->l_logBBstart  = blk_offset;
1523        log->l_logBBsize   = num_bblks;
1524        log->l_covered_state = XLOG_STATE_COVER_IDLE;
1525        set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1526        INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1527
1528        log->l_prev_block  = -1;
1529        /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1530        xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1531        xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1532        log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1533
1534        if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1535                log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1536        else
1537                log->l_iclog_roundoff = BBSIZE;
1538
1539        xlog_grant_head_init(&log->l_reserve_head);
1540        xlog_grant_head_init(&log->l_write_head);
1541
1542        error = -EFSCORRUPTED;
1543        if (xfs_has_sector(mp)) {
1544                log2_size = mp->m_sb.sb_logsectlog;
1545                if (log2_size < BBSHIFT) {
1546                        xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1547                                log2_size, BBSHIFT);
1548                        goto out_free_log;
1549                }
1550
1551                log2_size -= BBSHIFT;
1552                if (log2_size > mp->m_sectbb_log) {
1553                        xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1554                                log2_size, mp->m_sectbb_log);
1555                        goto out_free_log;
1556                }
1557
1558                /* for larger sector sizes, must have v2 or external log */
1559                if (log2_size && log->l_logBBstart > 0 &&
1560                            !xfs_has_logv2(mp)) {
1561                        xfs_warn(mp,
1562                "log sector size (0x%x) invalid for configuration.",
1563                                log2_size);
1564                        goto out_free_log;
1565                }
1566        }
1567        log->l_sectBBsize = 1 << log2_size;
1568
1569        init_rwsem(&log->l_incompat_users);
1570
1571        xlog_get_iclog_buffer_size(mp, log);
1572
1573        spin_lock_init(&log->l_icloglock);
1574        init_waitqueue_head(&log->l_flush_wait);
1575
1576        iclogp = &log->l_iclog;
1577        /*
1578         * The amount of memory to allocate for the iclog structure is
1579         * rather funky due to the way the structure is defined.  It is
1580         * done this way so that we can use different sizes for machines
1581         * with different amounts of memory.  See the definition of
1582         * xlog_in_core_t in xfs_log_priv.h for details.
1583         */
1584        ASSERT(log->l_iclog_size >= 4096);
1585        for (i = 0; i < log->l_iclog_bufs; i++) {
1586                size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1587                                sizeof(struct bio_vec);
1588
1589                iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1590                if (!iclog)
1591                        goto out_free_iclog;
1592
1593                *iclogp = iclog;
1594                iclog->ic_prev = prev_iclog;
1595                prev_iclog = iclog;
1596
1597                iclog->ic_data = kvzalloc(log->l_iclog_size,
1598                                GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1599                if (!iclog->ic_data)
1600                        goto out_free_iclog;
1601#ifdef DEBUG
1602                log->l_iclog_bak[i] = &iclog->ic_header;
1603#endif
1604                head = &iclog->ic_header;
1605                memset(head, 0, sizeof(xlog_rec_header_t));
1606                head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1607                head->h_version = cpu_to_be32(
1608                        xfs_has_logv2(log->l_mp) ? 2 : 1);
1609                head->h_size = cpu_to_be32(log->l_iclog_size);
1610                /* new fields */
1611                head->h_fmt = cpu_to_be32(XLOG_FMT);
1612                memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1613
1614                iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1615                iclog->ic_state = XLOG_STATE_ACTIVE;
1616                iclog->ic_log = log;
1617                atomic_set(&iclog->ic_refcnt, 0);
1618                INIT_LIST_HEAD(&iclog->ic_callbacks);
1619                iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1620
1621                init_waitqueue_head(&iclog->ic_force_wait);
1622                init_waitqueue_head(&iclog->ic_write_wait);
1623                INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1624                sema_init(&iclog->ic_sema, 1);
1625
1626                iclogp = &iclog->ic_next;
1627        }
1628        *iclogp = log->l_iclog;                 /* complete ring */
1629        log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1630
1631        log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1632                        XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1633                                    WQ_HIGHPRI),
1634                        0, mp->m_super->s_id);
1635        if (!log->l_ioend_workqueue)
1636                goto out_free_iclog;
1637
1638        error = xlog_cil_init(log);
1639        if (error)
1640                goto out_destroy_workqueue;
1641        return log;
1642
1643out_destroy_workqueue:
1644        destroy_workqueue(log->l_ioend_workqueue);
1645out_free_iclog:
1646        for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1647                prev_iclog = iclog->ic_next;
1648                kmem_free(iclog->ic_data);
1649                kmem_free(iclog);
1650                if (prev_iclog == log->l_iclog)
1651                        break;
1652        }
1653out_free_log:
1654        kmem_free(log);
1655out:
1656        return ERR_PTR(error);
1657}       /* xlog_alloc_log */
1658
1659/*
1660 * Compute the LSN that we'd need to push the log tail towards in order to have
1661 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1662 * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1663 * log free space already meets all three thresholds, this function returns
1664 * NULLCOMMITLSN.
1665 */
1666xfs_lsn_t
1667xlog_grant_push_threshold(
1668        struct xlog     *log,
1669        int             need_bytes)
1670{
1671        xfs_lsn_t       threshold_lsn = 0;
1672        xfs_lsn_t       last_sync_lsn;
1673        int             free_blocks;
1674        int             free_bytes;
1675        int             threshold_block;
1676        int             threshold_cycle;
1677        int             free_threshold;
1678
1679        ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1680
1681        free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1682        free_blocks = BTOBBT(free_bytes);
1683
1684        /*
1685         * Set the threshold for the minimum number of free blocks in the
1686         * log to the maximum of what the caller needs, one quarter of the
1687         * log, and 256 blocks.
1688         */
1689        free_threshold = BTOBB(need_bytes);
1690        free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1691        free_threshold = max(free_threshold, 256);
1692        if (free_blocks >= free_threshold)
1693                return NULLCOMMITLSN;
1694
1695        xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1696                                                &threshold_block);
1697        threshold_block += free_threshold;
1698        if (threshold_block >= log->l_logBBsize) {
1699                threshold_block -= log->l_logBBsize;
1700                threshold_cycle += 1;
1701        }
1702        threshold_lsn = xlog_assign_lsn(threshold_cycle,
1703                                        threshold_block);
1704        /*
1705         * Don't pass in an lsn greater than the lsn of the last
1706         * log record known to be on disk. Use a snapshot of the last sync lsn
1707         * so that it doesn't change between the compare and the set.
1708         */
1709        last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1710        if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1711                threshold_lsn = last_sync_lsn;
1712
1713        return threshold_lsn;
1714}
1715
1716/*
1717 * Push the tail of the log if we need to do so to maintain the free log space
1718 * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1719 * policy which pushes on an lsn which is further along in the log once we
1720 * reach the high water mark.  In this manner, we would be creating a low water
1721 * mark.
1722 */
1723STATIC void
1724xlog_grant_push_ail(
1725        struct xlog     *log,
1726        int             need_bytes)
1727{
1728        xfs_lsn_t       threshold_lsn;
1729
1730        threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1731        if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1732                return;
1733
1734        /*
1735         * Get the transaction layer to kick the dirty buffers out to
1736         * disk asynchronously. No point in trying to do this if
1737         * the filesystem is shutting down.
1738         */
1739        xfs_ail_push(log->l_ailp, threshold_lsn);
1740}
1741
1742/*
1743 * Stamp cycle number in every block
1744 */
1745STATIC void
1746xlog_pack_data(
1747        struct xlog             *log,
1748        struct xlog_in_core     *iclog,
1749        int                     roundoff)
1750{
1751        int                     i, j, k;
1752        int                     size = iclog->ic_offset + roundoff;
1753        __be32                  cycle_lsn;
1754        char                    *dp;
1755
1756        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1757
1758        dp = iclog->ic_datap;
1759        for (i = 0; i < BTOBB(size); i++) {
1760                if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1761                        break;
1762                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1763                *(__be32 *)dp = cycle_lsn;
1764                dp += BBSIZE;
1765        }
1766
1767        if (xfs_has_logv2(log->l_mp)) {
1768                xlog_in_core_2_t *xhdr = iclog->ic_data;
1769
1770                for ( ; i < BTOBB(size); i++) {
1771                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1772                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1773                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1774                        *(__be32 *)dp = cycle_lsn;
1775                        dp += BBSIZE;
1776                }
1777
1778                for (i = 1; i < log->l_iclog_heads; i++)
1779                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1780        }
1781}
1782
1783/*
1784 * Calculate the checksum for a log buffer.
1785 *
1786 * This is a little more complicated than it should be because the various
1787 * headers and the actual data are non-contiguous.
1788 */
1789__le32
1790xlog_cksum(
1791        struct xlog             *log,
1792        struct xlog_rec_header  *rhead,
1793        char                    *dp,
1794        int                     size)
1795{
1796        uint32_t                crc;
1797
1798        /* first generate the crc for the record header ... */
1799        crc = xfs_start_cksum_update((char *)rhead,
1800                              sizeof(struct xlog_rec_header),
1801                              offsetof(struct xlog_rec_header, h_crc));
1802
1803        /* ... then for additional cycle data for v2 logs ... */
1804        if (xfs_has_logv2(log->l_mp)) {
1805                union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1806                int             i;
1807                int             xheads;
1808
1809                xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1810
1811                for (i = 1; i < xheads; i++) {
1812                        crc = crc32c(crc, &xhdr[i].hic_xheader,
1813                                     sizeof(struct xlog_rec_ext_header));
1814                }
1815        }
1816
1817        /* ... and finally for the payload */
1818        crc = crc32c(crc, dp, size);
1819
1820        return xfs_end_cksum(crc);
1821}
1822
1823static void
1824xlog_bio_end_io(
1825        struct bio              *bio)
1826{
1827        struct xlog_in_core     *iclog = bio->bi_private;
1828
1829        queue_work(iclog->ic_log->l_ioend_workqueue,
1830                   &iclog->ic_end_io_work);
1831}
1832
1833static int
1834xlog_map_iclog_data(
1835        struct bio              *bio,
1836        void                    *data,
1837        size_t                  count)
1838{
1839        do {
1840                struct page     *page = kmem_to_page(data);
1841                unsigned int    off = offset_in_page(data);
1842                size_t          len = min_t(size_t, count, PAGE_SIZE - off);
1843
1844                if (bio_add_page(bio, page, len, off) != len)
1845                        return -EIO;
1846
1847                data += len;
1848                count -= len;
1849        } while (count);
1850
1851        return 0;
1852}
1853
1854STATIC void
1855xlog_write_iclog(
1856        struct xlog             *log,
1857        struct xlog_in_core     *iclog,
1858        uint64_t                bno,
1859        unsigned int            count)
1860{
1861        ASSERT(bno < log->l_logBBsize);
1862        trace_xlog_iclog_write(iclog, _RET_IP_);
1863
1864        /*
1865         * We lock the iclogbufs here so that we can serialise against I/O
1866         * completion during unmount.  We might be processing a shutdown
1867         * triggered during unmount, and that can occur asynchronously to the
1868         * unmount thread, and hence we need to ensure that completes before
1869         * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1870         * across the log IO to archieve that.
