1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/list.h> 9#include <linux/spinlock.h> 10#include <linux/rbtree.h> 11#include <linux/rwsem.h> 12#include <linux/completion.h> 13#include <linux/cpumask.h> 14#include <linux/uprobes.h> 15#include <linux/page-flags-layout.h> 16#include <linux/workqueue.h> 17#include <linux/seqlock.h> 18 19#include <asm/mmu.h> 20 21#ifndef AT_VECTOR_SIZE_ARCH 22#define AT_VECTOR_SIZE_ARCH 0 23#endif 24#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 25 26#define INIT_PASID 0 27 28struct address_space; 29struct mem_cgroup; 30 31/* 32 * Each physical page in the system has a struct page associated with 33 * it to keep track of whatever it is we are using the page for at the 34 * moment. Note that we have no way to track which tasks are using 35 * a page, though if it is a pagecache page, rmap structures can tell us 36 * who is mapping it. 37 * 38 * If you allocate the page using alloc_pages(), you can use some of the 39 * space in struct page for your own purposes. The five words in the main 40 * union are available, except for bit 0 of the first word which must be 41 * kept clear. Many users use this word to store a pointer to an object 42 * which is guaranteed to be aligned. If you use the same storage as 43 * page->mapping, you must restore it to NULL before freeing the page. 44 * 45 * If your page will not be mapped to userspace, you can also use the four 46 * bytes in the mapcount union, but you must call page_mapcount_reset() 47 * before freeing it. 48 * 49 * If you want to use the refcount field, it must be used in such a way 50 * that other CPUs temporarily incrementing and then decrementing the 51 * refcount does not cause problems. On receiving the page from 52 * alloc_pages(), the refcount will be positive. 53 * 54 * If you allocate pages of order > 0, you can use some of the fields 55 * in each subpage, but you may need to restore some of their values 56 * afterwards. 57 * 58 * SLUB uses cmpxchg_double() to atomically update its freelist and 59 * counters. That requires that freelist & counters be adjacent and 60 * double-word aligned. We align all struct pages to double-word 61 * boundaries, and ensure that 'freelist' is aligned within the 62 * struct. 63 */ 64#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 65#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 66#else 67#define _struct_page_alignment 68#endif 69 70struct page { 71 unsigned long flags; /* Atomic flags, some possibly 72 * updated asynchronously */ 73 /* 74 * Five words (20/40 bytes) are available in this union. 75 * WARNING: bit 0 of the first word is used for PageTail(). That 76 * means the other users of this union MUST NOT use the bit to 77 * avoid collision and false-positive PageTail(). 78 */ 79 union { 80 struct { /* Page cache and anonymous pages */ 81 /** 82 * @lru: Pageout list, eg. active_list protected by 83 * lruvec->lru_lock. Sometimes used as a generic list 84 * by the page owner. 85 */ 86 struct list_head lru; 87 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 88 struct address_space *mapping; 89 pgoff_t index; /* Our offset within mapping. */ 90 /** 91 * @private: Mapping-private opaque data. 92 * Usually used for buffer_heads if PagePrivate. 93 * Used for swp_entry_t if PageSwapCache. 94 * Indicates order in the buddy system if PageBuddy. 95 */ 96 unsigned long private; 97 }; 98 struct { /* page_pool used by netstack */ 99 /** 100 * @pp_magic: magic value to avoid recycling non 101 * page_pool allocated pages. 102 */ 103 unsigned long pp_magic; 104 struct page_pool *pp; 105 unsigned long _pp_mapping_pad; 106 unsigned long dma_addr; 107 union { 108 /** 109 * dma_addr_upper: might require a 64-bit 110 * value on 32-bit architectures. 111 */ 112 unsigned long dma_addr_upper; 113 /** 114 * For frag page support, not supported in 115 * 32-bit architectures with 64-bit DMA. 116 */ 117 atomic_long_t pp_frag_count; 118 }; 119 }; 120 struct { /* slab, slob and slub */ 121 union { 122 struct list_head slab_list; 123 struct { /* Partial pages */ 124 struct page *next; 125#ifdef CONFIG_64BIT 126 int pages; /* Nr of pages left */ 127 int pobjects; /* Approximate count */ 128#else 129 short int pages; 130 short int pobjects; 131#endif 132 }; 133 }; 134 struct kmem_cache *slab_cache; /* not slob */ 135 /* Double-word boundary */ 136 void *freelist; /* first free object */ 137 union { 138 void *s_mem; /* slab: first