linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/mutex.h>
  18#include <linux/plist.h>
  19#include <linux/hrtimer.h>
  20#include <linux/irqflags.h>
  21#include <linux/seccomp.h>
  22#include <linux/nodemask.h>
  23#include <linux/rcupdate.h>
  24#include <linux/refcount.h>
  25#include <linux/resource.h>
  26#include <linux/latencytop.h>
  27#include <linux/sched/prio.h>
  28#include <linux/sched/types.h>
  29#include <linux/signal_types.h>
  30#include <linux/syscall_user_dispatch.h>
  31#include <linux/mm_types_task.h>
  32#include <linux/task_io_accounting.h>
  33#include <linux/posix-timers.h>
  34#include <linux/rseq.h>
  35#include <linux/seqlock.h>
  36#include <linux/kcsan.h>
  37#include <asm/kmap_size.h>
  38
  39/* task_struct member predeclarations (sorted alphabetically): */
  40struct audit_context;
  41struct backing_dev_info;
  42struct bio_list;
  43struct blk_plug;
  44struct bpf_local_storage;
  45struct bpf_run_ctx;
  46struct capture_control;
  47struct cfs_rq;
  48struct fs_struct;
  49struct futex_pi_state;
  50struct io_context;
  51struct io_uring_task;
  52struct mempolicy;
  53struct nameidata;
  54struct nsproxy;
  55struct perf_event_context;
  56struct pid_namespace;
  57struct pipe_inode_info;
  58struct rcu_node;
  59struct reclaim_state;
  60struct robust_list_head;
  61struct root_domain;
  62struct rq;
  63struct sched_attr;
  64struct sched_param;
  65struct seq_file;
  66struct sighand_struct;
  67struct signal_struct;
  68struct task_delay_info;
  69struct task_group;
  70
  71/*
  72 * Task state bitmask. NOTE! These bits are also
  73 * encoded in fs/proc/array.c: get_task_state().
  74 *
  75 * We have two separate sets of flags: task->state
  76 * is about runnability, while task->exit_state are
  77 * about the task exiting. Confusing, but this way
  78 * modifying one set can't modify the other one by
  79 * mistake.
  80 */
  81
  82/* Used in tsk->state: */
  83#define TASK_RUNNING                    0x0000
  84#define TASK_INTERRUPTIBLE              0x0001
  85#define TASK_UNINTERRUPTIBLE            0x0002
  86#define __TASK_STOPPED                  0x0004
  87#define __TASK_TRACED                   0x0008
  88/* Used in tsk->exit_state: */
  89#define EXIT_DEAD                       0x0010
  90#define EXIT_ZOMBIE                     0x0020
  91#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  92/* Used in tsk->state again: */
  93#define TASK_PARKED                     0x0040
  94#define TASK_DEAD                       0x0080
  95#define TASK_WAKEKILL                   0x0100
  96#define TASK_WAKING                     0x0200
  97#define TASK_NOLOAD                     0x0400
  98#define TASK_NEW                        0x0800
  99/* RT specific auxilliary flag to mark RT lock waiters */
 100#define TASK_RTLOCK_WAIT                0x1000
 101#define TASK_STATE_MAX                  0x2000
 102
 103/* Convenience macros for the sake of set_current_state: */
 104#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 105#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
 106#define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
 107
 108#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 109
 110/* Convenience macros for the sake of wake_up(): */
 111#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 112
 113/* get_task_state(): */
 114#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 115                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 116                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 117                                         TASK_PARKED)
 118
 119#define task_is_running(task)           (READ_ONCE((task)->__state) == TASK_RUNNING)
 120
 121#define task_is_traced(task)            ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
 122
 123#define task_is_stopped(task)           ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
 124
 125#define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 126
 127/*
 128 * Special states are those that do not use the normal wait-loop pattern. See
 129 * the comment with set_special_state().
 130 */
 131#define is_special_task_state(state)                            \
 132        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 133
 134#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 135# define debug_normal_state_change(state_value)                         \
 136        do {                                                            \
 137                WARN_ON_ONCE(is_special_task_state(state_value));       \
 138                current->task_state_change = _THIS_IP_;                 \
 139        } while (0)
 140
 141# define debug_special_state_change(state_value)                        \
 142        do {                                                            \
 143                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 144                current->task_state_change = _THIS_IP_;                 \
 145        } while (0)
 146
 147# define debug_rtlock_wait_set_state()                                  \
 148        do {                                                             \
 149                current->saved_state_change = current->task_state_change;\
 150                current->task_state_change = _THIS_IP_;                  \
 151        } while (0)
 152
 153# define debug_rtlock_wait_restore_state()                              \
 154        do {                                                             \
 155                current->task_state_change = current->saved_state_change;\
 156        } while (0)
 157
 158#else
 159# define debug_normal_state_change(cond)        do { } while (0)
 160# define debug_special_state_change(cond)       do { } while (0)
 161# define debug_rtlock_wait_set_state()          do { } while (0)
 162# define debug_rtlock_wait_restore_state()      do { } while (0)
 163#endif
 164
 165/*
 166 * set_current_state() includes a barrier so that the write of current->state
 167 * is correctly serialised wrt the caller's subsequent test of whether to
 168 * actually sleep:
 169 *
 170 *   for (;;) {
 171 *      set_current_state(TASK_UNINTERRUPTIBLE);
 172 *      if (CONDITION)
 173 *         break;
 174 *
 175 *      schedule();
 176 *   }
 177 *   __set_current_state(TASK_RUNNING);
 178 *
 179 * If the caller does not need such serialisation (because, for instance, the
 180 * CONDITION test and condition change and wakeup are under the same lock) then
 181 * use __set_current_state().
 182 *
 183 * The above is typically ordered against the wakeup, which does:
 184 *
 185 *   CONDITION = 1;
 186 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 187 *
 188 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 189 * accessing p->state.
 190 *
 191 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 192 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 193 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 194 *
 195 * However, with slightly different timing the wakeup TASK_RUNNING store can
 196 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 197 * a problem either because that will result in one extra go around the loop
 198 * and our @cond test will save the day.
 199 *
 200 * Also see the comments of try_to_wake_up().
 201 */
 202#define __set_current_state(state_value)                                \
 203        do {                                                            \
 204                debug_normal_state_change((state_value));               \
 205                WRITE_ONCE(current->__state, (state_value));            \
 206        } while (0)
 207
 208#define set_current_state(state_value)                                  \
 209        do {                                                            \
 210                debug_normal_state_change((state_value));               \
 211                smp_store_mb(current->__state, (state_value));          \
 212        } while (0)
 213
 214/*
 215 * set_special_state() should be used for those states when the blocking task
 216 * can not use the regular condition based wait-loop. In that case we must
 217 * serialize against wakeups such that any possible in-flight TASK_RUNNING
 218 * stores will not collide with our state change.
 219 */
 220#define set_special_state(state_value)                                  \
 221        do {                                                            \
 222                unsigned long flags; /* may shadow */                   \
 223                                                                        \
 224                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 225                debug_special_state_change((state_value));              \
 226                WRITE_ONCE(current->__state, (state_value));            \
 227                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 228        } while (0)
 229
 230/*
 231 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
 232 *
 233 * RT's spin/rwlock substitutions are state preserving. The state of the
 234 * task when blocking on the lock is saved in task_struct::saved_state and
 235 * restored after the lock has been acquired.  These operations are
 236 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
 237 * lock related wakeups while the task is blocked on the lock are
 238 * redirected to operate on task_struct::saved_state to ensure that these
 239 * are not dropped. On restore task_struct::saved_state is set to
 240 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
 241 *
 242 * The lock operation looks like this:
 243 *
 244 *      current_save_and_set_rtlock_wait_state();
 245 *      for (;;) {
 246 *              if (try_lock())
 247 *                      break;
 248 *              raw_spin_unlock_irq(&lock->wait_lock);
 249 *              schedule_rtlock();
 250 *              raw_spin_lock_irq(&lock->wait_lock);
 251 *              set_current_state(TASK_RTLOCK_WAIT);
 252 *      }
 253 *      current_restore_rtlock_saved_state();
 254 */
 255#define current_save_and_set_rtlock_wait_state()                        \
 256        do {                                                            \
 257                lockdep_assert_irqs_disabled();                         \
 258                raw_spin_lock(&current->pi_lock);                       \
 259                current->saved_state = current->__state;                \
 260                debug_rtlock_wait_set_state();                          \
 261                WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);         \
 262                raw_spin_unlock(&current->pi_lock);                     \
 263        } while (0);
 264
 265#define current_restore_rtlock_saved_state()                            \
 266        do {                                                            \
 267                lockdep_assert_irqs_disabled();                         \
 268                raw_spin_lock(&current->pi_lock);                       \
 269                debug_rtlock_wait_restore_state();                      \
 270                WRITE_ONCE(current->__state, current->saved_state);     \
 271                current->saved_state = TASK_RUNNING;                    \
 272                raw_spin_unlock(&current->pi_lock);                     \
 273        } while (0);
 274
 275#define get_current_state()     READ_ONCE(current->__state)
 276
 277/* Task command name length: */
 278#define TASK_COMM_LEN                   16
 279
 280extern void scheduler_tick(void);
 281
 282#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 283
 284extern long schedule_timeout(long timeout);
 285extern long schedule_timeout_interruptible(long timeout);
 286extern long schedule_timeout_killable(long timeout);
 287extern long schedule_timeout_uninterruptible(long timeout);
 288extern long schedule_timeout_idle(long timeout);
 289asmlinkage void schedule(void);
 290extern void schedule_preempt_disabled(void);
 291asmlinkage void preempt_schedule_irq(void);
 292#ifdef CONFIG_PREEMPT_RT
 293 extern void schedule_rtlock(void);
 294#endif
 295
 296extern int __must_check io_schedule_prepare(void);
 297extern void io_schedule_finish(int token);
 298extern long io_schedule_timeout(long timeout);
 299extern void io_schedule(void);
 300
 301/**
 302 * struct prev_cputime - snapshot of system and user cputime
 303 * @utime: time spent in user mode
 304 * @stime: time spent in system mode
 305 * @lock: protects the above two fields
 306 *
 307 * Stores previous user/system time values such that we can guarantee
 308 * monotonicity.