1871         */
1872        down(&iclog->ic_sema);
1873        if (xlog_is_shutdown(log)) {
1874                /*
1875                 * It would seem logical to return EIO here, but we rely on
1876                 * the log state machine to propagate I/O errors instead of
1877                 * doing it here.  We kick of the state machine and unlock
1878                 * the buffer manually, the code needs to be kept in sync
1879                 * with the I/O completion path.
1880                 */
1881                xlog_state_done_syncing(iclog);
1882                up(&iclog->ic_sema);
1883                return;
1884        }
1885
1886        bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1887        bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1888        iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1889        iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1890        iclog->ic_bio.bi_private = iclog;
1891
1892        /*
1893         * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1894         * IOs coming immediately after this one. This prevents the block layer
1895         * writeback throttle from throttling log writes behind background
1896         * metadata writeback and causing priority inversions.
1897         */
1898        iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
1899        if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1900                iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1901                /*
1902                 * For external log devices, we also need to flush the data
1903                 * device cache first to ensure all metadata writeback covered
1904                 * by the LSN in this iclog is on stable storage. This is slow,
1905                 * but it *must* complete before we issue the external log IO.
1906                 */
1907                if (log->l_targ != log->l_mp->m_ddev_targp)
1908                        blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1909        }
1910        if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1911                iclog->ic_bio.bi_opf |= REQ_FUA;
1912
1913        iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1914
1915        if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1916                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1917                return;
1918        }
1919        if (is_vmalloc_addr(iclog->ic_data))
1920                flush_kernel_vmap_range(iclog->ic_data, count);
1921
1922        /*
1923         * If this log buffer would straddle the end of the log we will have
1924         * to split it up into two bios, so that we can continue at the start.
1925         */
1926        if (bno + BTOBB(count) > log->l_logBBsize) {
1927                struct bio *split;
1928
1929                split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1930                                  GFP_NOIO, &fs_bio_set);
1931                bio_chain(split, &iclog->ic_bio);
1932                submit_bio(split);
1933
1934                /* restart at logical offset zero for the remainder */
1935                iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1936        }
1937
1938        submit_bio(&iclog->ic_bio);
1939}
1940
1941/*
1942 * We need to bump cycle number for the part of the iclog that is
1943 * written to the start of the log. Watch out for the header magic
1944 * number case, though.
1945 */
1946static void
1947xlog_split_iclog(
1948        struct xlog             *log,
1949        void                    *data,
1950        uint64_t                bno,
1951        unsigned int            count)
1952{
1953        unsigned int            split_offset = BBTOB(log->l_logBBsize - bno);
1954        unsigned int            i;
1955
1956        for (i = split_offset; i < count; i += BBSIZE) {
1957                uint32_t cycle = get_unaligned_be32(data + i);
1958
1959                if (++cycle == XLOG_HEADER_MAGIC_NUM)
1960                        cycle++;
1961                put_unaligned_be32(cycle, data + i);
1962        }
1963}
1964
1965static int
1966xlog_calc_iclog_size(
1967        struct xlog             *log,
1968        struct xlog_in_core     *iclog,
1969        uint32_t                *roundoff)
1970{
1971        uint32_t                count_init, count;
1972
1973        /* Add for LR header */
1974        count_init = log->l_iclog_hsize + iclog->ic_offset;
1975        count = roundup(count_init, log->l_iclog_roundoff);
1976
1977        *roundoff = count - count_init;
1978
1979        ASSERT(count >= count_init);
1980        ASSERT(*roundoff < log->l_iclog_roundoff);
1981        return count;
1982}
1983
1984/*
1985 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1986 * fashion.  Previously, we should have moved the current iclog
1987 * ptr in the log to point to the next available iclog.  This allows further
1988 * write to continue while this code syncs out an iclog ready to go.
1989 * Before an in-core log can be written out, the data section must be scanned
1990 * to save away the 1st word of each BBSIZE block into the header.  We replace
1991 * it with the current cycle count.  Each BBSIZE block is tagged with the
1992 * cycle count because there in an implicit assumption that drives will
1993 * guarantee that entire 512 byte blocks get written at once.  In other words,
1994 * we can't have part of a 512 byte block written and part not written.  By
1995 * tagging each block, we will know which blocks are valid when recovering
1996 * after an unclean shutdown.
1997 *
1998 * This routine is single threaded on the iclog.  No other thread can be in
1999 * this routine with the same iclog.  Changing contents of iclog can there-
2000 * fore be done without grabbing the state machine lock.  Updating the global
2001 * log will require grabbing the lock though.
2002 *
2003 * The entire log manager uses a logical block numbering scheme.  Only
2004 * xlog_write_iclog knows about the fact that the log may not start with
2005 * block zero on a given device.
2006 */
2007STATIC void
2008xlog_sync(
2009        struct xlog             *log,
2010        struct xlog_in_core     *iclog)
2011{
2012        unsigned int            count;          /* byte count of bwrite */
2013        unsigned int            roundoff;       /* roundoff to BB or stripe */
2014        uint64_t                bno;
2015        unsigned int            size;
2016
2017        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2018        trace_xlog_iclog_sync(iclog, _RET_IP_);
2019
2020        count = xlog_calc_iclog_size(log, iclog, &roundoff);
2021
2022        /* move grant heads by roundoff in sync */
2023        xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2024        xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2025
2026        /* put cycle number in every block */
2027        xlog_pack_data(log, iclog, roundoff); 
2028
2029        /* real byte length */
2030        size = iclog->ic_offset;
2031        if (xfs_has_logv2(log->l_mp))
2032                size += roundoff;
2033        iclog->ic_header.h_len = cpu_to_be32(size);
2034
2035        XFS_STATS_INC(log->l_mp, xs_log_writes);
2036        XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2037
2038        bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2039
2040        /* Do we need to split this write into 2 parts? */
2041        if (bno + BTOBB(count) > log->l_logBBsize)
2042                xlog_split_iclog(log, &iclog->ic_header, bno, count);
2043
2044        /* calculcate the checksum */
2045        iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2046                                            iclog->ic_datap, size);
2047        /*
2048         * Intentionally corrupt the log record CRC based on the error injection
2049         * frequency, if defined. This facilitates testing log recovery in the
2050         * event of torn writes. Hence, set the IOABORT state to abort the log
2051         * write on I/O completion and shutdown the fs. The subsequent mount
2052         * detects the bad CRC and attempts to recover.
2053         */
2054#ifdef DEBUG
2055        if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2056                iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2057                iclog->ic_fail_crc = true;
2058                xfs_warn(log->l_mp,
2059        "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2060                         be64_to_cpu(iclog->ic_header.h_lsn));
2061        }
2062#endif
2063        xlog_verify_iclog(log, iclog, count);
2064        xlog_write_iclog(log, iclog, bno, count);
2065}
2066
2067/*
2068 * Deallocate a log structure
2069 */
2070STATIC void
2071xlog_dealloc_log(
2072        struct xlog     *log)
2073{
2074        xlog_in_core_t  *iclog, *next_iclog;
2075        int             i;
2076
2077        xlog_cil_destroy(log);
2078
2079        /*
2080         * Cycle all the iclogbuf locks to make sure all log IO completion
2081         * is done before we tear down these buffers.
2082         */
2083        iclog = log->l_iclog;
2084        for (i = 0; i < log->l_iclog_bufs; i++) {
2085                down(&iclog->ic_sema);
2086                up(&iclog->ic_sema);
2087                iclog = iclog->ic_next;
2088        }
2089
2090        iclog = log->l_iclog;
2091        for (i = 0; i < log->l_iclog_bufs; i++) {
2092                next_iclog = iclog->ic_next;
2093                kmem_free(iclog->ic_data);
2094                kmem_free(iclog);
2095                iclog = next_iclog;
2096        }
2097
2098        log->l_mp->m_log = NULL;
2099        destroy_workqueue(log->l_ioend_workqueue);
2100        kmem_free(log);
2101}
2102
2103/*
2104 * Update counters atomically now that memcpy is done.