object */ 139 unsigned long counters; /* SLUB */ 140 struct { /* SLUB */ 141 unsigned inuse:16; 142 unsigned objects:15; 143 unsigned frozen:1; 144 }; 145 }; 146 }; 147 struct { /* Tail pages of compound page */ 148 unsigned long compound_head; /* Bit zero is set */ 149 150 /* First tail page only */ 151 unsigned char compound_dtor; 152 unsigned char compound_order; 153 atomic_t compound_mapcount; 154 unsigned int compound_nr; /* 1 << compound_order */ 155 }; 156 struct { /* Second tail page of compound page */ 157 unsigned long _compound_pad_1; /* compound_head */ 158 atomic_t hpage_pinned_refcount; 159 /* For both global and memcg */ 160 struct list_head deferred_list; 161 }; 162 struct { /* Page table pages */ 163 unsigned long _pt_pad_1; /* compound_head */ 164 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 165 unsigned long _pt_pad_2; /* mapping */ 166 union { 167 struct mm_struct *pt_mm; /* x86 pgds only */ 168 atomic_t pt_frag_refcount; /* powerpc */ 169 }; 170#if ALLOC_SPLIT_PTLOCKS 171 spinlock_t *ptl; 172#else 173 spinlock_t ptl; 174#endif 175 }; 176 struct { /* ZONE_DEVICE pages */ 177 /** @pgmap: Points to the hosting device page map. */ 178 struct dev_pagemap *pgmap; 179 void *zone_device_data; 180 /* 181 * ZONE_DEVICE private pages are counted as being 182 * mapped so the next 3 words hold the mapping, index, 183 * and private fields from the source anonymous or 184 * page cache page while the page is migrated to device 185 * private memory. 186 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 187 * use the mapping, index, and private fields when 188 * pmem backed DAX files are mapped. 189 */ 190 }; 191 192 /** @rcu_head: You can use this to free a page by RCU. */ 193 struct rcu_head rcu_head; 194 }; 195 196 union { /* This union is 4 bytes in size. */ 197 /* 198 * If the page can be mapped to userspace, encodes the number 199 * of times this page is referenced by a page table. 200 */ 201 atomic_t _mapcount; 202 203 /* 204 * If the page is neither PageSlab nor mappable to userspace, 205 * the value stored here may help determine what this page 206 * is used for. See page-flags.h for a list of page types 207 * which are currently stored here. 208 */ 209 unsigned int page_type; 210 211 unsigned int active; /* SLAB */ 212 int units; /* SLOB */ 213 }; 214 215 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 216 atomic_t _refcount; 217 218#ifdef CONFIG_MEMCG 219 unsigned long memcg_data; 220#endif 221 222 /* 223 * On machines where all RAM is mapped into kernel address space, 224 * we can simply calculate the virtual address. On machines with 225 * highmem some memory is mapped into kernel virtual memory 226 * dynamically, so we need a place to store that address. 227 * Note that this field could be 16 bits on x86 ... ;) 228 * 229 * Architectures with slow multiplication can define 230 * WANT_PAGE_VIRTUAL in asm/page.h 231 */ 232#if defined(WANT_PAGE_VIRTUAL) 233 void *virtual; /* Kernel virtual address (NULL if 234 not kmapped, ie. highmem) */ 235#endif /* WANT_PAGE_VIRTUAL */ 236 237#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 238 int _last_cpupid; 239#endif 240} _struct_page_alignment; 241 242static inline atomic_t *compound_mapcount_ptr(struct page *page) 243{ 244 return &page[1].compound_mapcount; 245} 246 247static inline atomic_t *compound_pincount_ptr(struct page *page) 248{ 249 return &page[2].hpage_pinned_refcount; 250} 251 252/* 253 * Used for sizing the vmemmap region on some architectures 254 */ 255#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 256 257#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 258#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 259 260#define page_private(page) ((page)->private) 261 262static inline void set_page_private(struct page *page, unsigned long private) 263{ 264 page->private = private; 265} 266 267struct page_frag_cache { 268 void * va; 269#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 270 __u16 offset; 271 __u16 size; 272#else 273 __u32 offset; 274#endif 275 /* we maintain a pagecount bias, so that we dont dirty cache line 276 * containing page->_refcount every time we allocate a fragment. 