 309 */
 310struct prev_cputime {
 311#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 312        u64                             utime;
 313        u64                             stime;
 314        raw_spinlock_t                  lock;
 315#endif
 316};
 317
 318enum vtime_state {
 319        /* Task is sleeping or running in a CPU with VTIME inactive: */
 320        VTIME_INACTIVE = 0,
 321        /* Task is idle */
 322        VTIME_IDLE,
 323        /* Task runs in kernelspace in a CPU with VTIME active: */
 324        VTIME_SYS,
 325        /* Task runs in userspace in a CPU with VTIME active: */
 326        VTIME_USER,
 327        /* Task runs as guests in a CPU with VTIME active: */
 328        VTIME_GUEST,
 329};
 330
 331struct vtime {
 332        seqcount_t              seqcount;
 333        unsigned long long      starttime;
 334        enum vtime_state        state;
 335        unsigned int            cpu;
 336        u64                     utime;
 337        u64                     stime;
 338        u64                     gtime;
 339};
 340
 341/*
 342 * Utilization clamp constraints.
 343 * @UCLAMP_MIN: Minimum utilization
 344 * @UCLAMP_MAX: Maximum utilization
 345 * @UCLAMP_CNT: Utilization clamp constraints count
 346 */
 347enum uclamp_id {
 348        UCLAMP_MIN = 0,
 349        UCLAMP_MAX,
 350        UCLAMP_CNT
 351};
 352
 353#ifdef CONFIG_SMP
 354extern struct root_domain def_root_domain;
 355extern struct mutex sched_domains_mutex;
 356#endif
 357
 358struct sched_info {
 359#ifdef CONFIG_SCHED_INFO
 360        /* Cumulative counters: */
 361
 362        /* # of times we have run on this CPU: */
 363        unsigned long                   pcount;
 364
 365        /* Time spent waiting on a runqueue: */
 366        unsigned long long              run_delay;
 367
 368        /* Timestamps: */
 369
 370        /* When did we last run on a CPU? */
 371        unsigned long long              last_arrival;
 372
 373        /* When were we last queued to run? */
 374        unsigned long long              last_queued;
 375
 376#endif /* CONFIG_SCHED_INFO */
 377};
 378
 379/*
 380 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 381 * has a few: load, load_avg, util_avg, freq, and capacity.
 382 *
 383 * We define a basic fixed point arithmetic range, and then formalize
 384 * all these metrics based on that basic range.
 385 */
 386# define SCHED_FIXEDPOINT_SHIFT         10
 387# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 388
 389/* Increase resolution of cpu_capacity calculations */
 390# define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
 391# define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
 392
 393struct load_weight {
 394        unsigned long                   weight;
 395        u32                             inv_weight;
 396};
 397
 398/**
 399 * struct util_est - Estimation utilization of FAIR tasks
 400 * @enqueued: instantaneous estimated utilization of a task/cpu
 401 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 402 *            utilization of a task
 403 *
 404 * Support data structure to track an Exponential Weighted Moving Average
 405 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 406 * average each time a task completes an activation. Sample's weight is chosen
 407 * so that the EWMA will be relatively insensitive to transient changes to the
 408 * task's workload.
 409 *
 410 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 411 * - task:   the task's util_avg at last task dequeue time
 412 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 413 * Thus, the util_est.enqueued of a task represents the contribution on the
 414 * estimated utilization of the CPU where that task is currently enqueued.
 415 *
 416 * Only for tasks we track a moving average of the past instantaneous
 417 * estimated utilization. This allows to absorb sporadic drops in utilization
 418 * of an otherwise almost periodic task.
 419 *
 420 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
 421 * updates. When a task is dequeued, its util_est should not be updated if its
 422 * util_avg has not been updated in the meantime.
 423 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
 424 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
 425 * for a task) it is safe to use MSB.
 426 */
 427struct util_est {
 428        unsigned int                    enqueued;
 429        unsigned int                    ewma;
 430#define UTIL_EST_WEIGHT_SHIFT           2
 431#define UTIL_AVG_UNCHANGED              0x80000000
 432} __attribute__((__aligned__(sizeof(u64))));
 433
 434/*
 435 * The load/runnable/util_avg accumulates an infinite geometric series
 436 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
 437 *
 438 * [load_avg definition]
 439 *
 440 *   load_avg = runnable% * scale_load_down(load)
 441 *
 442 * [runnable_avg definition]
 443 *
 444 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
 445 *
 446 * [util_avg definition]
 447 *
 448 *   util_avg = running% * SCHED_CAPACITY_SCALE
 449 *
 450 * where runnable% is the time ratio that a sched_entity is runnable and
 451 * running% the time ratio that a sched_entity is running.
 452 *
 453 * For cfs_rq, they are the aggregated values of all runnable and blocked
 454 * sched_entities.
 455 *
 456 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
 457 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 458 * for computing those signals (see update_rq_clock_pelt())
 459 *
 460 * N.B., the above ratios (runnable% and running%) themselves are in the
 461 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 462 * to as large a range as necessary. This is for example reflected by
 463 * util_avg's SCHED_CAPACITY_SCALE.
 464 *
 465 * [Overflow issue]
 466 *
 467 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 468 * with the highest load (=88761), always runnable on a single cfs_rq,
 469 * and should not overflow as the number already hits PID_MAX_LIMIT.
 470 *
 471 * For all other cases (including 32-bit kernels), struct load_weight's
 472 * weight will overflow first before we do, because:
 473 *
 474 *    Max(load_avg) <= Max(load.weight)
 475 *
 476 * Then it is the load_weight's responsibility to consider overflow
 477 * issues.
 478 */
 479struct sched_avg {
 480        u64                             last_update_time;
 481        u64                             load_sum;
 482        u64                             runnable_sum;
 483        u32                             util_sum;
 484        u32                             period_contrib;
 485        unsigned long                   load_avg;
 486        unsigned long                   runnable_avg;
 487        unsigned long                   util_avg;
 488        struct util_est                 util_est;
 489} ____cacheline_aligned;
 490
 491struct sched_statistics {
 492#ifdef CONFIG_SCHEDSTATS
 493        u64                             wait_start;
 494        u64                             wait_max;
 495        u64                             wait_count;
 496        u64                             wait_sum;
 497        u64                             iowait_count;
 498        u64                             iowait_sum;
 499
 500        u64                             sleep_start;
 501        u64                             sleep_max;
 502        s64                             sum_sleep_runtime;
 503
 504        u64                             block_start;
 505        u64                             block_max;
 506        u64                             exec_max;
 507        u64                             slice_max;
 508
 509        u64                             nr_migrations_cold;
 510        u64                             nr_failed_migrations_affine;
 511        u64                             nr_failed_migrations_running;
 512        u64                             nr_failed_migrations_hot;
 513        u64                             nr_forced_migrations;
 514
 515        u64                             nr_wakeups;
 516        u64                             nr_wakeups_sync;
 517        u64                             nr_wakeups_migrate;
 518        u64                             nr_wakeups_local;
 519        u64                             nr_wakeups_remote;
 520        u64                             nr_wakeups_affine;
 521        u64                             nr_wakeups_affine_attempts;
 522        u64                             nr_wakeups_passive;
 523        u64                             nr_wakeups_idle;
 524#endif
 525};
 526
 527struct sched_entity {
 528        /* For load-balancing: */
 529        struct load_weight              load;
 530        struct rb_node                  run_node;
 531        struct list_head                group_node;
 532        unsigned int                    on_rq;
 533
 534        u64                             exec_start;
 535        u64                             sum_exec_runtime;
 536        u64                             vruntime;
 537        u64                             prev_sum_exec_runtime;
 538
 539        u64                             nr_migrations;
 540
 541        struct sched_statistics         statistics;
 542
 543#ifdef CONFIG_FAIR_GROUP_SCHED
 544        int                             depth;
 545        struct sched_entity             *parent;
 546        /* rq on which this entity is (to be) queued: */
 547        struct cfs_rq                   *cfs_rq;
 548        /* rq "owned" by this entity/group: */
 549        struct cfs_rq                   *my_q;
 550        /* cached value of my_q->h_nr_running */
 551        unsigned long                   runnable_weight;
 552#endif
 553
 554#ifdef CONFIG_SMP
 555        /*
 556         * Per entity load average tracking.