2105 */
2106static inline void
2107xlog_state_finish_copy(
2108        struct xlog             *log,
2109        struct xlog_in_core     *iclog,
2110        int                     record_cnt,
2111        int                     copy_bytes)
2112{
2113        lockdep_assert_held(&log->l_icloglock);
2114
2115        be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2116        iclog->ic_offset += copy_bytes;
2117}
2118
2119/*
2120 * print out info relating to regions written which consume
2121 * the reservation
2122 */
2123void
2124xlog_print_tic_res(
2125        struct xfs_mount        *mp,
2126        struct xlog_ticket      *ticket)
2127{
2128        uint i;
2129        uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2130
2131        /* match with XLOG_REG_TYPE_* in xfs_log.h */
2132#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2133        static char *res_type_str[] = {
2134            REG_TYPE_STR(BFORMAT, "bformat"),
2135            REG_TYPE_STR(BCHUNK, "bchunk"),
2136            REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2137            REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2138            REG_TYPE_STR(IFORMAT, "iformat"),
2139            REG_TYPE_STR(ICORE, "icore"),
2140            REG_TYPE_STR(IEXT, "iext"),
2141            REG_TYPE_STR(IBROOT, "ibroot"),
2142            REG_TYPE_STR(ILOCAL, "ilocal"),
2143            REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2144            REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2145            REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2146            REG_TYPE_STR(QFORMAT, "qformat"),
2147            REG_TYPE_STR(DQUOT, "dquot"),
2148            REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2149            REG_TYPE_STR(LRHEADER, "LR header"),
2150            REG_TYPE_STR(UNMOUNT, "unmount"),
2151            REG_TYPE_STR(COMMIT, "commit"),
2152            REG_TYPE_STR(TRANSHDR, "trans header"),
2153            REG_TYPE_STR(ICREATE, "inode create"),
2154            REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2155            REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2156            REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2157            REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2158            REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2159            REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2160        };
2161        BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2162#undef REG_TYPE_STR
2163
2164        xfs_warn(mp, "ticket reservation summary:");
2165        xfs_warn(mp, "  unit res    = %d bytes",
2166                 ticket->t_unit_res);
2167        xfs_warn(mp, "  current res = %d bytes",
2168                 ticket->t_curr_res);
2169        xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2170                 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2171        xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2172                 ticket->t_res_num_ophdrs, ophdr_spc);
2173        xfs_warn(mp, "  ophdr + reg = %u bytes",
2174                 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2175        xfs_warn(mp, "  num regions = %u",
2176                 ticket->t_res_num);
2177
2178        for (i = 0; i < ticket->t_res_num; i++) {
2179                uint r_type = ticket->t_res_arr[i].r_type;
2180                xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2181                            ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2182                            "bad-rtype" : res_type_str[r_type]),
2183                            ticket->t_res_arr[i].r_len);
2184        }
2185}
2186
2187/*
2188 * Print a summary of the transaction.
2189 */
2190void
2191xlog_print_trans(
2192        struct xfs_trans        *tp)
2193{
2194        struct xfs_mount        *mp = tp->t_mountp;
2195        struct xfs_log_item     *lip;
2196
2197        /* dump core transaction and ticket info */
2198        xfs_warn(mp, "transaction summary:");
2199        xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2200        xfs_warn(mp, "  log count = %d", tp->t_log_count);
2201        xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2202
2203        xlog_print_tic_res(mp, tp->t_ticket);
2204
2205        /* dump each log item */
2206        list_for_each_entry(lip, &tp->t_items, li_trans) {
2207                struct xfs_log_vec      *lv = lip->li_lv;
2208                struct xfs_log_iovec    *vec;
2209                int                     i;
2210
2211                xfs_warn(mp, "log item: ");
2212                xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2213                xfs_warn(mp, "  flags   = 0x%lx", lip->li_flags);
2214                if (!lv)
2215                        continue;
2216                xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2217                xfs_warn(mp, "  size    = %d", lv->lv_size);
2218                xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2219                xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2220
2221                /* dump each iovec for the log item */
2222                vec = lv->lv_iovecp;
2223                for (i = 0; i < lv->lv_niovecs; i++) {
2224                        int dumplen = min(vec->i_len, 32);
2225
2226                        xfs_warn(mp, "  iovec[%d]", i);
2227                        xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2228                        xfs_warn(mp, "    len   = %d", vec->i_len);
2229                        xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2230                        xfs_hex_dump(vec->i_addr, dumplen);
2231
2232                        vec++;
2233                }
2234        }
2235}
2236
2237/*
2238 * Calculate the potential space needed by the log vector.  We may need a start
2239 * record, and each region gets its own struct xlog_op_header and may need to be
2240 * double word aligned.
2241 */
2242static int
2243xlog_write_calc_vec_length(
2244        struct xlog_ticket      *ticket,
2245        struct xfs_log_vec      *log_vector,
2246        uint                    optype)
2247{
2248        struct xfs_log_vec      *lv;
2249        int                     headers = 0;
2250        int                     len = 0;
2251        int                     i;
2252
2253        if (optype & XLOG_START_TRANS)
2254                headers++;
2255
2256        for (lv = log_vector; lv; lv = lv->lv_next) {
2257                /* we don't write ordered log vectors */
2258                if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2259                        continue;
2260
2261                headers += lv->lv_niovecs;
2262
2263                for (i = 0; i < lv->lv_niovecs; i++) {
2264                        struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2265
2266                        len += vecp->i_len;
2267                        xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2268                }
2269        }
2270
2271        ticket->t_res_num_ophdrs += headers;
2272        len += headers * sizeof(struct xlog_op_header);
2273
2274        return len;
2275}
2276
2277static void
2278xlog_write_start_rec(
2279        struct xlog_op_header   *ophdr,
2280        struct xlog_ticket      *ticket)
2281{
2282        ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2283        ophdr->oh_clientid = ticket->t_clientid;
2284        ophdr->oh_len = 0;
2285        ophdr->oh_flags = XLOG_START_TRANS;
2286        ophdr->oh_res2 = 0;
2287}
2288
2289static xlog_op_header_t *
2290xlog_write_setup_ophdr(
2291        struct xlog             *log,
2292        struct xlog_op_header   *ophdr,
2293        struct xlog_ticket      *ticket,
2294        uint                    flags)
2295{
2296        ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2297        ophdr->oh_clientid = ticket->t_clientid;
2298        ophdr->oh_res2 = 0;
2299
2300        /* are we copying a commit or unmount record? */
2301        ophdr->oh_flags = flags;
2302
2303        /*
2304         * We've seen logs corrupted with bad transaction client ids.  This
2305         * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2306         * and shut down the filesystem.
2307         */
2308        switch (ophdr->oh_clientid)  {
2309        case XFS_TRANSACTION:
2310        case XFS_VOLUME:
2311        case XFS_LOG:
2312                break;
2313        default:
2314                xfs_warn(log->l_mp,
2315                        "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2316                        ophdr->oh_clientid, ticket);
2317                return NULL;
2318        }
2319
2320        return ophdr;
2321}
2322
2323/*
2324 * Set up the parameters of the region copy into the log. This has
2325 * to handle region write split across multiple log buffers - this
2326 * state is kept external to this function so that this code can
2327 * be written in an obvious, self documenting manner.
2328 */
2329static int
2330xlog_write_setup_copy(
2331        struct xlog_ticket      *ticket,
2332        struct xlog_op_header   *ophdr,
2333        int                     space_available,
2334        int                     space_required,
2335        int                     *copy_off,
2336        int                     *copy_len,
2337        int                     *last_was_partial_copy,
2338        int                     *bytes_consumed)
2339{
2340        int                     still_to_copy;
2341
2342        still_to_copy = space_required - *bytes_consumed;
2343        *copy_off = *bytes_consumed;
2344
2345        if (still_to_copy <= space_available) {
2346                /* write of region completes here */
2347                *copy_len = still_to_copy;
2348                ophdr->oh_len = cpu_to_be32(*copy_len);
2349                if (*last_was_partial_copy)
2350                        ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2351                *last_was_partial_copy = 0;
2352                *bytes_consumed = 0;
2353                return 0;
2354        }
2355
2356        /* partial write of region, needs extra log op header reservation */
2357        *copy_len = space_available;
2358        ophdr->oh_len = cpu_to_be32(*copy_len);
2359        ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2360        if (*last_was_partial_copy)
2361                ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2362        *bytes_consumed += *copy_len;
2363        (*last_was_partial_copy)++;
2364
2365        /* account for new log op header */
2366        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2367        ticket->t_res_num_ophdrs++;
2368
2369        return sizeof(struct xlog_op_header);
2370}
2371
2372static int
2373xlog_write_copy_finish(
2374        struct xlog             *log,
2375        struct xlog_in_core     *iclog,
2376        uint                    flags,
2377        int                     *record_cnt,
2378        int                     *data_cnt,
2379        int                     *partial_copy,
2380        int                     *partial_copy_len,
2381        int                     log_offset)
2382{
2383        int                     error;
2384
2385        if (*partial_copy) {
2386                /*
2387                 * This iclog has already been marked WANT_SYNC by
2388                 * xlog_state_get_iclog_space.
2389                 */
2390                spin_lock(&log->l_icloglock);
2391                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2392                *record_cnt = 0;
2393                *data_cnt = 0;
2394                goto release_iclog;
2395        }
2396
2397        *partial_copy = 0;
2398        *partial_copy_len = 0;
2399
2400        if (iclog->ic_size - log_offset > sizeof(xlog_op_header_t))
2401                return 0;
2402
2403        /* no more space in this iclog - push it. */
2404        spin_lock(&log->l_icloglock);
2405        xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2406        *record_cnt = 0;
2407        *data_cnt = 0;
2408
2409        if (iclog->ic_state == XLOG_STATE_ACTIVE)
2410                xlog_state_switch_iclogs(log, iclog, 0);
2411        else
2412                ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2413                        xlog_is_shutdown(log));
2414release_iclog:
2415        error = xlog_state_release_iclog(log, iclog, 0);
2416        spin_unlock(&log->l_icloglock);
2417        return error;
2418}
2419
2420/*
2421 * Write some region out to in-core log
2422 *
2423 * This will be called when writing externally provided regions or when
2424 * writing out a commit record for a given transaction.
2425 *
2426 * General algorithm:
2427 *      1. Find total length of this write.  This may include adding to the
2428 *              lengths passed in.
2429 *      2. Check whether we violate the tickets reservation.
2430 *      3. While writing to this iclog
2431 *          A. Reserve as much space in this iclog as can get
2432 *          B. If this is first write, save away start lsn
2433 *          C. While writing this region:
2434 *              1. If first write of transaction, write start record
2435 *              2. Write log operation header (header per region)
2436 *              3. Find out if we can fit entire region into this iclog
2437 *              4. Potentially, verify destination memcpy ptr
2438 *              5. Memcpy (partial) region
2439 *              6. If partial copy, release iclog; otherwise, continue
2440 *                      copying more regions into current iclog
2441 *      4. Mark want sync bit (in simulation mode)
2442 *      5. Release iclog for potential flush to on-disk log.
2443 *
2444 * ERRORS:
2445 * 1.   Panic if reservation is overrun.  This should never happen since
2446 *      reservation amounts are generated internal to the filesystem.
2447 * NOTES:
2448 * 1. Tickets are single threaded data structures.
2449 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2450 *      syncing routine.  When a single log_write region needs to span
2451 *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2452 *      on all log operation writes which don't contain the end of the
2453 *      region.  The XLOG_END_TRANS bit is used for the in-core log
2454 *      operation which contains the end of the continued log_write region.