277 */ 278 unsigned int pagecnt_bias; 279 bool pfmemalloc; 280}; 281 282typedef unsigned long vm_flags_t; 283 284/* 285 * A region containing a mapping of a non-memory backed file under NOMMU 286 * conditions. These are held in a global tree and are pinned by the VMAs that 287 * map parts of them. 288 */ 289struct vm_region { 290 struct rb_node vm_rb; /* link in global region tree */ 291 vm_flags_t vm_flags; /* VMA vm_flags */ 292 unsigned long vm_start; /* start address of region */ 293 unsigned long vm_end; /* region initialised to here */ 294 unsigned long vm_top; /* region allocated to here */ 295 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 296 struct file *vm_file; /* the backing file or NULL */ 297 298 int vm_usage; /* region usage count (access under nommu_region_sem) */ 299 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 300 * this region */ 301}; 302 303#ifdef CONFIG_USERFAULTFD 304#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 305struct vm_userfaultfd_ctx { 306 struct userfaultfd_ctx *ctx; 307}; 308#else /* CONFIG_USERFAULTFD */ 309#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 310struct vm_userfaultfd_ctx {}; 311#endif /* CONFIG_USERFAULTFD */ 312 313/* 314 * This struct describes a virtual memory area. There is one of these 315 * per VM-area/task. A VM area is any part of the process virtual memory 316 * space that has a special rule for the page-fault handlers (ie a shared 317 * library, the executable area etc). 318 */ 319struct vm_area_struct { 320 /* The first cache line has the info for VMA tree walking. */ 321 322 unsigned long vm_start; /* Our start address within vm_mm. */ 323 unsigned long vm_end; /* The first byte after our end address 324 within vm_mm. */ 325 326 /* linked list of VM areas per task, sorted by address */ 327 struct vm_area_struct *vm_next, *vm_prev; 328 329 struct rb_node vm_rb; 330 331 /* 332 * Largest free memory gap in bytes to the left of this VMA. 333 * Either between this VMA and vma->vm_prev, or between one of the 334 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 335 * get_unmapped_area find a free area of the right size. 336 */ 337 unsigned long rb_subtree_gap; 338 339 /* Second cache line starts here. */ 340 341 struct mm_struct *vm_mm; /* The address space we belong to. */ 342 343 /* 344 * Access permissions of this VMA. 345 * See vmf_insert_mixed_prot() for discussion. 346 */ 347 pgprot_t vm_page_prot; 348 unsigned long vm_flags; /* Flags, see mm.h. */ 349 350 /* 351 * For areas with an address space and backing store, 352 * linkage into the address_space->i_mmap interval tree. 353 */ 354 struct { 355 struct rb_node rb; 356 unsigned long rb_subtree_last; 357 } shared; 358 359 /* 360 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 361 * list, after a COW of one of the file pages. A MAP_SHARED vma 362 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 363 * or brk vma (with NULL file) can only be in an anon_vma list. 364 */ 365 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 366 * page_table_lock */ 367 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 368 369 /* Function pointers to deal with this struct. */ 370 const struct vm_operations_struct *vm_ops; 371 372 /* Information about our backing store: */ 373 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 374 units */ 375 struct file * vm_file; /* File we map to (can be NULL). */ 376 void * vm_private_data; /* was vm_pte (shared mem) */ 377 378#ifdef CONFIG_SWAP 379 atomic_long_t swap_readahead_info; 380#endif 381#ifndef CONFIG_MMU 382 struct vm_region *vm_region; /* NOMMU mapping region */ 383#endif 384#ifdef CONFIG_NUMA 385 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 386#endif 387 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 388} __randomize_layout; 389 390struct core_thread { 391 struct task_struct *task; 392 struct core_thread *next; 393}; 394 395struct core_state { 396 atomic_t nr_threads; 397 struct core_thread dumper; 398 struct completion startup; 399}; 400 401struct kioctx_table; 402struct mm_struct { 403 struct { 404 struct vm_area_struct *mmap; /* list of VMAs */ 405 struct rb_root mm_rb; 406 u64 vmacache_seqnum; /* per-thread vmacache */ 407#ifdef CONFIG_MMU 408 unsigned long (*get_unmapped_area) (struct file *filp, 409 unsigned long addr, unsigned long len, 410 unsigned long pgoff, unsigned long flags); 411#endif 412 unsigned long mmap_base; /* base of mmap area */ 413 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 414#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 415 /* Base addresses for compatible mmap() */ 416 unsigned long mmap_compat_base; 417 unsigned long mmap_compat_legacy_base; 418#endif 419 unsigned long task_size; /* size of task vm space */ 420 unsigned long highest_vm_end; /* highest vma end address */ 421 pgd_t * pgd; 422 423#ifdef CONFIG_MEMBARRIER 424 /** 425 * @membarrier_state: Flags controlling membarrier behavior. 