 557         *
 558         * Put into separate cache line so it does not
 559         * collide with read-mostly values above.
 560         */
 561        struct sched_avg                avg;
 562#endif
 563};
 564
 565struct sched_rt_entity {
 566        struct list_head                run_list;
 567        unsigned long                   timeout;
 568        unsigned long                   watchdog_stamp;
 569        unsigned int                    time_slice;
 570        unsigned short                  on_rq;
 571        unsigned short                  on_list;
 572
 573        struct sched_rt_entity          *back;
 574#ifdef CONFIG_RT_GROUP_SCHED
 575        struct sched_rt_entity          *parent;
 576        /* rq on which this entity is (to be) queued: */
 577        struct rt_rq                    *rt_rq;
 578        /* rq "owned" by this entity/group: */
 579        struct rt_rq                    *my_q;
 580#endif
 581} __randomize_layout;
 582
 583struct sched_dl_entity {
 584        struct rb_node                  rb_node;
 585
 586        /*
 587         * Original scheduling parameters. Copied here from sched_attr
 588         * during sched_setattr(), they will remain the same until
 589         * the next sched_setattr().
 590         */
 591        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 592        u64                             dl_deadline;    /* Relative deadline of each instance   */
 593        u64                             dl_period;      /* Separation of two instances (period) */
 594        u64                             dl_bw;          /* dl_runtime / dl_period               */
 595        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 596
 597        /*
 598         * Actual scheduling parameters. Initialized with the values above,
 599         * they are continuously updated during task execution. Note that
 600         * the remaining runtime could be < 0 in case we are in overrun.
 601         */
 602        s64                             runtime;        /* Remaining runtime for this instance  */
 603        u64                             deadline;       /* Absolute deadline for this instance  */
 604        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 605
 606        /*
 607         * Some bool flags:
 608         *
 609         * @dl_throttled tells if we exhausted the runtime. If so, the
 610         * task has to wait for a replenishment to be performed at the
 611         * next firing of dl_timer.
 612         *
 613         * @dl_boosted tells if we are boosted due to DI. If so we are
 614         * outside bandwidth enforcement mechanism (but only until we
 615         * exit the critical section);
 616         *
 617         * @dl_yielded tells if task gave up the CPU before consuming
 618         * all its available runtime during the last job.
 619         *
 620         * @dl_non_contending tells if the task is inactive while still
 621         * contributing to the active utilization. In other words, it
 622         * indicates if the inactive timer has been armed and its handler
 623         * has not been executed yet. This flag is useful to avoid race
 624         * conditions between the inactive timer handler and the wakeup
 625         * code.
 626         *
 627         * @dl_overrun tells if the task asked to be informed about runtime
 628         * overruns.
 629         */
 630        unsigned int                    dl_throttled      : 1;
 631        unsigned int                    dl_yielded        : 1;
 632        unsigned int                    dl_non_contending : 1;
 633        unsigned int                    dl_overrun        : 1;
 634
 635        /*
 636         * Bandwidth enforcement timer. Each -deadline task has its
 637         * own bandwidth to be enforced, thus we need one timer per task.
 638         */
 639        struct hrtimer                  dl_timer;
 640
 641        /*
 642         * Inactive timer, responsible for decreasing the active utilization
 643         * at the "0-lag time". When a -deadline task blocks, it contributes
 644         * to GRUB's active utilization until the "0-lag time", hence a
 645         * timer is needed to decrease the active utilization at the correct
 646         * time.
 647         */
 648        struct hrtimer inactive_timer;
 649
 650#ifdef CONFIG_RT_MUTEXES
 651        /*
 652         * Priority Inheritance. When a DEADLINE scheduling entity is boosted
 653         * pi_se points to the donor, otherwise points to the dl_se it belongs
 654         * to (the original one/itself).
 655         */
 656        struct sched_dl_entity *pi_se;
 657#endif
 658};
 659
 660#ifdef CONFIG_UCLAMP_TASK
 661/* Number of utilization clamp buckets (shorter alias) */
 662#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
 663
 664/*
 665 * Utilization clamp for a scheduling entity
 666 * @value:              clamp value "assigned" to a se
 667 * @bucket_id:          bucket index corresponding to the "assigned" value
 668 * @active:             the se is currently refcounted in a rq's bucket
 669 * @user_defined:       the requested clamp value comes from user-space
 670 *
 671 * The bucket_id is the index of the clamp bucket matching the clamp value
 672 * which is pre-computed and stored to avoid expensive integer divisions from
 673 * the fast path.
 674 *
 675 * The active bit is set whenever a task has got an "effective" value assigned,
 676 * which can be different from the clamp value "requested" from user-space.
 677 * This allows to know a task is refcounted in the rq's bucket corresponding
 678 * to the "effective" bucket_id.
 679 *
 680 * The user_defined bit is set whenever a task has got a task-specific clamp
 681 * value requested from userspace, i.e. the system defaults apply to this task
 682 * just as a restriction. This allows to relax default clamps when a less
 683 * restrictive task-specific value has been requested, thus allowing to
 684 * implement a "nice" semantic. For example, a task running with a 20%
 685 * default boost can still drop its own boosting to 0%.
 686 */
 687struct uclamp_se {
 688        unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
 689        unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
 690        unsigned int active             : 1;
 691        unsigned int user_defined       : 1;
 692};
 693#endif /* CONFIG_UCLAMP_TASK */
 694
 695union rcu_special {
 696        struct {
 697                u8                      blocked;
 698                u8                      need_qs;
 699                u8                      exp_hint; /* Hint for performance. */
 700                u8                      need_mb; /* Readers need smp_mb(). */
 701        } b; /* Bits. */
 702        u32 s; /* Set of bits. */
 703};
 704
 705enum perf_event_task_context {
 706        perf_invalid_context = -1,
 707        perf_hw_context = 0,
 708        perf_sw_context,
 709        perf_nr_task_contexts,
 710};
 711
 712struct wake_q_node {
 713        struct wake_q_node *next;
 714};
 715
 716struct kmap_ctrl {
 717#ifdef CONFIG_KMAP_LOCAL
 718        int                             idx;
 719        pte_t                           pteval[KM_MAX_IDX];
 720#endif
 721};
 722
 723struct task_struct {
 724#ifdef CONFIG_THREAD_INFO_IN_TASK
 725        /*
 726         * For reasons of header soup (see current_thread_info()), this
 727         * must be the first element of task_struct.
 728         */
 729        struct thread_info              thread_info;
 730#endif
 731        unsigned int                    __state;
 732
 733#ifdef CONFIG_PREEMPT_RT
 734        /* saved state for "spinlock sleepers" */
 735        unsigned int                    saved_state;
 736#endif
 737
 738        /*
 739         * This begins the randomizable portion of task_struct. Only
 740         * scheduling-critical items should be added above here.
 741         */
 742        randomized_struct_fields_start
 743
 744        void                            *stack;
 745        refcount_t                      usage;
 746        /* Per task flags (PF_*), defined further below: */
 747        unsigned int                    flags;
 748        unsigned int                    ptrace;
 749
 750#ifdef CONFIG_SMP
 751        int                             on_cpu;
 752        struct __call_single_node       wake_entry;
 753#ifdef CONFIG_THREAD_INFO_IN_TASK
 754        /* Current CPU: */
 755        unsigned int                    cpu;
 756#endif
 757        unsigned int                    wakee_flips;
 758        unsigned long                   wakee_flip_decay_ts;
 759        struct task_struct              *last_wakee;
 760
 761        /*
 762         * recent_used_cpu is initially set as the last CPU used by a task
 763         * that wakes affine another task. Waker/wakee relationships can
 764         * push tasks around a CPU where each wakeup moves to the next one.
 765         * Tracking a recently used CPU allows a quick search for a recently
 766         * used CPU that may be idle.
 767         */
 768        int                             recent_used_cpu;
 769        int                             wake_cpu;
 770#endif
 771        int                             on_rq;
 772
 773        int                             prio;
 774        int                             static_prio;
 775        int                             normal_prio;
 776        unsigned int                    rt_priority;
 777
 778        const struct sched_class        *sched_class;
 779        struct sched_entity             se;
 780        struct sched_rt_entity          rt;
 781        struct sched_dl_entity          dl;
 782
 783#ifdef CONFIG_SCHED_CORE
 784        struct rb_node                  core_node;
 785        unsigned long                   core_cookie;
 786        unsigned int                    core_occupation;
 787#endif
 788
 789#ifdef CONFIG_CGROUP_SCHED
 790        struct task_group               *sched_task_group;
 791#endif
 792
 793#ifdef CONFIG_UCLAMP_TASK
 794        /*
 795         * Clamp values requested for a scheduling entity.
 796         * Must be updated with task_rq_lock() held.