2455 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2456 *      we don't really know exactly how much space will be used.  As a result,
2457 *      we don't update ic_offset until the end when we know exactly how many
2458 *      bytes have been written out.
2459 */
2460int
2461xlog_write(
2462        struct xlog             *log,
2463        struct xfs_cil_ctx      *ctx,
2464        struct xfs_log_vec      *log_vector,
2465        struct xlog_ticket      *ticket,
2466        uint                    optype)
2467{
2468        struct xlog_in_core     *iclog = NULL;
2469        struct xfs_log_vec      *lv = log_vector;
2470        struct xfs_log_iovec    *vecp = lv->lv_iovecp;
2471        int                     index = 0;
2472        int                     len;
2473        int                     partial_copy = 0;
2474        int                     partial_copy_len = 0;
2475        int                     contwr = 0;
2476        int                     record_cnt = 0;
2477        int                     data_cnt = 0;
2478        int                     error = 0;
2479
2480        /*
2481         * If this is a commit or unmount transaction, we don't need a start
2482         * record to be written.  We do, however, have to account for the
2483         * commit or unmount header that gets written. Hence we always have
2484         * to account for an extra xlog_op_header here.
2485         */
2486        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2487        if (ticket->t_curr_res < 0) {
2488                xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2489                     "ctx ticket reservation ran out. Need to up reservation");
2490                xlog_print_tic_res(log->l_mp, ticket);
2491                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2492        }
2493
2494        len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2495        while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2496                void            *ptr;
2497                int             log_offset;
2498
2499                error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2500                                                   &contwr, &log_offset);
2501                if (error)
2502                        return error;
2503
2504                ASSERT(log_offset <= iclog->ic_size - 1);
2505                ptr = iclog->ic_datap + log_offset;
2506
2507                /*
2508                 * If we have a context pointer, pass it the first iclog we are
2509                 * writing to so it can record state needed for iclog write
2510                 * ordering.
2511                 */
2512                if (ctx) {
2513                        xlog_cil_set_ctx_write_state(ctx, iclog);
2514                        ctx = NULL;
2515                }
2516
2517                /*
2518                 * This loop writes out as many regions as can fit in the amount
2519                 * of space which was allocated by xlog_state_get_iclog_space().
2520                 */
2521                while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2522                        struct xfs_log_iovec    *reg;
2523                        struct xlog_op_header   *ophdr;
2524                        int                     copy_len;
2525                        int                     copy_off;
2526                        bool                    ordered = false;
2527                        bool                    wrote_start_rec = false;
2528
2529                        /* ordered log vectors have no regions to write */
2530                        if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2531                                ASSERT(lv->lv_niovecs == 0);
2532                                ordered = true;
2533                                goto next_lv;
2534                        }
2535
2536                        reg = &vecp[index];
2537                        ASSERT(reg->i_len % sizeof(int32_t) == 0);
2538                        ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2539
2540                        /*
2541                         * Before we start formatting log vectors, we need to
2542                         * write a start record. Only do this for the first
2543                         * iclog we write to.
2544                         */
2545                        if (optype & XLOG_START_TRANS) {
2546                                xlog_write_start_rec(ptr, ticket);
2547                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2548                                                sizeof(struct xlog_op_header));
2549                                optype &= ~XLOG_START_TRANS;
2550                                wrote_start_rec = true;
2551                        }
2552
2553                        ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
2554                        if (!ophdr)
2555                                return -EIO;
2556
2557                        xlog_write_adv_cnt(&ptr, &len, &log_offset,
2558                                           sizeof(struct xlog_op_header));
2559
2560                        len += xlog_write_setup_copy(ticket, ophdr,
2561                                                     iclog->ic_size-log_offset,
2562                                                     reg->i_len,
2563                                                     &copy_off, &copy_len,
2564                                                     &partial_copy,
2565                                                     &partial_copy_len);
2566                        xlog_verify_dest_ptr(log, ptr);
2567
2568                        /*
2569                         * Copy region.
2570                         *
2571                         * Unmount records just log an opheader, so can have
2572                         * empty payloads with no data region to copy. Hence we
2573                         * only copy the payload if the vector says it has data
2574                         * to copy.
2575                         */
2576                        ASSERT(copy_len >= 0);
2577                        if (copy_len > 0) {
2578                                memcpy(ptr, reg->i_addr + copy_off, copy_len);
2579                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2580                                                   copy_len);
2581                        }
2582                        copy_len += sizeof(struct xlog_op_header);
2583                        record_cnt++;
2584                        if (wrote_start_rec) {
2585                                copy_len += sizeof(struct xlog_op_header);
2586                                record_cnt++;
2587                        }
2588                        data_cnt += contwr ? copy_len : 0;
2589
2590                        error = xlog_write_copy_finish(log, iclog, optype,
2591                                                       &record_cnt, &data_cnt,
2592                                                       &partial_copy,
2593                                                       &partial_copy_len,
2594                                                       log_offset);
2595                        if (error)
2596                                return error;
2597
2598                        /*
2599                         * if we had a partial copy, we need to get more iclog
2600                         * space but we don't want to increment the region
2601                         * index because there is still more is this region to
2602                         * write.
2603                         *
2604                         * If we completed writing this region, and we flushed
2605                         * the iclog (indicated by resetting of the record
2606                         * count), then we also need to get more log space. If
2607                         * this was the last record, though, we are done and
2608                         * can just return.
2609                         */
2610                        if (partial_copy)
2611                                break;
2612
2613                        if (++index == lv->lv_niovecs) {
2614next_lv:
2615                                lv = lv->lv_next;
2616                                index = 0;
2617                                if (lv)
2618                                        vecp = lv->lv_iovecp;
2619                        }
2620                        if (record_cnt == 0 && !ordered) {
2621                                if (!lv)
2622                                        return 0;
2623                                break;
2624                        }
2625                }
2626        }
2627
2628        ASSERT(len == 0);
2629
2630        spin_lock(&log->l_icloglock);
2631        xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2632        error = xlog_state_release_iclog(log, iclog, 0);
2633        spin_unlock(&log->l_icloglock);
2634
2635        return error;
2636}
2637
2638static void
2639xlog_state_activate_iclog(
2640        struct xlog_in_core     *iclog,
2641        int                     *iclogs_changed)
2642{
2643        ASSERT(list_empty_careful(&iclog->ic_callbacks));
2644        trace_xlog_iclog_activate(iclog, _RET_IP_);
2645
2646        /*
2647         * If the number of ops in this iclog indicate it just contains the
2648         * dummy transaction, we can change state into IDLE (the second time
2649         * around). Otherwise we should change the state into NEED a dummy.
2650         * We don't need to cover the dummy.
2651         */
2652        if (*iclogs_changed == 0 &&
2653            iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2654                *iclogs_changed = 1;
2655        } else {
2656                /*
2657                 * We have two dirty iclogs so start over.  This could also be
2658                 * num of ops indicating this is not the dummy going out.
2659                 */
2660                *iclogs_changed = 2;
2661        }
2662
2663        iclog->ic_state = XLOG_STATE_ACTIVE;
2664        iclog->ic_offset = 0;
2665        iclog->ic_header.h_num_logops = 0;
2666        memset(iclog->ic_header.h_cycle_data, 0,
2667                sizeof(iclog->ic_header.h_cycle_data));
2668        iclog->ic_header.h_lsn = 0;
2669        iclog->ic_header.h_tail_lsn = 0;
2670}
2671
2672/*
2673 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2674 * ACTIVE after iclog I/O has completed.
2675 */
2676static void
2677xlog_state_activate_iclogs(
2678        struct xlog             *log,
2679        int                     *iclogs_changed)
2680{
2681        struct xlog_in_core     *iclog = log->l_iclog;
2682
2683        do {
2684                if (iclog->ic_state == XLOG_STATE_DIRTY)
2685                        xlog_state_activate_iclog(iclog, iclogs_changed);
2686                /*
2687                 * The ordering of marking iclogs ACTIVE must be maintained, so
2688                 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2689                 */
2690                else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2691                        break;
2692        } while ((iclog = iclog->ic_next) != log->l_iclog);
2693}
2694
2695static int
2696xlog_covered_state(
2697        int                     prev_state,
2698        int                     iclogs_changed)
2699{
2700        /*
2701         * We go to NEED for any non-covering writes. We go to NEED2 if we just
2702         * wrote the first covering record (DONE). We go to IDLE if we just
2703         * wrote the second covering record (DONE2) and remain in IDLE until a
2704         * non-covering write occurs.
2705         */
2706        switch (prev_state) {
2707        case XLOG_STATE_COVER_IDLE:
2708                if (iclogs_changed == 1)
2709                        return XLOG_STATE_COVER_IDLE;
2710                fallthrough;
2711        case XLOG_STATE_COVER_NEED:
2712        case XLOG_STATE_COVER_NEED2:
2713                break;
2714        case XLOG_STATE_COVER_DONE:
2715                if (iclogs_changed == 1)
2716                        return XLOG_STATE_COVER_NEED2;
2717                break;
2718        case XLOG_STATE_COVER_DONE2:
2719                if (iclogs_changed == 1)
2720                        return XLOG_STATE_COVER_IDLE;
2721                break;
2722        default:
2723                ASSERT(0);
2724        }
2725
2726        return XLOG_STATE_COVER_NEED;
2727}
2728
2729STATIC void
2730xlog_state_clean_iclog(
2731        struct xlog             *log,
2732        struct xlog_in_core     *dirty_iclog)
2733{
2734        int                     iclogs_changed = 0;
2735
2736        trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2737
2738        dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2739
2740        xlog_state_activate_iclogs(log, &iclogs_changed);
2741        wake_up_all(&dirty_iclog->ic_force_wait);
2742
2743        if (iclogs_changed) {
2744                log->l_covered_state = xlog_covered_state(log->l_covered_state,
2745                                iclogs_changed);
2746        }
2747}
2748
2749STATIC xfs_lsn_t
2750xlog_get_lowest_lsn(
2751        struct xlog             *log)
2752{
2753        struct xlog_in_core     *iclog = log->l_iclog;
2754        xfs_lsn_t               lowest_lsn = 0, lsn;
2755
2756        do {
2757                if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2758                    iclog->ic_state == XLOG_STATE_DIRTY)
2759                        continue;
2760
2761                lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2762                if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2763                        lowest_lsn = lsn;
2764        } while ((iclog = iclog->ic_next) != log->l_iclog);
2765
2766        return lowest_lsn;
2767}
2768
2769/*
2770 * Completion of a iclog IO does not imply that a transaction has completed, as
2771 * transactions can be large enough to span many iclogs. We cannot change the
2772 * tail of the log half way through a transaction as this may be the only
2773 * transaction in the log and moving the tail to point to the middle of it
2774 * will prevent recovery from finding the start of the transaction. Hence we
2775 * should only update the last_sync_lsn if this iclog contains transaction
2776 * completion callbacks on it.