426 * 427 * This field is close to @pgd to hopefully fit in the same 428 * cache-line, which needs to be touched by switch_mm(). 429 */ 430 atomic_t membarrier_state; 431#endif 432 433 /** 434 * @mm_users: The number of users including userspace. 435 * 436 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 437 * drops to 0 (i.e. when the task exits and there are no other 438 * temporary reference holders), we also release a reference on 439 * @mm_count (which may then free the &struct mm_struct if 440 * @mm_count also drops to 0). 441 */ 442 atomic_t mm_users; 443 444 /** 445 * @mm_count: The number of references to &struct mm_struct 446 * (@mm_users count as 1). 447 * 448 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 449 * &struct mm_struct is freed. 450 */ 451 atomic_t mm_count; 452 453#ifdef CONFIG_MMU 454 atomic_long_t pgtables_bytes; /* PTE page table pages */ 455#endif 456 int map_count; /* number of VMAs */ 457 458 spinlock_t page_table_lock; /* Protects page tables and some 459 * counters 460 */ 461 /* 462 * With some kernel config, the current mmap_lock's offset 463 * inside 'mm_struct' is at 0x120, which is very optimal, as 464 * its two hot fields 'count' and 'owner' sit in 2 different 465 * cachelines, and when mmap_lock is highly contended, both 466 * of the 2 fields will be accessed frequently, current layout 467 * will help to reduce cache bouncing. 468 * 469 * So please be careful with adding new fields before 470 * mmap_lock, which can easily push the 2 fields into one 471 * cacheline. 472 */ 473 struct rw_semaphore mmap_lock; 474 475 struct list_head mmlist; /* List of maybe swapped mm's. These 476 * are globally strung together off 477 * init_mm.mmlist, and are protected 478 * by mmlist_lock 479 */ 480 481 482 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 483 unsigned long hiwater_vm; /* High-water virtual memory usage */ 484 485 unsigned long total_vm; /* Total pages mapped */ 486 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 487 atomic64_t pinned_vm; /* Refcount permanently increased */ 488 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 489 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 490 unsigned long stack_vm; /* VM_STACK */ 491 unsigned long def_flags; 492 493 /** 494 * @write_protect_seq: Locked when any thread is write 495 * protecting pages mapped by this mm to enforce a later COW, 496 * for instance during page table copying for fork(). 497 */ 498 seqcount_t write_protect_seq; 499 500 spinlock_t arg_lock; /* protect the below fields */ 501 502 unsigned long start_code, end_code, start_data, end_data; 503 unsigned long start_brk, brk, start_stack; 504 unsigned long arg_start, arg_end, env_start, env_end; 505 506 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 507 508 /* 509 * Special counters, in some configurations protected by the 510 * page_table_lock, in other configurations by being atomic. 511 */ 512 struct mm_rss_stat rss_stat; 513 514 struct linux_binfmt *binfmt; 515 516 /* Architecture-specific MM context */ 517 mm_context_t context; 518 519 unsigned long flags; /* Must use atomic bitops to access */ 520 521 struct core_state *core_state; /* coredumping support */ 522 523#ifdef CONFIG_AIO 524 spinlock_t ioctx_lock; 525 struct kioctx_table __rcu *ioctx_table; 526#endif 527#ifdef CONFIG_MEMCG 528 /* 529 * "owner" points to a task that is regarded as the canonical 530 * user/owner of this mm. All of the following must be true in 531 * order for it to be changed: 532 * 533 * current == mm->owner 534 * current->mm != mm 535 * new_owner->mm == mm 536 * new_owner->alloc_lock is held 537 */ 538 struct task_struct __rcu *owner; 539#endif 540 struct user_namespace *user_ns; 541 542 /* store ref to file /proc/<pid>/exe symlink points to */ 543 struct file __rcu *exe_file; 544#ifdef CONFIG_MMU_NOTIFIER 545 struct mmu_notifier_subscriptions *notifier_subscriptions; 546#endif 547#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 548 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 549#endif 550#ifdef CONFIG_NUMA_BALANCING 551 /* 552 * numa_next_scan is the next time that the PTEs will be marked 553 * pte_numa. NUMA hinting faults will gather statistics and 554 * migrate pages to new nodes if necessary. 