 797         */
 798        struct uclamp_se                uclamp_req[UCLAMP_CNT];
 799        /*
 800         * Effective clamp values used for a scheduling entity.
 801         * Must be updated with task_rq_lock() held.
 802         */
 803        struct uclamp_se                uclamp[UCLAMP_CNT];
 804#endif
 805
 806#ifdef CONFIG_PREEMPT_NOTIFIERS
 807        /* List of struct preempt_notifier: */
 808        struct hlist_head               preempt_notifiers;
 809#endif
 810
 811#ifdef CONFIG_BLK_DEV_IO_TRACE
 812        unsigned int                    btrace_seq;
 813#endif
 814
 815        unsigned int                    policy;
 816        int                             nr_cpus_allowed;
 817        const cpumask_t                 *cpus_ptr;
 818        cpumask_t                       *user_cpus_ptr;
 819        cpumask_t                       cpus_mask;
 820        void                            *migration_pending;
 821#ifdef CONFIG_SMP
 822        unsigned short                  migration_disabled;
 823#endif
 824        unsigned short                  migration_flags;
 825
 826#ifdef CONFIG_PREEMPT_RCU
 827        int                             rcu_read_lock_nesting;
 828        union rcu_special               rcu_read_unlock_special;
 829        struct list_head                rcu_node_entry;
 830        struct rcu_node                 *rcu_blocked_node;
 831#endif /* #ifdef CONFIG_PREEMPT_RCU */
 832
 833#ifdef CONFIG_TASKS_RCU
 834        unsigned long                   rcu_tasks_nvcsw;
 835        u8                              rcu_tasks_holdout;
 836        u8                              rcu_tasks_idx;
 837        int                             rcu_tasks_idle_cpu;
 838        struct list_head                rcu_tasks_holdout_list;
 839#endif /* #ifdef CONFIG_TASKS_RCU */
 840
 841#ifdef CONFIG_TASKS_TRACE_RCU
 842        int                             trc_reader_nesting;
 843        int                             trc_ipi_to_cpu;
 844        union rcu_special               trc_reader_special;
 845        bool                            trc_reader_checked;
 846        struct list_head                trc_holdout_list;
 847#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 848
 849        struct sched_info               sched_info;
 850
 851        struct list_head                tasks;
 852#ifdef CONFIG_SMP
 853        struct plist_node               pushable_tasks;
 854        struct rb_node                  pushable_dl_tasks;
 855#endif
 856
 857        struct mm_struct                *mm;
 858        struct mm_struct                *active_mm;
 859
 860        /* Per-thread vma caching: */
 861        struct vmacache                 vmacache;
 862
 863#ifdef SPLIT_RSS_COUNTING
 864        struct task_rss_stat            rss_stat;
 865#endif
 866        int                             exit_state;
 867        int                             exit_code;
 868        int                             exit_signal;
 869        /* The signal sent when the parent dies: */
 870        int                             pdeath_signal;
 871        /* JOBCTL_*, siglock protected: */
 872        unsigned long                   jobctl;
 873
 874        /* Used for emulating ABI behavior of previous Linux versions: */
 875        unsigned int                    personality;
 876
 877        /* Scheduler bits, serialized by scheduler locks: */
 878        unsigned                        sched_reset_on_fork:1;
 879        unsigned                        sched_contributes_to_load:1;
 880        unsigned                        sched_migrated:1;
 881#ifdef CONFIG_PSI
 882        unsigned                        sched_psi_wake_requeue:1;
 883#endif
 884
 885        /* Force alignment to the next boundary: */
 886        unsigned                        :0;
 887
 888        /* Unserialized, strictly 'current' */
 889
 890        /*
 891         * This field must not be in the scheduler word above due to wakelist
 892         * queueing no longer being serialized by p->on_cpu. However:
 893         *
 894         * p->XXX = X;                  ttwu()
 895         * schedule()                     if (p->on_rq && ..) // false
 896         *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
 897         *   deactivate_task()                ttwu_queue_wakelist())
 898         *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
 899         *
 900         * guarantees all stores of 'current' are visible before
 901         * ->sched_remote_wakeup gets used, so it can be in this word.
 902         */
 903        unsigned                        sched_remote_wakeup:1;
 904
 905        /* Bit to tell LSMs we're in execve(): */
 906        unsigned                        in_execve:1;
 907        unsigned                        in_iowait:1;
 908#ifndef TIF_RESTORE_SIGMASK
 909        unsigned                        restore_sigmask:1;
 910#endif
 911#ifdef CONFIG_MEMCG
 912        unsigned                        in_user_fault:1;
 913#endif
 914#ifdef CONFIG_COMPAT_BRK
 915        unsigned                        brk_randomized:1;
 916#endif
 917#ifdef CONFIG_CGROUPS
 918        /* disallow userland-initiated cgroup migration */
 919        unsigned                        no_cgroup_migration:1;
 920        /* task is frozen/stopped (used by the cgroup freezer) */
 921        unsigned                        frozen:1;
 922#endif
 923#ifdef CONFIG_BLK_CGROUP
 924        unsigned                        use_memdelay:1;
 925#endif
 926#ifdef CONFIG_PSI
 927        /* Stalled due to lack of memory */
 928        unsigned                        in_memstall:1;
 929#endif
 930#ifdef CONFIG_PAGE_OWNER
 931        /* Used by page_owner=on to detect recursion in page tracking. */
 932        unsigned                        in_page_owner:1;
 933#endif
 934#ifdef CONFIG_EVENTFD
 935        /* Recursion prevention for eventfd_signal() */
 936        unsigned                        in_eventfd_signal:1;
 937#endif
 938
 939        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 940
 941        struct restart_block            restart_block;
 942
 943        pid_t                           pid;
 944        pid_t                           tgid;
 945
 946#ifdef CONFIG_STACKPROTECTOR
 947        /* Canary value for the -fstack-protector GCC feature: */
 948        unsigned long                   stack_canary;
 949#endif
 950        /*
 951         * Pointers to the (original) parent process, youngest child, younger sibling,
 952         * older sibling, respectively.  (p->father can be replaced with
 953         * p->real_parent->pid)
 954         */
 955
 956        /* Real parent process: */
 957        struct task_struct __rcu        *real_parent;
 958
 959        /* Recipient of SIGCHLD, wait4() reports: */
 960        struct task_struct __rcu        *parent;
 961
 962        /*
 963         * Children/sibling form the list of natural children:
 964         */
 965        struct list_head                children;
 966        struct list_head                sibling;
 967        struct task_struct              *group_leader;
 968
 969        /*
 970         * 'ptraced' is the list of tasks this task is using ptrace() on.
 971         *
 972         * This includes both natural children and PTRACE_ATTACH targets.
 973         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 974         */
 975        struct list_head                ptraced;
 976        struct list_head                ptrace_entry;
 977
 978        /* PID/PID hash table linkage. */
 979        struct pid                      *thread_pid;
 980        struct hlist_node               pid_links[PIDTYPE_MAX];
 981        struct list_head                thread_group;
 982        struct list_head                thread_node;
 983
 984        struct completion               *vfork_done;
 985
 986        /* CLONE_CHILD_SETTID: */
 987        int __user                      *set_child_tid;
 988
 989        /* CLONE_CHILD_CLEARTID: */
 990        int __user                      *clear_child_tid;
 991
 992        /* PF_IO_WORKER */
 993        void                            *pf_io_worker;
 994
 995        u64                             utime;
 996        u64                             stime;
 997#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 998        u64                             utimescaled;
 999        u64                             stimescaled;
1000#endif
1001        u64                             gtime;
1002        struct prev_cputime             prev_cputime;
1003#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1004        struct vtime                    vtime;
1005#endif
1006
1007#ifdef CONFIG_NO_HZ_FULL
1008        atomic_t                        tick_dep_mask;
1009#endif
1010        /* Context switch counts: */
1011        unsigned long                   nvcsw;
1012        unsigned long                   nivcsw;
1013
1014        /* Monotonic time in nsecs: */
1015        u64                             start_time;
1016
1017        /* Boot based time in nsecs: */
1018        u64                             start_boottime;
1019
1020        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1021        unsigned long                   min_flt;
1022        unsigned long                   maj_flt;
1023
1024        /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1025        struct posix_cputimers          posix_cputimers;
1026
1027#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1028        struct posix_cputimers_work     posix_cputimers_work;
1029#endif
1030
1031        /* Process credentials: */
1032
1033        /* Tracer's credentials at attach: */
1034        const struct cred __rcu         *ptracer_cred;
1035
1036        /* Objective and real subjective task credentials (COW): */
1037        const struct cred __rcu         *real_cred;
1038
1039        /* Effective (overridable) subjective task credentials (COW): */
1040        const struct cred __rcu         *cred;
1041
1042#ifdef CONFIG_KEYS
1043        /* Cached requested key. */
1044        struct key                      *cached_requested_key;
1045#endif
1046
1047        /*
1048         * executable name, excluding path.