2777 *
2778 * We have to do this before we drop the icloglock to ensure we are the only one
2779 * that can update it.
2780 *
2781 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2782 * the reservation grant head pushing. This is due to the fact that the push
2783 * target is bound by the current last_sync_lsn value. Hence if we have a large
2784 * amount of log space bound up in this committing transaction then the
2785 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2786 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2787 * should push the AIL to ensure the push target (and hence the grant head) is
2788 * no longer bound by the old log head location and can move forwards and make
2789 * progress again.
2790 */
2791static void
2792xlog_state_set_callback(
2793        struct xlog             *log,
2794        struct xlog_in_core     *iclog,
2795        xfs_lsn_t               header_lsn)
2796{
2797        trace_xlog_iclog_callback(iclog, _RET_IP_);
2798        iclog->ic_state = XLOG_STATE_CALLBACK;
2799
2800        ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2801                           header_lsn) <= 0);
2802
2803        if (list_empty_careful(&iclog->ic_callbacks))
2804                return;
2805
2806        atomic64_set(&log->l_last_sync_lsn, header_lsn);
2807        xlog_grant_push_ail(log, 0);
2808}
2809
2810/*
2811 * Return true if we need to stop processing, false to continue to the next
2812 * iclog. The caller will need to run callbacks if the iclog is returned in the
2813 * XLOG_STATE_CALLBACK state.
2814 */
2815static bool
2816xlog_state_iodone_process_iclog(
2817        struct xlog             *log,
2818        struct xlog_in_core     *iclog)
2819{
2820        xfs_lsn_t               lowest_lsn;
2821        xfs_lsn_t               header_lsn;
2822
2823        switch (iclog->ic_state) {
2824        case XLOG_STATE_ACTIVE:
2825        case XLOG_STATE_DIRTY:
2826                /*
2827                 * Skip all iclogs in the ACTIVE & DIRTY states:
2828                 */
2829                return false;
2830        case XLOG_STATE_DONE_SYNC:
2831                /*
2832                 * Now that we have an iclog that is in the DONE_SYNC state, do
2833                 * one more check here to see if we have chased our tail around.
2834                 * If this is not the lowest lsn iclog, then we will leave it
2835                 * for another completion to process.
2836                 */
2837                header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2838                lowest_lsn = xlog_get_lowest_lsn(log);
2839                if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2840                        return false;
2841                xlog_state_set_callback(log, iclog, header_lsn);
2842                return false;
2843        default:
2844                /*
2845                 * Can only perform callbacks in order.  Since this iclog is not
2846                 * in the DONE_SYNC state, we skip the rest and just try to
2847                 * clean up.
2848                 */
2849                return true;
2850        }
2851}
2852
2853/*
2854 * Loop over all the iclogs, running attached callbacks on them. Return true if
2855 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2856 * to handle transient shutdown state here at all because
2857 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2858 * cleanup of the callbacks.
2859 */
2860static bool
2861xlog_state_do_iclog_callbacks(
2862        struct xlog             *log)
2863                __releases(&log->l_icloglock)
2864                __acquires(&log->l_icloglock)
2865{
2866        struct xlog_in_core     *first_iclog = log->l_iclog;
2867        struct xlog_in_core     *iclog = first_iclog;
2868        bool                    ran_callback = false;
2869
2870        do {
2871                LIST_HEAD(cb_list);
2872
2873                if (xlog_state_iodone_process_iclog(log, iclog))
2874                        break;
2875                if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2876                        iclog = iclog->ic_next;
2877                        continue;
2878                }
2879                list_splice_init(&iclog->ic_callbacks, &cb_list);
2880                spin_unlock(&log->l_icloglock);
2881
2882                trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2883                xlog_cil_process_committed(&cb_list);
2884                trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2885                ran_callback = true;
2886
2887                spin_lock(&log->l_icloglock);
2888                xlog_state_clean_iclog(log, iclog);
2889                iclog = iclog->ic_next;
2890        } while (iclog != first_iclog);
2891
2892        return ran_callback;
2893}
2894
2895
2896/*
2897 * Loop running iclog completion callbacks until there are no more iclogs in a
2898 * state that can run callbacks.
2899 */
2900STATIC void
2901xlog_state_do_callback(
2902        struct xlog             *log)
2903{
2904        int                     flushcnt = 0;
2905        int                     repeats = 0;
2906
2907        spin_lock(&log->l_icloglock);
2908        while (xlog_state_do_iclog_callbacks(log)) {
2909                if (xlog_is_shutdown(log))
2910                        break;
2911
2912                if (++repeats > 5000) {
2913                        flushcnt += repeats;
2914                        repeats = 0;
2915                        xfs_warn(log->l_mp,
2916                                "%s: possible infinite loop (%d iterations)",
2917                                __func__, flushcnt);
2918                }
2919        }
2920
2921        if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2922                wake_up_all(&log->l_flush_wait);
2923
2924        spin_unlock(&log->l_icloglock);
2925}
2926
2927
2928/*
2929 * Finish transitioning this iclog to the dirty state.
2930 *
2931 * Callbacks could take time, so they are done outside the scope of the
2932 * global state machine log lock.
2933 */
2934STATIC void
2935xlog_state_done_syncing(
2936        struct xlog_in_core     *iclog)
2937{
2938        struct xlog             *log = iclog->ic_log;
2939
2940        spin_lock(&log->l_icloglock);
2941        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2942        trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2943
2944        /*
2945         * If we got an error, either on the first buffer, or in the case of
2946         * split log writes, on the second, we shut down the file system and
2947         * no iclogs should ever be attempted to be written to disk again.
2948         */
2949        if (!xlog_is_shutdown(log)) {
2950                ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2951                iclog->ic_state = XLOG_STATE_DONE_SYNC;
2952        }
2953
2954        /*
2955         * Someone could be sleeping prior to writing out the next
2956         * iclog buffer, we wake them all, one will get to do the
2957         * I/O, the others get to wait for the result.
2958         */
2959        wake_up_all(&iclog->ic_write_wait);
2960        spin_unlock(&log->l_icloglock);
2961        xlog_state_do_callback(log);
2962}
2963
2964/*
2965 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2966 * sleep.  We wait on the flush queue on the head iclog as that should be
2967 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2968 * we will wait here and all new writes will sleep until a sync completes.
2969 *
2970 * The in-core logs are used in a circular fashion. They are not used
2971 * out-of-order even when an iclog past the head is free.
2972 *
2973 * return:
2974 *      * log_offset where xlog_write() can start writing into the in-core
2975 *              log's data space.
2976 *      * in-core log pointer to which xlog_write() should write.
2977 *      * boolean indicating this is a continued write to an in-core log.
2978 *              If this is the last write, then the in-core log's offset field
2979 *              needs to be incremented, depending on the amount of data which
2980 *              is copied.
2981 */
2982STATIC int
2983xlog_state_get_iclog_space(
2984        struct xlog             *log,
2985        int                     len,
2986        struct xlog_in_core     **iclogp,
2987        struct xlog_ticket      *ticket,
2988        int                     *continued_write,
2989        int                     *logoffsetp)
2990{
2991        int               log_offset;
2992        xlog_rec_header_t *head;
2993        xlog_in_core_t    *iclog;
2994
2995restart:
2996        spin_lock(&log->l_icloglock);
2997        if (xlog_is_shutdown(log)) {
2998                spin_unlock(&log->l_icloglock);
2999                return -EIO;
3000        }
3001
3002        iclog = log->l_iclog;
3003        if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3004                XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3005
3006                /* Wait for log writes to have flushed */
3007                xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3008                goto restart;
3009        }
3010
3011        head = &iclog->ic_header;
3012
3013        atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
3014        log_offset = iclog->ic_offset;
3015
3016        trace_xlog_iclog_get_space(iclog, _RET_IP_);
3017
3018        /* On the 1st write to an iclog, figure out lsn.  This works
3019         * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3020         * committing to.  If the offset is set, that's how many blocks
3021         * must be written.
3022         */
3023        if (log_offset == 0) {
3024                ticket->t_curr_res -= log->l_iclog_hsize;
3025                xlog_tic_add_region(ticket,
3026                                    log->l_iclog_hsize,
3027                                    XLOG_REG_TYPE_LRHEADER);
3028                head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3029                head->h_lsn = cpu_to_be64(
3030                        xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3031                ASSERT(log->l_curr_block >= 0);
3032        }
3033
3034        /* If there is enough room to write everything, then do it.  Otherwise,
3035         * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3036         * bit is on, so this will get flushed out.  Don't update ic_offset
3037         * until you know exactly how many bytes get copied.  Therefore, wait
3038         * until later to update ic_offset.
3039         *
3040         * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3041         * can fit into remaining data section.
3042         */
3043        if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3044                int             error = 0;
3045
3046                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3047
3048                /*
3049                 * If we are the only one writing to this iclog, sync it to
3050                 * disk.  We need to do an atomic compare and decrement here to
3051                 * avoid racing with concurrent atomic_dec_and_lock() calls in
3052                 * xlog_state_release_iclog() when there is more than one
3053                 * reference to the iclog.
3054                 */
3055                if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3056                        error = xlog_state_release_iclog(log, iclog, 0);
3057                spin_unlock(&log->l_icloglock);
3058                if (error)
3059                        return error;
3060                goto restart;
3061        }
3062
3063        /* Do we have enough room to write the full amount in the remainder
3064         * of this iclog?  Or must we continue a write on the next iclog and
3065         * mark this iclog as completely taken?  In the case where we switch
3066         * iclogs (to mark it taken), this particular iclog will release/sync
3067         * to disk in xlog_write().