555 */ 556 unsigned long numa_next_scan; 557 558 /* Restart point for scanning and setting pte_numa */ 559 unsigned long numa_scan_offset; 560 561 /* numa_scan_seq prevents two threads setting pte_numa */ 562 int numa_scan_seq; 563#endif 564 /* 565 * An operation with batched TLB flushing is going on. Anything 566 * that can move process memory needs to flush the TLB when 567 * moving a PROT_NONE or PROT_NUMA mapped page. 568 */ 569 atomic_t tlb_flush_pending; 570#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 571 /* See flush_tlb_batched_pending() */ 572 bool tlb_flush_batched; 573#endif 574 struct uprobes_state uprobes_state; 575#ifdef CONFIG_HUGETLB_PAGE 576 atomic_long_t hugetlb_usage; 577#endif 578 struct work_struct async_put_work; 579 580#ifdef CONFIG_IOMMU_SUPPORT 581 u32 pasid; 582#endif 583 } __randomize_layout; 584 585 /* 586 * The mm_cpumask needs to be at the end of mm_struct, because it 587 * is dynamically sized based on nr_cpu_ids. 588 */ 589 unsigned long cpu_bitmap[]; 590}; 591 592extern struct mm_struct init_mm; 593 594/* Pointer magic because the dynamic array size confuses some compilers. */ 595static inline void mm_init_cpumask(struct mm_struct *mm) 596{ 597 unsigned long cpu_bitmap = (unsigned long)mm; 598 599 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 600 cpumask_clear((struct cpumask *)cpu_bitmap); 601} 602 603/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 604static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 605{ 606 return (struct cpumask *)&mm->cpu_bitmap; 607} 608 609struct mmu_gather; 610extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 611extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 612extern void tlb_finish_mmu(struct mmu_gather *tlb); 613 614static inline void init_tlb_flush_pending(struct mm_struct *mm) 615{ 616 atomic_set(&mm->tlb_flush_pending, 0); 617} 618 619static inline void inc_tlb_flush_pending(struct mm_struct *mm) 620{ 621 atomic_inc(&mm->tlb_flush_pending); 622 /* 623 * The only time this value is relevant is when there are indeed pages 624 * to flush. And we'll only flush pages after changing them, which 625 * requires the PTL. 626 * 627 * So the ordering here is: 628 * 629 * atomic_inc(&mm->tlb_flush_pending); 630 * spin_lock(&ptl); 631 * ... 632 * set_pte_at(); 633 * spin_unlock(&ptl); 634 * 635 * spin_lock(&ptl) 636 * mm_tlb_flush_pending(); 637 * .... 638 * spin_unlock(&ptl); 639 * 640 * flush_tlb_range(); 641 * atomic_dec(&mm->tlb_flush_pending); 642 * 643 * Where the increment if constrained by the PTL unlock, it thus 644 * ensures that the increment is visible if the PTE modification is 645 * visible. After all, if there is no PTE modification, nobody cares 646 * about TLB flushes either. 647 * 648 * This very much relies on users (mm_tlb_flush_pending() and 649 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 650 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 651 * locks (PPC) the unlock of one doesn't order against the lock of 652 * another PTL. 653 * 654 * The decrement is ordered by the flush_tlb_range(), such that 655 * mm_tlb_flush_pending() will not return false unless all flushes have 656 * completed. 657 */ 658} 659 660static inline void dec_tlb_flush_pending(struct mm_struct *mm) 661{ 662 /* 663 * See inc_tlb_flush_pending(). 664 * 665 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 666 * not order against TLB invalidate completion, which is what we need. 667 * 668 * Therefore we must rely on tlb_flush_*() to guarantee order. 669 */ 670 atomic_dec(&mm->tlb_flush_pending); 671} 672 673static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 674{ 675 /* 676 * Must be called after having acquired the PTL; orders against that 677 * PTLs release and therefore ensures that if we observe the modified 678 * PTE we must also observe the increment from inc_tlb_flush_pending(). 679 * 680 * That is, it only guarantees to return true if there is a flush 681 * pending for _this_ PTL. 682 */ 683 return atomic_read(&mm->tlb_flush_pending); 684} 685 686static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 687{ 688 /* 689 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 690 * for which there is a TLB flush pending in order to guarantee 691 * we've seen both that PTE modification and the increment. 