1049         *
1050         * - normally initialized setup_new_exec()
1051         * - access it with [gs]et_task_comm()
1052         * - lock it with task_lock()
1053         */
1054        char                            comm[TASK_COMM_LEN];
1055
1056        struct nameidata                *nameidata;
1057
1058#ifdef CONFIG_SYSVIPC
1059        struct sysv_sem                 sysvsem;
1060        struct sysv_shm                 sysvshm;
1061#endif
1062#ifdef CONFIG_DETECT_HUNG_TASK
1063        unsigned long                   last_switch_count;
1064        unsigned long                   last_switch_time;
1065#endif
1066        /* Filesystem information: */
1067        struct fs_struct                *fs;
1068
1069        /* Open file information: */
1070        struct files_struct             *files;
1071
1072#ifdef CONFIG_IO_URING
1073        struct io_uring_task            *io_uring;
1074#endif
1075
1076        /* Namespaces: */
1077        struct nsproxy                  *nsproxy;
1078
1079        /* Signal handlers: */
1080        struct signal_struct            *signal;
1081        struct sighand_struct __rcu             *sighand;
1082        sigset_t                        blocked;
1083        sigset_t                        real_blocked;
1084        /* Restored if set_restore_sigmask() was used: */
1085        sigset_t                        saved_sigmask;
1086        struct sigpending               pending;
1087        unsigned long                   sas_ss_sp;
1088        size_t                          sas_ss_size;
1089        unsigned int                    sas_ss_flags;
1090
1091        struct callback_head            *task_works;
1092
1093#ifdef CONFIG_AUDIT
1094#ifdef CONFIG_AUDITSYSCALL
1095        struct audit_context            *audit_context;
1096#endif
1097        kuid_t                          loginuid;
1098        unsigned int                    sessionid;
1099#endif
1100        struct seccomp                  seccomp;
1101        struct syscall_user_dispatch    syscall_dispatch;
1102
1103        /* Thread group tracking: */
1104        u64                             parent_exec_id;
1105        u64                             self_exec_id;
1106
1107        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1108        spinlock_t                      alloc_lock;
1109
1110        /* Protection of the PI data structures: */
1111        raw_spinlock_t                  pi_lock;
1112
1113        struct wake_q_node              wake_q;
1114
1115#ifdef CONFIG_RT_MUTEXES
1116        /* PI waiters blocked on a rt_mutex held by this task: */
1117        struct rb_root_cached           pi_waiters;
1118        /* Updated under owner's pi_lock and rq lock */
1119        struct task_struct              *pi_top_task;
1120        /* Deadlock detection and priority inheritance handling: */
1121        struct rt_mutex_waiter          *pi_blocked_on;
1122#endif
1123
1124#ifdef CONFIG_DEBUG_MUTEXES
1125        /* Mutex deadlock detection: */
1126        struct mutex_waiter             *blocked_on;
1127#endif
1128
1129#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1130        int                             non_block_count;
1131#endif
1132
1133#ifdef CONFIG_TRACE_IRQFLAGS
1134        struct irqtrace_events          irqtrace;
1135        unsigned int                    hardirq_threaded;
1136        u64                             hardirq_chain_key;
1137        int                             softirqs_enabled;
1138        int                             softirq_context;
1139        int                             irq_config;
1140#endif
1141#ifdef CONFIG_PREEMPT_RT
1142        int                             softirq_disable_cnt;
1143#endif
1144
1145#ifdef CONFIG_LOCKDEP
1146# define MAX_LOCK_DEPTH                 48UL
1147        u64                             curr_chain_key;
1148        int                             lockdep_depth;
1149        unsigned int                    lockdep_recursion;
1150        struct held_lock                held_locks[MAX_LOCK_DEPTH];
1151#endif
1152
1153#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1154        unsigned int                    in_ubsan;
1155#endif
1156
1157        /* Journalling filesystem info: */
1158        void                            *journal_info;
1159
1160        /* Stacked block device info: */
1161        struct bio_list                 *bio_list;
1162
1163#ifdef CONFIG_BLOCK
1164        /* Stack plugging: */
1165        struct blk_plug                 *plug;
1166#endif
1167
1168        /* VM state: */
1169        struct reclaim_state            *reclaim_state;
1170
1171        struct backing_dev_info         *backing_dev_info;
1172
1173        struct io_context               *io_context;
1174
1175#ifdef CONFIG_COMPACTION
1176        struct capture_control          *capture_control;
1177#endif
1178        /* Ptrace state: */
1179        unsigned long                   ptrace_message;
1180        kernel_siginfo_t                *last_siginfo;
1181
1182        struct task_io_accounting       ioac;
1183#ifdef CONFIG_PSI
1184        /* Pressure stall state */
1185        unsigned int                    psi_flags;
1186#endif
1187#ifdef CONFIG_TASK_XACCT
1188        /* Accumulated RSS usage: */
1189        u64                             acct_rss_mem1;
1190        /* Accumulated virtual memory usage: */
1191        u64                             acct_vm_mem1;
1192        /* stime + utime since last update: */
1193        u64                             acct_timexpd;
1194#endif
1195#ifdef CONFIG_CPUSETS
1196        /* Protected by ->alloc_lock: */
1197        nodemask_t                      mems_allowed;
1198        /* Sequence number to catch updates: */
1199        seqcount_spinlock_t             mems_allowed_seq;
1200        int                             cpuset_mem_spread_rotor;
1201        int                             cpuset_slab_spread_rotor;
1202#endif
1203#ifdef CONFIG_CGROUPS
1204        /* Control Group info protected by css_set_lock: */
1205        struct css_set __rcu            *cgroups;
1206        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1207        struct list_head                cg_list;
1208#endif
1209#ifdef CONFIG_X86_CPU_RESCTRL
1210        u32                             closid;
1211        u32                             rmid;
1212#endif
1213#ifdef CONFIG_FUTEX
1214        struct robust_list_head __user  *robust_list;
1215#ifdef CONFIG_COMPAT
1216        struct compat_robust_list_head __user *compat_robust_list;
1217#endif
1218        struct list_head                pi_state_list;
1219        struct futex_pi_state           *pi_state_cache;
1220        struct mutex                    futex_exit_mutex;
1221        unsigned int                    futex_state;
1222#endif
1223#ifdef CONFIG_PERF_EVENTS
1224        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1225        struct mutex                    perf_event_mutex;
1226        struct list_head                perf_event_list;
1227#endif
1228#ifdef CONFIG_DEBUG_PREEMPT
1229        unsigned long                   preempt_disable_ip;
1230#endif
1231#ifdef CONFIG_NUMA
1232        /* Protected by alloc_lock: */
1233        struct mempolicy                *mempolicy;
1234        short                           il_prev;
1235        short                           pref_node_fork;
1236#endif
1237#ifdef CONFIG_NUMA_BALANCING
1238        int                             numa_scan_seq;
1239        unsigned int                    numa_scan_period;
1240        unsigned int                    numa_scan_period_max;
1241        int                             numa_preferred_nid;
1242        unsigned long                   numa_migrate_retry;
1243        /* Migration stamp: */
1244        u64                             node_stamp;
1245        u64                             last_task_numa_placement;
1246        u64                             last_sum_exec_runtime;
1247        struct callback_head            numa_work;
1248
1249        /*
1250         * This pointer is only modified for current in syscall and
1251         * pagefault context (and for tasks being destroyed), so it can be read
1252         * from any of the following contexts:
1253         *  - RCU read-side critical section
1254         *  - current->numa_group from everywhere
1255         *  - task's runqueue locked, task not running
1256         */
1257        struct numa_group __rcu         *numa_group;
1258
1259        /*
1260         * numa_faults is an array split into four regions:
1261         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1262         * in this precise order.
1263         *
1264         * faults_memory: Exponential decaying average of faults on a per-node
1265         * basis. Scheduling placement decisions are made based on these
1266         * counts. The values remain static for the duration of a PTE scan.
1267         * faults_cpu: Track the nodes the process was running on when a NUMA
1268         * hinting fault was incurred.
1269         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1270         * during the current scan window. When the scan completes, the counts
1271         * in faults_memory and faults_cpu decay and these values are copied.
1272         */
1273        unsigned long                   *numa_faults;
1274        unsigned long                   total_numa_faults;
1275
1276        /*
1277         * numa_faults_locality tracks if faults recorded during the last
1278         * scan window were remote/local or failed to migrate. The task scan
1279         * period is adapted based on the locality of the faults with different
1280         * weights depending on whether they were shared or private faults
1281         */
1282        unsigned long                   numa_faults_locality[3];
1283
1284        unsigned long                   numa_pages_migrated;
1285#endif /* CONFIG_NUMA_BALANCING */
1286
1287#ifdef CONFIG_RSEQ
1288        struct rseq __user *rseq;
1289        u32 rseq_sig;
1290        /*
1291         * RmW on rseq_event_mask must be performed atomically
1292         * with respect to preemption.