3068         */
3069        if (len <= iclog->ic_size - iclog->ic_offset) {
3070                *continued_write = 0;
3071                iclog->ic_offset += len;
3072        } else {
3073                *continued_write = 1;
3074                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3075        }
3076        *iclogp = iclog;
3077
3078        ASSERT(iclog->ic_offset <= iclog->ic_size);
3079        spin_unlock(&log->l_icloglock);
3080
3081        *logoffsetp = log_offset;
3082        return 0;
3083}
3084
3085/*
3086 * The first cnt-1 times a ticket goes through here we don't need to move the
3087 * grant write head because the permanent reservation has reserved cnt times the
3088 * unit amount.  Release part of current permanent unit reservation and reset
3089 * current reservation to be one units worth.  Also move grant reservation head
3090 * forward.
3091 */
3092void
3093xfs_log_ticket_regrant(
3094        struct xlog             *log,
3095        struct xlog_ticket      *ticket)
3096{
3097        trace_xfs_log_ticket_regrant(log, ticket);
3098
3099        if (ticket->t_cnt > 0)
3100                ticket->t_cnt--;
3101
3102        xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3103                                        ticket->t_curr_res);
3104        xlog_grant_sub_space(log, &log->l_write_head.grant,
3105                                        ticket->t_curr_res);
3106        ticket->t_curr_res = ticket->t_unit_res;
3107        xlog_tic_reset_res(ticket);
3108
3109        trace_xfs_log_ticket_regrant_sub(log, ticket);
3110
3111        /* just return if we still have some of the pre-reserved space */
3112        if (!ticket->t_cnt) {
3113                xlog_grant_add_space(log, &log->l_reserve_head.grant,
3114                                     ticket->t_unit_res);
3115                trace_xfs_log_ticket_regrant_exit(log, ticket);
3116
3117                ticket->t_curr_res = ticket->t_unit_res;
3118                xlog_tic_reset_res(ticket);
3119        }
3120
3121        xfs_log_ticket_put(ticket);
3122}
3123
3124/*
3125 * Give back the space left from a reservation.
3126 *
3127 * All the information we need to make a correct determination of space left
3128 * is present.  For non-permanent reservations, things are quite easy.  The
3129 * count should have been decremented to zero.  We only need to deal with the
3130 * space remaining in the current reservation part of the ticket.  If the
3131 * ticket contains a permanent reservation, there may be left over space which
3132 * needs to be released.  A count of N means that N-1 refills of the current
3133 * reservation can be done before we need to ask for more space.  The first
3134 * one goes to fill up the first current reservation.  Once we run out of
3135 * space, the count will stay at zero and the only space remaining will be
3136 * in the current reservation field.
3137 */
3138void
3139xfs_log_ticket_ungrant(
3140        struct xlog             *log,
3141        struct xlog_ticket      *ticket)
3142{
3143        int                     bytes;
3144
3145        trace_xfs_log_ticket_ungrant(log, ticket);
3146
3147        if (ticket->t_cnt > 0)
3148                ticket->t_cnt--;
3149
3150        trace_xfs_log_ticket_ungrant_sub(log, ticket);
3151
3152        /*
3153         * If this is a permanent reservation ticket, we may be able to free
3154         * up more space based on the remaining count.
3155         */
3156        bytes = ticket->t_curr_res;
3157        if (ticket->t_cnt > 0) {
3158                ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3159                bytes += ticket->t_unit_res*ticket->t_cnt;
3160        }
3161
3162        xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3163        xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3164
3165        trace_xfs_log_ticket_ungrant_exit(log, ticket);
3166
3167        xfs_log_space_wake(log->l_mp);
3168        xfs_log_ticket_put(ticket);
3169}
3170
3171/*
3172 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3173 * the current iclog pointer to the next iclog in the ring.
3174 */
3175void
3176xlog_state_switch_iclogs(
3177        struct xlog             *log,
3178        struct xlog_in_core     *iclog,
3179        int                     eventual_size)
3180{
3181        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3182        assert_spin_locked(&log->l_icloglock);
3183        trace_xlog_iclog_switch(iclog, _RET_IP_);
3184
3185        if (!eventual_size)
3186                eventual_size = iclog->ic_offset;
3187        iclog->ic_state = XLOG_STATE_WANT_SYNC;
3188        iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3189        log->l_prev_block = log->l_curr_block;
3190        log->l_prev_cycle = log->l_curr_cycle;
3191
3192        /* roll log?: ic_offset changed later */
3193        log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3194
3195        /* Round up to next log-sunit */
3196        if (log->l_iclog_roundoff > BBSIZE) {
3197                uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3198                log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3199        }
3200
3201        if (log->l_curr_block >= log->l_logBBsize) {
3202                /*
3203                 * Rewind the current block before the cycle is bumped to make
3204                 * sure that the combined LSN never transiently moves forward
3205                 * when the log wraps to the next cycle. This is to support the
3206                 * unlocked sample of these fields from xlog_valid_lsn(). Most
3207                 * other cases should acquire l_icloglock.
3208                 */
3209                log->l_curr_block -= log->l_logBBsize;
3210                ASSERT(log->l_curr_block >= 0);
3211                smp_wmb();
3212                log->l_curr_cycle++;
3213                if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3214                        log->l_curr_cycle++;
3215        }
3216        ASSERT(iclog == log->l_iclog);
3217        log->l_iclog = iclog->ic_next;
3218}
3219
3220/*
3221 * Force the iclog to disk and check if the iclog has been completed before
3222 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3223 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3224 * If completion has already occurred, tell the caller so that it can avoid an
3225 * unnecessary wait on the iclog.
3226 */
3227static int
3228xlog_force_and_check_iclog(
3229        struct xlog_in_core     *iclog,
3230        bool                    *completed)
3231{
3232        xfs_lsn_t               lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3233        int                     error;
3234
3235        *completed = false;
3236        error = xlog_force_iclog(iclog);
3237        if (error)
3238                return error;
3239
3240        /*
3241         * If the iclog has already been completed and reused the header LSN
3242         * will have been rewritten by completion
3243         */
3244        if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3245                *completed = true;
3246        return 0;
3247}
3248
3249/*
3250 * Write out all data in the in-core log as of this exact moment in time.
3251 *
3252 * Data may be written to the in-core log during this call.  However,
3253 * we don't guarantee this data will be written out.  A change from past
3254 * implementation means this routine will *not* write out zero length LRs.
3255 *
3256 * Basically, we try and perform an intelligent scan of the in-core logs.
3257 * If we determine there is no flushable data, we just return.  There is no
3258 * flushable data if:
3259 *
3260 *      1. the current iclog is active and has no data; the previous iclog
3261 *              is in the active or dirty state.
3262 *      2. the current iclog is drity, and the previous iclog is in the
3263 *              active or dirty state.
3264 *
3265 * We may sleep if:
3266 *
3267 *      1. the current iclog is not in the active nor dirty state.
3268 *      2. the current iclog dirty, and the previous iclog is not in the
3269 *              active nor dirty state.
3270 *      3. the current iclog is active, and there is another thread writing
3271 *              to this particular iclog.
3272 *      4. a) the current iclog is active and has no other writers
3273 *         b) when we return from flushing out this iclog, it is still
3274 *              not in the active nor dirty state.
3275 */
3276int
3277xfs_log_force(
3278        struct xfs_mount        *mp,
3279        uint                    flags)
3280{
3281        struct xlog             *log = mp->m_log;
3282        struct xlog_in_core     *iclog;
3283
3284        XFS_STATS_INC(mp, xs_log_force);
3285        trace_xfs_log_force(mp, 0, _RET_IP_);
3286
3287        xlog_cil_force(log);
3288
3289        spin_lock(&log->l_icloglock);
3290        if (xlog_is_shutdown(log))
3291                goto out_error;
3292
3293        iclog = log->l_iclog;
3294        trace_xlog_iclog_force(iclog, _RET_IP_);
3295
3296        if (iclog->ic_state == XLOG_STATE_DIRTY ||
3297            (iclog->ic_state == XLOG_STATE_ACTIVE &&
3298             atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3299                /*
3300                 * If the head is dirty or (active and empty), then we need to
3301                 * look at the previous iclog.
3302                 *
3303                 * If the previous iclog is active or dirty we are done.  There
3304                 * is nothing to sync out. Otherwise, we attach ourselves to the
3305                 * previous iclog and go to sleep.
3306                 */
3307                iclog = iclog->ic_prev;
3308        } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3309                if (atomic_read(&iclog->ic_refcnt) == 0) {
3310                        /* We have exclusive access to this iclog. */
3311                        bool    completed;
3312
3313                        if (xlog_force_and_check_iclog(iclog, &completed))
3314                                goto out_error;
3315
3316                        if (completed)
3317                                goto out_unlock;
3318                } else {
3319                        /*
3320                         * Someone else is still writing to this iclog, so we
3321                         * need to ensure that when they release the iclog it
3322                         * gets synced immediately as we may be waiting on it.
3323                         */
3324                        xlog_state_switch_iclogs(log, iclog, 0);
3325                }
3326        }
3327
3328        /*
3329         * The iclog we are about to wait on may contain the checkpoint pushed
3330         * by the above xlog_cil_force() call, but it may not have been pushed
3331         * to disk yet. Like the ACTIVE case above, we need to make sure caches
3332         * are flushed when this iclog is written.
3333         */
3334        if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3335                iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3336
3337        if (flags & XFS_LOG_SYNC)
3338                return xlog_wait_on_iclog(iclog);
3339out_unlock:
3340        spin_unlock(&log->l_icloglock);
3341        return 0;
3342out_error:
3343        spin_unlock(&log->l_icloglock);
3344        return -EIO;
3345}
3346
3347/*
3348 * Force the log to a specific LSN.
3349 *
3350 * If an iclog with that lsn can be found:
3351 *      If it is in the DIRTY state, just return.
3352 *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3353 *              state and go to sleep or return.
3354 *      If it is in any other state, go to sleep or return.
3355 *
3356 * Synchronous forces are implemented with a wait queue.  All callers trying
3357 * to force a given lsn to disk must wait on the queue attached to the
3358 * specific in-core log.  When given in-core log finally completes its write
3359 * to disk, that thread will wake up all threads waiting on the queue.