692 * 693 * (no requirement on actually still holding the PTL, that is irrelevant) 694 */ 695 return atomic_read(&mm->tlb_flush_pending) > 1; 696} 697 698struct vm_fault; 699 700/** 701 * typedef vm_fault_t - Return type for page fault handlers. 702 * 703 * Page fault handlers return a bitmask of %VM_FAULT values. 704 */ 705typedef __bitwise unsigned int vm_fault_t; 706 707/** 708 * enum vm_fault_reason - Page fault handlers return a bitmask of 709 * these values to tell the core VM what happened when handling the 710 * fault. Used to decide whether a process gets delivered SIGBUS or 711 * just gets major/minor fault counters bumped up. 712 * 713 * @VM_FAULT_OOM: Out Of Memory 714 * @VM_FAULT_SIGBUS: Bad access 715 * @VM_FAULT_MAJOR: Page read from storage 716 * @VM_FAULT_WRITE: Special case for get_user_pages 717 * @VM_FAULT_HWPOISON: Hit poisoned small page 718 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 719 * in upper bits 720 * @VM_FAULT_SIGSEGV: segmentation fault 721 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 722 * @VM_FAULT_LOCKED: ->fault locked the returned page 723 * @VM_FAULT_RETRY: ->fault blocked, must retry 724 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 725 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 726 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 727 * fsync() to complete (for synchronous page faults 728 * in DAX) 729 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 730 * 731 */ 732enum vm_fault_reason { 733 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 734 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 735 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 736 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 737 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 738 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 739 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 740 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 741 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 742 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 743 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 744 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 745 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 746 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 747}; 748 749/* Encode hstate index for a hwpoisoned large page */ 750#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 751#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 752 753#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 754 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 755 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 756 757#define VM_FAULT_RESULT_TRACE \ 758 { VM_FAULT_OOM, "OOM" }, \ 759 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 760 { VM_FAULT_MAJOR, "MAJOR" }, \ 761 { VM_FAULT_WRITE, "WRITE" }, \ 762 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 763 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 764 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 765 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 766 { VM_FAULT_LOCKED, "LOCKED" }, \ 767 { VM_FAULT_RETRY, "RETRY" }, \ 768 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 769 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 770 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 771 772struct vm_special_mapping { 773 const char *name; /* The name, e.g. "[vdso]". */ 774 775 /* 776 * If .fault is not provided, this points to a 777 * NULL-terminated array of pages that back the special mapping. 778 * 779 * This must not be NULL unless .fault is provided. 780 */ 781 struct page **pages; 782 783 /* 784 * If non-NULL, then this is called to resolve page faults 785 * on the special mapping. If used, .pages is not checked. 786 */ 787 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 788 struct vm_area_struct *vma, 789 struct vm_fault *vmf); 790 791 int (*mremap)(const struct vm_special_mapping *sm, 792 struct vm_area_struct *new_vma); 793}; 794 795enum tlb_flush_reason { 796 TLB_FLUSH_ON_TASK_SWITCH, 797 TLB_REMOTE_SHOOTDOWN, 798 TLB_LOCAL_SHOOTDOWN, 799 TLB_LOCAL_MM_SHOOTDOWN, 800 TLB_REMOTE_SEND_IPI, 801 NR_TLB_FLUSH_REASONS, 802}; 803 804 /* 805 * A swap entry has to fit into a "unsigned long", as the entry is hidden 806 * in the "index" field of the swapper address space. 807 */ 808typedef struct { 809 unsigned long val; 810} swp_entry_t; 811 812#endif /* _LINUX_MM_TYPES_H */ 813