1293         */
1294        unsigned long rseq_event_mask;
1295#endif
1296
1297        struct tlbflush_unmap_batch     tlb_ubc;
1298
1299        union {
1300                refcount_t              rcu_users;
1301                struct rcu_head         rcu;
1302        };
1303
1304        /* Cache last used pipe for splice(): */
1305        struct pipe_inode_info          *splice_pipe;
1306
1307        struct page_frag                task_frag;
1308
1309#ifdef CONFIG_TASK_DELAY_ACCT
1310        struct task_delay_info          *delays;
1311#endif
1312
1313#ifdef CONFIG_FAULT_INJECTION
1314        int                             make_it_fail;
1315        unsigned int                    fail_nth;
1316#endif
1317        /*
1318         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1319         * balance_dirty_pages() for a dirty throttling pause:
1320         */
1321        int                             nr_dirtied;
1322        int                             nr_dirtied_pause;
1323        /* Start of a write-and-pause period: */
1324        unsigned long                   dirty_paused_when;
1325
1326#ifdef CONFIG_LATENCYTOP
1327        int                             latency_record_count;
1328        struct latency_record           latency_record[LT_SAVECOUNT];
1329#endif
1330        /*
1331         * Time slack values; these are used to round up poll() and
1332         * select() etc timeout values. These are in nanoseconds.
1333         */
1334        u64                             timer_slack_ns;
1335        u64                             default_timer_slack_ns;
1336
1337#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1338        unsigned int                    kasan_depth;
1339#endif
1340
1341#ifdef CONFIG_KCSAN
1342        struct kcsan_ctx                kcsan_ctx;
1343#ifdef CONFIG_TRACE_IRQFLAGS
1344        struct irqtrace_events          kcsan_save_irqtrace;
1345#endif
1346#endif
1347
1348#if IS_ENABLED(CONFIG_KUNIT)
1349        struct kunit                    *kunit_test;
1350#endif
1351
1352#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1353        /* Index of current stored address in ret_stack: */
1354        int                             curr_ret_stack;
1355        int                             curr_ret_depth;
1356
1357        /* Stack of return addresses for return function tracing: */
1358        struct ftrace_ret_stack         *ret_stack;
1359
1360        /* Timestamp for last schedule: */
1361        unsigned long long              ftrace_timestamp;
1362
1363        /*
1364         * Number of functions that haven't been traced
1365         * because of depth overrun:
1366         */
1367        atomic_t                        trace_overrun;
1368
1369        /* Pause tracing: */
1370        atomic_t                        tracing_graph_pause;
1371#endif
1372
1373#ifdef CONFIG_TRACING
1374        /* State flags for use by tracers: */
1375        unsigned long                   trace;
1376
1377        /* Bitmask and counter of trace recursion: */
1378        unsigned long                   trace_recursion;
1379#endif /* CONFIG_TRACING */
1380
1381#ifdef CONFIG_KCOV
1382        /* See kernel/kcov.c for more details. */
1383
1384        /* Coverage collection mode enabled for this task (0 if disabled): */
1385        unsigned int                    kcov_mode;
1386
1387        /* Size of the kcov_area: */
1388        unsigned int                    kcov_size;
1389
1390        /* Buffer for coverage collection: */
1391        void                            *kcov_area;
1392
1393        /* KCOV descriptor wired with this task or NULL: */
1394        struct kcov                     *kcov;
1395
1396        /* KCOV common handle for remote coverage collection: */
1397        u64                             kcov_handle;
1398
1399        /* KCOV sequence number: */
1400        int                             kcov_sequence;
1401
1402        /* Collect coverage from softirq context: */
1403        unsigned int                    kcov_softirq;
1404#endif
1405
1406#ifdef CONFIG_MEMCG
1407        struct mem_cgroup               *memcg_in_oom;
1408        gfp_t                           memcg_oom_gfp_mask;
1409        int                             memcg_oom_order;
1410
1411        /* Number of pages to reclaim on returning to userland: */
1412        unsigned int                    memcg_nr_pages_over_high;
1413
1414        /* Used by memcontrol for targeted memcg charge: */
1415        struct mem_cgroup               *active_memcg;
1416#endif
1417
1418#ifdef CONFIG_BLK_CGROUP
1419        struct request_queue            *throttle_queue;
1420#endif
1421
1422#ifdef CONFIG_UPROBES
1423        struct uprobe_task              *utask;
1424#endif
1425#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1426        unsigned int                    sequential_io;
1427        unsigned int                    sequential_io_avg;
1428#endif
1429        struct kmap_ctrl                kmap_ctrl;
1430#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1431        unsigned long                   task_state_change;
1432# ifdef CONFIG_PREEMPT_RT
1433        unsigned long                   saved_state_change;
1434# endif
1435#endif
1436        int                             pagefault_disabled;
1437#ifdef CONFIG_MMU
1438        struct task_struct              *oom_reaper_list;
1439#endif
1440#ifdef CONFIG_VMAP_STACK
1441        struct vm_struct                *stack_vm_area;
1442#endif
1443#ifdef CONFIG_THREAD_INFO_IN_TASK
1444        /* A live task holds one reference: */
1445        refcount_t                      stack_refcount;
1446#endif
1447#ifdef CONFIG_LIVEPATCH
1448        int patch_state;
1449#endif
1450#ifdef CONFIG_SECURITY
1451        /* Used by LSM modules for access restriction: */
1452        void                            *security;
1453#endif
1454#ifdef CONFIG_BPF_SYSCALL
1455        /* Used by BPF task local storage */
1456        struct bpf_local_storage __rcu  *bpf_storage;
1457        /* Used for BPF run context */
1458        struct bpf_run_ctx              *bpf_ctx;
1459#endif
1460
1461#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1462        unsigned long                   lowest_stack;
1463        unsigned long                   prev_lowest_stack;
1464#endif
1465
1466#ifdef CONFIG_X86_MCE
1467        void __user                     *mce_vaddr;
1468        __u64                           mce_kflags;
1469        u64                             mce_addr;
1470        __u64                           mce_ripv : 1,
1471                                        mce_whole_page : 1,
1472                                        __mce_reserved : 62;
1473        struct callback_head            mce_kill_me;
1474        int                             mce_count;
1475#endif
1476
1477#ifdef CONFIG_KRETPROBES
1478        struct llist_head               kretprobe_instances;
1479#endif
1480
1481#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1482        /*
1483         * If L1D flush is supported on mm context switch
1484         * then we use this callback head to queue kill work
1485         * to kill tasks that are not running on SMT disabled
1486         * cores
1487         */
1488        struct callback_head            l1d_flush_kill;
1489#endif
1490
1491        /*
1492         * New fields for task_struct should be added above here, so that
1493         * they are included in the randomized portion of task_struct.
1494         */
1495        randomized_struct_fields_end
1496
1497        /* CPU-specific state of this task: */
1498        struct thread_struct            thread;
1499
1500        /*
1501         * WARNING: on x86, 'thread_struct' contains a variable-sized
1502         * structure.  It *MUST* be at the end of 'task_struct'.
1503         *
1504         * Do not put anything below here!
1505         */
1506};
1507
1508static inline struct pid *task_pid(struct task_struct *task)
1509{
1510        return task->thread_pid;
1511}
1512
1513/*
1514 * the helpers to get the task's different pids as they are seen
1515 * from various namespaces
1516 *
1517 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1518 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1519 *                     current.
1520 * task_xid_nr_ns()  : id seen from the ns specified;
1521 *
1522 * see also pid_nr() etc in include/linux/pid.h
1523 */
1524pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1525
1526static inline pid_t task_pid_nr(struct task_struct *tsk)
1527{
1528        return tsk->pid;
1529}
1530
1531static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1532{
1533        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1534}
1535
1536static inline pid_t task_pid_vnr(struct task_struct *tsk)
1537{
1538        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1539}
1540
1541
1542static inline pid_t task_tgid_nr(struct task_struct *tsk)
1543{
1544        return tsk->tgid;
1545}
1546
1547/**
1548 * pid_alive - check that a task structure is not stale
1549 * @p: Task structure to be checked.
1550 *
1551 * Test if a process is not yet dead (at most zombie state)
1552 * If pid_alive fails, then pointers within the task structure
1553 * can be stale and must not be dereferenced.
1554 *
1555 * Return: 1 if the process is alive. 0 otherwise.
1556 */
1557static inline int pid_alive(const struct task_struct *p)
1558{
1559        return p->thread_pid != NULL;
1560}
1561
1562static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1563{
1564        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1565}
1566
1567static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1568{
1569        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1570}
1571
1572
1573static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1574{
1575        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1576}
1577
1578static inline pid_t task_session_vnr(struct task_struct *tsk)
1579{
1580        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1581}
1582
1583static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1584{
1585        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1586}
1587
1588static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1589{
1590        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1591}
1592
1593static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1594{
1595        pid_t pid = 0;
1596
1597        rcu_read_lock();
1598        if (pid_alive(tsk))
1599                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1600        rcu_read_unlock();
1601
1602        return pid;
1603}
1604
1605static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1606{
1607        return task_ppid_nr_ns(tsk, &init_pid_ns);
1608}
1609
1610/* Obsolete, do not use: */
1611static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1612{
1613        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1614}
1615
1616#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1617#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1618
1619static inline unsigned int task_state_index(struct task_struct *tsk)
1620{
1621        unsigned int tsk_state = READ_ONCE(tsk->__state);
1622        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1623
1624        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1625
1626        if (tsk_state == TASK_IDLE)
1627                state = TASK_REPORT_IDLE;
1628
1629        return fls(state);
1630}
1631
1632static inline char task_index_to_char(unsigned int state)
1633{
1634        static const char state_char[] = "RSDTtXZPI";
1635
1636        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1637
1638        return state_char[state];
1639}
1640
1641static inline char task_state_to_char(struct task_struct *tsk)
1642{
1643        return task_index_to_char(task_state_index(tsk));
1644}
1645
1646/**
1647 * is_global_init - check if a task structure is init. Since init
1648 * is free to have sub-threads we need to check tgid.