3360 */
3361static int
3362xlog_force_lsn(
3363        struct xlog             *log,
3364        xfs_lsn_t               lsn,
3365        uint                    flags,
3366        int                     *log_flushed,
3367        bool                    already_slept)
3368{
3369        struct xlog_in_core     *iclog;
3370        bool                    completed;
3371
3372        spin_lock(&log->l_icloglock);
3373        if (xlog_is_shutdown(log))
3374                goto out_error;
3375
3376        iclog = log->l_iclog;
3377        while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3378                trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3379                iclog = iclog->ic_next;
3380                if (iclog == log->l_iclog)
3381                        goto out_unlock;
3382        }
3383
3384        switch (iclog->ic_state) {
3385        case XLOG_STATE_ACTIVE:
3386                /*
3387                 * We sleep here if we haven't already slept (e.g. this is the
3388                 * first time we've looked at the correct iclog buf) and the
3389                 * buffer before us is going to be sync'ed.  The reason for this
3390                 * is that if we are doing sync transactions here, by waiting
3391                 * for the previous I/O to complete, we can allow a few more
3392                 * transactions into this iclog before we close it down.
3393                 *
3394                 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3395                 * refcnt so we can release the log (which drops the ref count).
3396                 * The state switch keeps new transaction commits from using
3397                 * this buffer.  When the current commits finish writing into
3398                 * the buffer, the refcount will drop to zero and the buffer
3399                 * will go out then.
3400                 */
3401                if (!already_slept &&
3402                    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3403                     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3404                        xlog_wait(&iclog->ic_prev->ic_write_wait,
3405                                        &log->l_icloglock);
3406                        return -EAGAIN;
3407                }
3408                if (xlog_force_and_check_iclog(iclog, &completed))
3409                        goto out_error;
3410                if (log_flushed)
3411                        *log_flushed = 1;
3412                if (completed)
3413                        goto out_unlock;
3414                break;
3415        case XLOG_STATE_WANT_SYNC:
3416                /*
3417                 * This iclog may contain the checkpoint pushed by the
3418                 * xlog_cil_force_seq() call, but there are other writers still
3419                 * accessing it so it hasn't been pushed to disk yet. Like the
3420                 * ACTIVE case above, we need to make sure caches are flushed
3421                 * when this iclog is written.
3422                 */
3423                iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3424                break;
3425        default:
3426                /*
3427                 * The entire checkpoint was written by the CIL force and is on
3428                 * its way to disk already. It will be stable when it
3429                 * completes, so we don't need to manipulate caches here at all.
3430                 * We just need to wait for completion if necessary.
3431                 */
3432                break;
3433        }
3434
3435        if (flags & XFS_LOG_SYNC)
3436                return xlog_wait_on_iclog(iclog);
3437out_unlock:
3438        spin_unlock(&log->l_icloglock);
3439        return 0;
3440out_error:
3441        spin_unlock(&log->l_icloglock);
3442        return -EIO;
3443}
3444
3445/*
3446 * Force the log to a specific checkpoint sequence.
3447 *
3448 * First force the CIL so that all the required changes have been flushed to the
3449 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3450 * the iclog that needs to be flushed to stable storage. If the caller needs
3451 * a synchronous log force, we will wait on the iclog with the LSN returned by
3452 * xlog_cil_force_seq() to be completed.
3453 */
3454int
3455xfs_log_force_seq(
3456        struct xfs_mount        *mp,
3457        xfs_csn_t               seq,
3458        uint                    flags,
3459        int                     *log_flushed)
3460{
3461        struct xlog             *log = mp->m_log;
3462        xfs_lsn_t               lsn;
3463        int                     ret;
3464        ASSERT(seq != 0);
3465
3466        XFS_STATS_INC(mp, xs_log_force);
3467        trace_xfs_log_force(mp, seq, _RET_IP_);
3468
3469        lsn = xlog_cil_force_seq(log, seq);
3470        if (lsn == NULLCOMMITLSN)
3471                return 0;
3472
3473        ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3474        if (ret == -EAGAIN) {
3475                XFS_STATS_INC(mp, xs_log_force_sleep);
3476                ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3477        }
3478        return ret;
3479}
3480
3481/*
3482 * Free a used ticket when its refcount falls to zero.
3483 */
3484void
3485xfs_log_ticket_put(
3486        xlog_ticket_t   *ticket)
3487{
3488        ASSERT(atomic_read(&ticket->t_ref) > 0);
3489        if (atomic_dec_and_test(&ticket->t_ref))
3490                kmem_cache_free(xfs_log_ticket_zone, ticket);
3491}
3492
3493xlog_ticket_t *
3494xfs_log_ticket_get(
3495        xlog_ticket_t   *ticket)
3496{
3497        ASSERT(atomic_read(&ticket->t_ref) > 0);
3498        atomic_inc(&ticket->t_ref);
3499        return ticket;
3500}
3501
3502/*
3503 * Figure out the total log space unit (in bytes) that would be
3504 * required for a log ticket.
3505 */
3506static int
3507xlog_calc_unit_res(
3508        struct xlog             *log,
3509        int                     unit_bytes)
3510{
3511        int                     iclog_space;
3512        uint                    num_headers;
3513
3514        /*
3515         * Permanent reservations have up to 'cnt'-1 active log operations
3516         * in the log.  A unit in this case is the amount of space for one
3517         * of these log operations.  Normal reservations have a cnt of 1
3518         * and their unit amount is the total amount of space required.
3519         *
3520         * The following lines of code account for non-transaction data
3521         * which occupy space in the on-disk log.
3522         *
3523         * Normal form of a transaction is:
3524         * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3525         * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3526         *
3527         * We need to account for all the leadup data and trailer data
3528         * around the transaction data.
3529         * And then we need to account for the worst case in terms of using
3530         * more space.
3531         * The worst case will happen if:
3532         * - the placement of the transaction happens to be such that the
3533         *   roundoff is at its maximum
3534         * - the transaction data is synced before the commit record is synced
3535         *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3536         *   Therefore the commit record is in its own Log Record.
3537         *   This can happen as the commit record is called with its
3538         *   own region to xlog_write().
3539         *   This then means that in the worst case, roundoff can happen for
3540         *   the commit-rec as well.
3541         *   The commit-rec is smaller than padding in this scenario and so it is
3542         *   not added separately.
3543         */
3544
3545        /* for trans header */
3546        unit_bytes += sizeof(xlog_op_header_t);
3547        unit_bytes += sizeof(xfs_trans_header_t);
3548
3549        /* for start-rec */
3550        unit_bytes += sizeof(xlog_op_header_t);
3551
3552        /*
3553         * for LR headers - the space for data in an iclog is the size minus
3554         * the space used for the headers. If we use the iclog size, then we
3555         * undercalculate the number of headers required.
3556         *
3557         * Furthermore - the addition of op headers for split-recs might
3558         * increase the space required enough to require more log and op
3559         * headers, so take that into account too.
3560         *
3561         * IMPORTANT: This reservation makes the assumption that if this
3562         * transaction is the first in an iclog and hence has the LR headers
3563         * accounted to it, then the remaining space in the iclog is
3564         * exclusively for this transaction.  i.e. if the transaction is larger
3565         * than the iclog, it will be the only thing in that iclog.
3566         * Fundamentally, this means we must pass the entire log vector to
3567         * xlog_write to guarantee this.
3568         */
3569        iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3570        num_headers = howmany(unit_bytes, iclog_space);
3571
3572        /* for split-recs - ophdrs added when data split over LRs */
3573        unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3574
3575        /* add extra header reservations if we overrun */
3576        while (!num_headers ||
3577               howmany(unit_bytes, iclog_space) > num_headers) {
3578                unit_bytes += sizeof(xlog_op_header_t);
3579                num_headers++;
3580        }
3581        unit_bytes += log->l_iclog_hsize * num_headers;
3582
3583        /* for commit-rec LR header - note: padding will subsume the ophdr */
3584        unit_bytes += log->l_iclog_hsize;
3585
3586        /* roundoff padding for transaction data and one for commit record */
3587        unit_bytes += 2 * log->l_iclog_roundoff;
3588
3589        return unit_bytes;
3590}
3591
3592int
3593xfs_log_calc_unit_res(
3594        struct xfs_mount        *mp,
3595        int                     unit_bytes)
3596{
3597        return xlog_calc_unit_res(mp->m_log, unit_bytes);
3598}
3599
3600/*
3601 * Allocate and initialise a new log ticket.
3602 */
3603struct xlog_ticket *
3604xlog_ticket_alloc(
3605        struct xlog             *log,
3606        int                     unit_bytes,
3607        int                     cnt,
3608        char                    client,
3609        bool                    permanent)
3610{
3611        struct xlog_ticket      *tic;
3612        int                     unit_res;
3613
3614        tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3615
3616        unit_res = xlog_calc_unit_res(log, unit_bytes);
3617
3618        atomic_set(&tic->t_ref, 1);
3619        tic->t_task             = current;
3620        INIT_LIST_HEAD(&tic->t_queue);
3621        tic->t_unit_res         = unit_res;
3622        tic->t_curr_res         = unit_res;
3623        tic->t_cnt              = cnt;
3624        tic->t_ocnt             = cnt;
3625        tic->t_tid              = prandom_u32();
3626        tic->t_clientid         = client;
3627        if (permanent)
3628                tic->t_flags |= XLOG_TIC_PERM_RESERV;
3629
3630        xlog_tic_reset_res(tic);
3631
3632        return tic;
3633}
3634
3635#if defined(DEBUG)
3636/*
3637 * Make sure that the destination ptr is within the valid data region of
3638 * one of the iclogs.  This uses backup pointers stored in a different
3639 * part of the log in case we trash the log structure.
3640 */
3641STATIC void
3642xlog_verify_dest_ptr(
3643        struct xlog     *log,
3644        void            *ptr)
3645{
3646        int i;
3647        int good_ptr = 0;
3648
3649        for (i = 0; i < log->l_iclog_bufs; i++) {
3650                if (ptr >= log->l_iclog_bak[i] &&
3651                    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3652                        good_ptr++;
3653        }
3654
3655        if (!good_ptr)
3656                xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3657}
3658
3659/*
3660 * Check to make sure the grant write head didn't just over lap the tail.  If
3661 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3662 * the cycles differ by exactly one and check the byte count.