1649 * @tsk: Task structure to be checked.
1650 *
1651 * Check if a task structure is the first user space task the kernel created.
1652 *
1653 * Return: 1 if the task structure is init. 0 otherwise.
1654 */
1655static inline int is_global_init(struct task_struct *tsk)
1656{
1657        return task_tgid_nr(tsk) == 1;
1658}
1659
1660extern struct pid *cad_pid;
1661
1662/*
1663 * Per process flags
1664 */
1665#define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1666#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1667#define PF_EXITING              0x00000004      /* Getting shut down */
1668#define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1669#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1670#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1671#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1672#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1673#define PF_DUMPCORE             0x00000200      /* Dumped core */
1674#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1675#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1676#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1677#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1678#define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1679#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1680#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1681#define PF_KSWAPD               0x00020000      /* I am kswapd */
1682#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1683#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1684#define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1685                                                 * I am cleaning dirty pages from some other bdi. */
1686#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1687#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1688#define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1689#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1690#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1691#define PF_MEMALLOC_PIN         0x10000000      /* Allocation context constrained to zones which allow long term pinning. */
1692#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1693#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1694
1695/*
1696 * Only the _current_ task can read/write to tsk->flags, but other
1697 * tasks can access tsk->flags in readonly mode for example
1698 * with tsk_used_math (like during threaded core dumping).
1699 * There is however an exception to this rule during ptrace
1700 * or during fork: the ptracer task is allowed to write to the
1701 * child->flags of its traced child (same goes for fork, the parent
1702 * can write to the child->flags), because we're guaranteed the
1703 * child is not running and in turn not changing child->flags
1704 * at the same time the parent does it.
1705 */
1706#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1707#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1708#define clear_used_math()                       clear_stopped_child_used_math(current)
1709#define set_used_math()                         set_stopped_child_used_math(current)
1710
1711#define conditional_stopped_child_used_math(condition, child) \
1712        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1713
1714#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1715
1716#define copy_to_stopped_child_used_math(child) \
1717        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1718
1719/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1720#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1721#define used_math()                             tsk_used_math(current)
1722
1723static __always_inline bool is_percpu_thread(void)
1724{
1725#ifdef CONFIG_SMP
1726        return (current->flags & PF_NO_SETAFFINITY) &&
1727                (current->nr_cpus_allowed  == 1);
1728#else
1729        return true;
1730#endif
1731}
1732
1733/* Per-process atomic flags. */
1734#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1735#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1736#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1737#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1738#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1739#define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1740#define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1741#define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1742
1743#define TASK_PFA_TEST(name, func)                                       \
1744        static inline bool task_##func(struct task_struct *p)           \
1745        { return test_bit(PFA_##name, &p->atomic_flags); }
1746
1747#define TASK_PFA_SET(name, func)                                        \
1748        static inline void task_set_##func(struct task_struct *p)       \
1749        { set_bit(PFA_##name, &p->atomic_flags); }
1750
1751#define TASK_PFA_CLEAR(name, func)                                      \
1752        static inline void task_clear_##func(struct task_struct *p)     \
1753        { clear_bit(PFA_##name, &p->atomic_flags); }
1754
1755TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1756TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1757
1758TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1759TASK_PFA_SET(SPREAD_PAGE, spread_page)
1760TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1761
1762TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1763TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1764TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1765
1766TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1767TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1768TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1769
1770TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1771TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1772TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1773
1774TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1775TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1776
1777TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1778TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1779TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1780
1781TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1782TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1783
1784static inline void
1785current_restore_flags(unsigned long orig_flags, unsigned long flags)
1786{
1787        current->flags &= ~flags;
1788        current->flags |= orig_flags & flags;
1789}
1790
1791extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1792extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1793#ifdef CONFIG_SMP
1794extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1795extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1796extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1797extern void release_user_cpus_ptr(struct task_struct *p);
1798extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1799extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1800extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1801#else
1802static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1803{
1804}
1805static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1806{
1807        if (!cpumask_test_cpu(0, new_mask))
1808                return -EINVAL;
1809        return 0;
1810}
1811static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1812{
1813        if (src->user_cpus_ptr)
1814                return -EINVAL;
1815        return 0;
1816}
1817static inline void release_user_cpus_ptr(struct task_struct *p)
1818{
1819        WARN_ON(p->user_cpus_ptr);
1820}
1821
1822static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1823{
1824        return 0;
1825}
1826#endif
1827
1828extern int yield_to(struct task_struct *p, bool preempt);
1829extern void set_user_nice(struct task_struct *p, long nice);
1830extern int task_prio(const struct task_struct *p);
1831
1832/**
1833 * task_nice - return the nice value of a given task.
1834 * @p: the task in question.
1835 *
1836 * Return: The nice value [ -20 ... 0 ... 19 ].
1837 */
1838static inline int task_nice(const struct task_struct *p)
1839{
1840        return PRIO_TO_NICE((p)->static_prio);
1841}
1842
1843extern int can_nice(const struct task_struct *p, const int nice);
1844extern int task_curr(const struct task_struct *p);
1845extern int idle_cpu(int cpu);
1846extern int available_idle_cpu(int cpu);
1847extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1848extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1849extern void sched_set_fifo(struct task_struct *p);
1850extern void sched_set_fifo_low(struct task_struct *p);
1851extern void sched_set_normal(struct task_struct *p, int nice);
1852extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1853extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1854extern struct task_struct *idle_task(int cpu);
1855
1856/**
1857 * is_idle_task - is the specified task an idle task?
1858 * @p: the task in question.
1859 *
1860 * Return: 1 if @p is an idle task. 0 otherwise.
1861 */
1862static __always_inline bool is_idle_task(const struct task_struct *p)
1863{
1864        return !!(p->flags & PF_IDLE);
1865}
1866
1867extern struct task_struct *curr_task(int cpu);
1868extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1869
1870void yield(void);
1871
1872union thread_union {
1873#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1874        struct task_struct task;
1875#endif
1876#ifndef CONFIG_THREAD_INFO_IN_TASK
1877        struct thread_info thread_info;
1878#endif
1879        unsigned long stack[THREAD_SIZE/sizeof(long)];
1880};
1881
1882#ifndef CONFIG_THREAD_INFO_IN_TASK
1883extern struct thread_info init_thread_info;
1884#endif
1885
1886extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1887
1888#ifdef CONFIG_THREAD_INFO_IN_TASK
1889static inline struct thread_info *task_thread_info(struct task_struct *task)
1890{
1891        return &task->thread_info;
1892}
1893#elif !defined(__HAVE_THREAD_FUNCTIONS)
1894# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1895#endif
1896
1897/*
1898 * find a task by one of its numerical ids
1899 *
1900 * find_task_by_pid_ns():
1901 *      finds a task by its pid in the specified namespace
1902 * find_task_by_vpid():
1903 *      finds a task by its virtual pid
1904 *
1905 * see also find_vpid() etc in include/linux/pid.h
1906 */
1907
1908extern struct task_struct *find_task_by_vpid(pid_t nr);
1909extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1910
1911/*
1912 * find a task by its virtual pid and get the task struct
1913 */
1914extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1915
1916extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1917extern int wake_up_process(struct task_struct *tsk);
1918extern void wake_up_new_task(struct task_struct *tsk);
1919
1920#ifdef CONFIG_SMP
1921extern void kick_process(struct task_struct *tsk);
1922#else
1923static inline void kick_process(struct task_struct *tsk) { }
1924#endif
1925
1926extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1927
1928static inline void set_task_comm(struct task_struct *tsk, const char *from)
1929{
1930        __set_task_comm(tsk, from, false);
1931}
1932
1933extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1934#define get_task_comm(buf, tsk) ({                      \
1935        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1936        __get_task_comm(buf, sizeof(buf), tsk);         \
1937})
1938
1939#ifdef CONFIG_SMP
1940static __always_inline void scheduler_ipi(void)
1941{
1942        /*
1943         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1944         * TIF_NEED_RESCHED remotely (for the first time) will also send
1945         * this IPI.
1946         */
1947        preempt_fold_need_resched();
1948}
1949extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1950#else
1951static inline void scheduler_ipi(void) { }
1952static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1953{
1954        return 1;
1955}
1956#endif
1957
1958/*
1959 * Set thread flags in other task's structures.
1960 * See asm/thread_info.h for TIF_xxxx flags available:
1961 */
1962static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1963{
1964        set_ti_thread_flag(task_thread_info(tsk), flag);
1965}
1966
1967static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1968{
1969        clear_ti_thread_flag(task_thread_info(tsk), flag);
1970}
1971
1972static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1973                                          bool value)
1974{
1975        update_ti_thread_flag(task_thread_info(tsk), flag, value);
1976}
1977
1978static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1979{
1980        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1981}
1982
1983static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1984{
1985        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1986}
1987
1988static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1989{
1990        return test_ti_thread_flag(task_thread_info(tsk), flag);
1991}
1992
1993static inline void set_tsk_need_resched(struct task_struct *tsk)
1994{
1995        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1996}
1997
1998static inline void clear_tsk_need_resched(struct task_struct *tsk)
1999{
2000        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2001}
2002
2003static inline int test_tsk_need_resched(struct task_struct *tsk)
2004{
2005        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2006}
2007
2008/*
2009 * cond_resched() and cond_resched_lock(): latency reduction via
2010 * explicit rescheduling in places that are safe. The return
2011 * value indicates whether a reschedule was done in fact.
2012 * cond_resched_lock() will drop the spinlock before scheduling,
2013 */
2014#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2015extern int __cond_resched(void);
2016
2017#ifdef CONFIG_PREEMPT_DYNAMIC
2018
2019DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2020
2021static __always_inline int _cond_resched(void)
2022{
2023        return static_call_mod(cond_resched)();
2024}
2025
2026#else
2027
2028static inline int _cond_resched(void)
2029{
2030        return __cond_resched();
2031}
2032
2033#endif /* CONFIG_PREEMPT_DYNAMIC */
2034
2035#else
2036
2037static inline int _cond_resched(void) { return 0; }
2038
2039#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2040
2041#define cond_resched() ({                       \
2042        ___might_sleep(__FILE__, __LINE__, 0);  \
2043        _cond_resched();                        \
2044})
2045
2046extern int __cond_resched_lock(spinlock_t *lock);
2047extern int __cond_resched_rwlock_read(rwlock_t *lock);
2048extern int __cond_resched_rwlock_write(rwlock_t *lock);
2049
2050#define cond_resched_lock(lock) ({                              \
2051        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2052        __cond_resched_lock(lock);                              \
2053})
2054
2055#define cond_resched_rwlock_read(lock) ({                       \
2056        __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2057        __cond_resched_rwlock_read(lock);                       \
2058})
2059
2060#define cond_resched_rwlock_write(lock) ({                      \
2061        __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2062        __cond_resched_rwlock_write(lock);                      \
2063})
2064
2065static inline void cond_resched_rcu(void)
2066{
2067#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2068        rcu_read_unlock();
2069        cond_resched();
2070        rcu_read_lock();
2071#endif
2072}
2073
2074/*
2075 * Does a critical section need to be broken due to another
2076 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2077 * but a general need for low latency)
2078 */
2079static inline int spin_needbreak(spinlock_t *lock)
2080{
2081#ifdef CONFIG_PREEMPTION
2082        return spin_is_contended(lock);
2083#else
2084        return 0;
2085#endif
2086}
2087
2088/*
2089 * Check if a rwlock is contended.
2090 * Returns non-zero if there is another task waiting on the rwlock.
2091 * Returns zero if the lock is not contended or the system / underlying
2092 * rwlock implementation does not support contention detection.
2093 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2094 * for low latency.
2095 */
2096static inline int rwlock_needbreak(rwlock_t *lock)
2097{
2098#ifdef CONFIG_PREEMPTION
2099        return rwlock_is_contended(lock);
2100#else
2101        return 0;
2102#endif
2103}
2104
2105static __always_inline bool need_resched(void)
2106{
2107        return unlikely(tif_need_resched());
2108}
2109
2110/*
2111 * Wrappers for p->thread_info->cpu access. No-op on UP.
2112 */
2113#ifdef CONFIG_SMP
2114
2115static inline unsigned int task_cpu(const struct task_struct *p)
2116{
2117#ifdef CONFIG_THREAD_INFO_IN_TASK
2118        return READ_ONCE(p->cpu);
2119#else
2120        return READ_ONCE(task_thread_info(p)->cpu);
2121#endif
2122}
2123
2124extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2125
2126#else
2127
2128static inline unsigned int task_cpu(const struct task_struct *p)
2129{
2130        return 0;
2131}
2132
2133static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2134{
2135}
2136
2137#endif /* CONFIG_SMP */
2138
2139extern bool sched_task_on_rq(struct task_struct *p);
2140
2141/*
2142 * In order to reduce various lock holder preemption latencies provide an
2143 * interface to see if a vCPU is currently running or not.
2144 *
2145 * This allows us to terminate optimistic spin loops and block, analogous to
2146 * the native optimistic spin heuristic of testing if the lock owner task is
2147 * running or not.
2148 */
2149#ifndef vcpu_is_preempted
2150static inline bool vcpu_is_preempted(int cpu)
2151{
2152        return false;
2153}
2154#endif
2155
2156extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2157extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2158
2159#ifndef TASK_SIZE_OF
2160#define TASK_SIZE_OF(tsk)       TASK_SIZE
2161#endif
2162
2163#ifdef CONFIG_SMP
2164/* Returns effective CPU energy utilization, as seen by the scheduler */
2165unsigned long sched_cpu_util(int cpu, unsigned long max);
2166#endif /* CONFIG_SMP */
2167
2168#ifdef CONFIG_RSEQ
2169
2170/*
2171 * Map the event mask on the user-space ABI enum rseq_cs_flags
2172 * for direct mask checks.
2173 */
2174enum rseq_event_mask_bits {
2175        RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2176        RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2177        RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2178};
2179
2180enum rseq_event_mask {
2181        RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
2182        RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
2183        RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
2184};
2185
2186static inline void rseq_set_notify_resume(struct task_struct *t)
2187{
2188        if (t->rseq)
2189                set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2190}
2191
2192void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2193
2194static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2195                                             struct pt_regs *regs)
2196{
2197        if (current->rseq)
2198                __rseq_handle_notify_resume(ksig, regs);
2199}
2200
2201static inline void rseq_signal_deliver(struct ksignal *ksig,
2202                                       struct pt_regs *regs)
2203{
2204        preempt_disable();
2205        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2206        preempt_enable();
2207        rseq_handle_notify_resume(ksig, regs);
2208}
2209
2210/* rseq_preempt() requires preemption to be disabled. */
2211static inline void rseq_preempt(struct task_struct *t)
2212{
2213        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2214        rseq_set_notify_resume(t);
2215}
2216
2217/* rseq_migrate() requires preemption to be disabled. */
2218static inline void rseq_migrate(struct task_struct *t)
2219{
2220        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2221        rseq_set_notify_resume(t);
2222}
2223
2224/*
2225 * If parent process has a registered restartable sequences area, the
2226 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2227 */
2228static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2229{
2230        if (clone_flags & CLONE_VM) {
2231                t->rseq = NULL;
2232                t->rseq_sig = 0;
2233                t->rseq_event_mask = 0;
2234        } else {
2235                t->rseq = current->rseq;
2236                t->rseq_sig = current->rseq_sig;
2237                t->rseq_event_mask = current->rseq_event_mask;
2238        }
2239}
2240
2241static inline void rseq_execve(struct task_struct *t)
2242{
2243        t->rseq = NULL;
2244        t->rseq_sig = 0;
2245        t->rseq_event_mask = 0;
2246}
2247
2248#else
2249
2250static inline void rseq_set_notify_resume(struct task_struct *t)
2251{
2252}
2253static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2254                                             struct pt_regs *regs)
2255{
2256}
2257static inline void rseq_signal_deliver(struct ksignal *ksig,
2258                                       struct pt_regs *regs)
2259{
2260}
2261static inline void rseq_preempt(struct task_struct *t)
2262{
2263}
2264static inline void rseq_migrate(struct task_struct *t)
2265{
2266}
2267static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2268{
2269}
2270static inline void rseq_execve(struct task_struct *t)
2271{
2272}
2273
2274#endif
2275
2276#ifdef CONFIG_DEBUG_RSEQ
2277
2278void rseq_syscall(struct pt_regs *regs);
2279
2280#else
2281
2282static inline void rseq_syscall(struct pt_regs *regs)
2283{
2284}
2285
2286#endif
2287
2288const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2289char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2290int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2291
2292const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2293const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2294const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2295
2296int sched_trace_rq_cpu(struct rq *rq);
2297int sched_trace_rq_cpu_capacity(struct rq *rq);
2298int sched_trace_rq_nr_running(struct rq *rq);
2299
2300const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2301
2302#ifdef CONFIG_SCHED_CORE
2303extern void sched_core_free(struct task_struct *tsk);
2304extern void sched_core_fork(struct task_struct *p);
2305extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2306                                unsigned long uaddr);
2307#else
2308static inline void sched_core_free(struct task_struct *tsk) { }
2309static inline void sched_core_fork(struct task_struct *p) { }
2310#endif
2311
2312#endif
2313