3663 *
3664 * This check is run unlocked, so can give false positives. Rather than assert
3665 * on failures, use a warn-once flag and a panic tag to allow the admin to
3666 * determine if they want to panic the machine when such an error occurs. For
3667 * debug kernels this will have the same effect as using an assert but, unlinke
3668 * an assert, it can be turned off at runtime.
3669 */
3670STATIC void
3671xlog_verify_grant_tail(
3672        struct xlog     *log)
3673{
3674        int             tail_cycle, tail_blocks;
3675        int             cycle, space;
3676
3677        xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3678        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3679        if (tail_cycle != cycle) {
3680                if (cycle - 1 != tail_cycle &&
3681                    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3682                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3683                                "%s: cycle - 1 != tail_cycle", __func__);
3684                }
3685
3686                if (space > BBTOB(tail_blocks) &&
3687                    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3688                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3689                                "%s: space > BBTOB(tail_blocks)", __func__);
3690                }
3691        }
3692}
3693
3694/* check if it will fit */
3695STATIC void
3696xlog_verify_tail_lsn(
3697        struct xlog             *log,
3698        struct xlog_in_core     *iclog)
3699{
3700        xfs_lsn_t       tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3701        int             blocks;
3702
3703    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3704        blocks =
3705            log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3706        if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3707                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3708    } else {
3709        ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3710
3711        if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3712                xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3713
3714        blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3715        if (blocks < BTOBB(iclog->ic_offset) + 1)
3716                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3717    }
3718}
3719
3720/*
3721 * Perform a number of checks on the iclog before writing to disk.
3722 *
3723 * 1. Make sure the iclogs are still circular
3724 * 2. Make sure we have a good magic number
3725 * 3. Make sure we don't have magic numbers in the data
3726 * 4. Check fields of each log operation header for:
3727 *      A. Valid client identifier
3728 *      B. tid ptr value falls in valid ptr space (user space code)
3729 *      C. Length in log record header is correct according to the
3730 *              individual operation headers within record.
3731 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3732 *      log, check the preceding blocks of the physical log to make sure all
3733 *      the cycle numbers agree with the current cycle number.
3734 */
3735STATIC void
3736xlog_verify_iclog(
3737        struct xlog             *log,
3738        struct xlog_in_core     *iclog,
3739        int                     count)
3740{
3741        xlog_op_header_t        *ophead;
3742        xlog_in_core_t          *icptr;
3743        xlog_in_core_2_t        *xhdr;
3744        void                    *base_ptr, *ptr, *p;
3745        ptrdiff_t               field_offset;
3746        uint8_t                 clientid;
3747        int                     len, i, j, k, op_len;
3748        int                     idx;
3749
3750        /* check validity of iclog pointers */
3751        spin_lock(&log->l_icloglock);
3752        icptr = log->l_iclog;
3753        for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3754                ASSERT(icptr);
3755
3756        if (icptr != log->l_iclog)
3757                xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3758        spin_unlock(&log->l_icloglock);
3759
3760        /* check log magic numbers */
3761        if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3762                xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3763
3764        base_ptr = ptr = &iclog->ic_header;
3765        p = &iclog->ic_header;
3766        for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3767                if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3768                        xfs_emerg(log->l_mp, "%s: unexpected magic num",
3769                                __func__);
3770        }
3771
3772        /* check fields */
3773        len = be32_to_cpu(iclog->ic_header.h_num_logops);
3774        base_ptr = ptr = iclog->ic_datap;
3775        ophead = ptr;
3776        xhdr = iclog->ic_data;
3777        for (i = 0; i < len; i++) {
3778                ophead = ptr;
3779
3780                /* clientid is only 1 byte */
3781                p = &ophead->oh_clientid;
3782                field_offset = p - base_ptr;
3783                if (field_offset & 0x1ff) {
3784                        clientid = ophead->oh_clientid;
3785                } else {
3786                        idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3787                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3788                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3789                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3790                                clientid = xlog_get_client_id(
3791                                        xhdr[j].hic_xheader.xh_cycle_data[k]);
3792                        } else {
3793                                clientid = xlog_get_client_id(
3794                                        iclog->ic_header.h_cycle_data[idx]);
3795                        }
3796                }
3797                if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3798                        xfs_warn(log->l_mp,
3799                                "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3800                                __func__, clientid, ophead,
3801                                (unsigned long)field_offset);
3802
3803                /* check length */
3804                p = &ophead->oh_len;
3805                field_offset = p - base_ptr;
3806                if (field_offset & 0x1ff) {
3807                        op_len = be32_to_cpu(ophead->oh_len);
3808                } else {
3809                        idx = BTOBBT((uintptr_t)&ophead->oh_len -
3810                                    (uintptr_t)iclog->ic_datap);
3811                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3812                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3813                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3814                                op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3815                        } else {
3816                                op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3817                        }
3818                }
3819                ptr += sizeof(xlog_op_header_t) + op_len;
3820        }
3821}
3822#endif
3823
3824/*
3825 * Perform a forced shutdown on the log. This should be called once and once
3826 * only by the high level filesystem shutdown code to shut the log subsystem
3827 * down cleanly.
3828 *
3829 * Our main objectives here are to make sure that:
3830 *      a. if the shutdown was not due to a log IO error, flush the logs to
3831 *         disk. Anything modified after this is ignored.
3832 *      b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3833 *         parties to find out. Nothing new gets queued after this is done.
3834 *      c. Tasks sleeping on log reservations, pinned objects and
3835 *         other resources get woken up.
3836 *
3837 * Return true if the shutdown cause was a log IO error and we actually shut the
3838 * log down.
3839 */
3840bool
3841xlog_force_shutdown(
3842        struct xlog     *log,
3843        int             shutdown_flags)
3844{
3845        bool            log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3846
3847        /*
3848         * If this happens during log recovery then we aren't using the runtime
3849         * log mechanisms yet so there's nothing to shut down.
3850         */
3851        if (!log || xlog_in_recovery(log))
3852                return false;
3853
3854        ASSERT(!xlog_is_shutdown(log));
3855
3856        /*
3857         * Flush all the completed transactions to disk before marking the log
3858         * being shut down. We need to do this first as shutting down the log
3859         * before the force will prevent the log force from flushing the iclogs
3860         * to disk.
3861         *
3862         * Re-entry due to a log IO error shutdown during the log force is
3863         * prevented by the atomicity of higher level shutdown code.
3864         */
3865        if (!log_error)
3866                xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3867
3868        /*
3869         * Atomically set the shutdown state. If the shutdown state is already
3870         * set, there someone else is performing the shutdown and so we are done
3871         * here. This should never happen because we should only ever get called
3872         * once by the first shutdown caller.
3873         *
3874         * Much of the log state machine transitions assume that shutdown state
3875         * cannot change once they hold the log->l_icloglock. Hence we need to
3876         * hold that lock here, even though we use the atomic test_and_set_bit()
3877         * operation to set the shutdown state.
3878         */
3879        spin_lock(&log->l_icloglock);
3880        if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3881                spin_unlock(&log->l_icloglock);
3882                ASSERT(0);
3883                return false;
3884        }
3885        spin_unlock(&log->l_icloglock);
3886
3887        /*
3888         * We don't want anybody waiting for log reservations after this. That
3889         * means we have to wake up everybody queued up on reserveq as well as
3890         * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3891         * we don't enqueue anything once the SHUTDOWN flag is set, and this
3892         * action is protected by the grant locks.
3893         */
3894        xlog_grant_head_wake_all(&log->l_reserve_head);
3895        xlog_grant_head_wake_all(&log->l_write_head);
3896
3897        /*
3898         * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3899         * as if the log writes were completed. The abort handling in the log
3900         * item committed callback functions will do this again under lock to
3901         * avoid races.
3902         */
3903        spin_lock(&log->l_cilp->xc_push_lock);
3904        wake_up_all(&log->l_cilp->xc_start_wait);
3905        wake_up_all(&log->l_cilp->xc_commit_wait);
3906        spin_unlock(&log->l_cilp->xc_push_lock);
3907        xlog_state_shutdown_callbacks(log);
3908
3909        return log_error;
3910}
3911
3912STATIC int
3913xlog_iclogs_empty(
3914        struct xlog     *log)
3915{
3916        xlog_in_core_t  *iclog;
3917
3918        iclog = log->l_iclog;
3919        do {
3920                /* endianness does not matter here, zero is zero in
3921                 * any language.
3922                 */
3923                if (iclog->ic_header.h_num_logops)
3924                        return 0;
3925                iclog = iclog->ic_next;
3926        } while (iclog != log->l_iclog);
3927        return 1;
3928}
3929
3930/*
3931 * Verify that an LSN stamped into a piece of metadata is valid. This is
3932 * intended for use in read verifiers on v5 superblocks.
3933 */
3934bool
3935xfs_log_check_lsn(
3936        struct xfs_mount        *mp,
3937        xfs_lsn_t               lsn)
3938{
3939        struct xlog             *log = mp->m_log;
3940        bool                    valid;
3941
3942        /*
3943         * norecovery mode skips mount-time log processing and unconditionally
3944         * resets the in-core LSN. We can't validate in this mode, but
3945         * modifications are not allowed anyways so just return true.
3946         */
3947        if (xfs_has_norecovery(mp))
3948                return true;
3949
3950        /*
3951         * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3952         * handled by recovery and thus safe to ignore here.
3953         */
3954        if (lsn == NULLCOMMITLSN)
3955                return true;
3956
3957        valid = xlog_valid_lsn(mp->m_log, lsn);
3958
3959        /* warn the user about what's gone wrong before verifier failure */
3960        if (!valid) {
3961                spin_lock(&log->l_icloglock);
3962                xfs_warn(mp,
3963"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3964"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3965                         CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3966                         log->l_curr_cycle, log->l_curr_block);
3967                spin_unlock(&log->l_icloglock);
3968        }
3969
3970        return valid;
3971}
3972
3973/*
3974 * Notify the log that we're about to start using a feature that is protected
3975 * by a log incompat feature flag.  This will prevent log covering from
3976 * clearing those flags.
3977 */
3978void
3979xlog_use_incompat_feat(
3980        struct xlog             *log)
3981{
3982        down_read(&log->l_incompat_users);
3983}
3984
3985/* Notify the log that we've finished using log incompat features. */
3986void
3987xlog_drop_incompat_feat(
3988        struct xlog             *log)
3989{
3990        up_read(&log->l_incompat_users);
3991}
3992