linux/include/linux/xarray.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2#ifndef _LINUX_XARRAY_H
   3#define _LINUX_XARRAY_H
   4/*
   5 * eXtensible Arrays
   6 * Copyright (c) 2017 Microsoft Corporation
   7 * Author: Matthew Wilcox <willy@infradead.org>
   8 *
   9 * See Documentation/core-api/xarray.rst for how to use the XArray.
  10 */
  11
  12#include <linux/bug.h>
  13#include <linux/compiler.h>
  14#include <linux/gfp.h>
  15#include <linux/kconfig.h>
  16#include <linux/kernel.h>
  17#include <linux/rcupdate.h>
  18#include <linux/spinlock.h>
  19#include <linux/types.h>
  20
  21/*
  22 * The bottom two bits of the entry determine how the XArray interprets
  23 * the contents:
  24 *
  25 * 00: Pointer entry
  26 * 10: Internal entry
  27 * x1: Value entry or tagged pointer
  28 *
  29 * Attempting to store internal entries in the XArray is a bug.
  30 *
  31 * Most internal entries are pointers to the next node in the tree.
  32 * The following internal entries have a special meaning:
  33 *
  34 * 0-62: Sibling entries
  35 * 256: Retry entry
  36 * 257: Zero entry
  37 *
  38 * Errors are also represented as internal entries, but use the negative
  39 * space (-4094 to -2).  They're never stored in the slots array; only
  40 * returned by the normal API.
  41 */
  42
  43#define BITS_PER_XA_VALUE       (BITS_PER_LONG - 1)
  44
  45/**
  46 * xa_mk_value() - Create an XArray entry from an integer.
  47 * @v: Value to store in XArray.
  48 *
  49 * Context: Any context.
  50 * Return: An entry suitable for storing in the XArray.
  51 */
  52static inline void *xa_mk_value(unsigned long v)
  53{
  54        WARN_ON((long)v < 0);
  55        return (void *)((v << 1) | 1);
  56}
  57
  58/**
  59 * xa_to_value() - Get value stored in an XArray entry.
  60 * @entry: XArray entry.
  61 *
  62 * Context: Any context.
  63 * Return: The value stored in the XArray entry.
  64 */
  65static inline unsigned long xa_to_value(const void *entry)
  66{
  67        return (unsigned long)entry >> 1;
  68}
  69
  70/**
  71 * xa_is_value() - Determine if an entry is a value.
  72 * @entry: XArray entry.
  73 *
  74 * Context: Any context.
  75 * Return: True if the entry is a value, false if it is a pointer.
  76 */
  77static inline bool xa_is_value(const void *entry)
  78{
  79        return (unsigned long)entry & 1;
  80}
  81
  82/**
  83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
  84 * @p: Plain pointer.
  85 * @tag: Tag value (0, 1 or 3).
  86 *
  87 * If the user of the XArray prefers, they can tag their pointers instead
  88 * of storing value entries.  Three tags are available (0, 1 and 3).
  89 * These are distinct from the xa_mark_t as they are not replicated up
  90 * through the array and cannot be searched for.
  91 *
  92 * Context: Any context.
  93 * Return: An XArray entry.
  94 */
  95static inline void *xa_tag_pointer(void *p, unsigned long tag)
  96{
  97        return (void *)((unsigned long)p | tag);
  98}
  99
 100/**
 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
 102 * @entry: XArray entry.
 103 *
 104 * If you have stored a tagged pointer in the XArray, call this function
 105 * to get the untagged version of the pointer.
 106 *
 107 * Context: Any context.
 108 * Return: A pointer.
 109 */
 110static inline void *xa_untag_pointer(void *entry)
 111{
 112        return (void *)((unsigned long)entry & ~3UL);
 113}
 114
 115/**
 116 * xa_pointer_tag() - Get the tag stored in an XArray entry.
 117 * @entry: XArray entry.
 118 *
 119 * If you have stored a tagged pointer in the XArray, call this function
 120 * to get the tag of that pointer.
 121 *
 122 * Context: Any context.
 123 * Return: A tag.
 124 */
 125static inline unsigned int xa_pointer_tag(void *entry)
 126{
 127        return (unsigned long)entry & 3UL;
 128}
 129
 130/*
 131 * xa_mk_internal() - Create an internal entry.
 132 * @v: Value to turn into an internal entry.
 133 *
 134 * Internal entries are used for a number of purposes.  Entries 0-255 are
 135 * used for sibling entries (only 0-62 are used by the current code).  256
 136 * is used for the retry entry.  257 is used for the reserved / zero entry.
 137 * Negative internal entries are used to represent errnos.  Node pointers
 138 * are also tagged as internal entries in some situations.
 139 *
 140 * Context: Any context.
 141 * Return: An XArray internal entry corresponding to this value.
 142 */
 143static inline void *xa_mk_internal(unsigned long v)
 144{
 145        return (void *)((v << 2) | 2);
 146}
 147
 148/*
 149 * xa_to_internal() - Extract the value from an internal entry.
 150 * @entry: XArray entry.
 151 *
 152 * Context: Any context.
 153 * Return: The value which was stored in the internal entry.
 154 */
 155static inline unsigned long xa_to_internal(const void *entry)
 156{
 157        return (unsigned long)entry >> 2;
 158}
 159
 160/*
 161 * xa_is_internal() - Is the entry an internal entry?
 162 * @entry: XArray entry.
 163 *
 164 * Context: Any context.
 165 * Return: %true if the entry is an internal entry.
 166 */
 167static inline bool xa_is_internal(const void *entry)
 168{
 169        return ((unsigned long)entry & 3) == 2;
 170}
 171
 172#define XA_ZERO_ENTRY           xa_mk_internal(257)
 173
 174/**
 175 * xa_is_zero() - Is the entry a zero entry?
 176 * @entry: Entry retrieved from the XArray
 177 *
 178 * The normal API will return NULL as the contents of a slot containing
 179 * a zero entry.  You can only see zero entries by using the advanced API.
 180 *
 181 * Return: %true if the entry is a zero entry.
 182 */
 183static inline bool xa_is_zero(const void *entry)
 184{
 185        return unlikely(entry == XA_ZERO_ENTRY);
 186}
 187
 188/**
 189 * xa_is_err() - Report whether an XArray operation returned an error
 190 * @entry: Result from calling an XArray function
 191 *
 192 * If an XArray operation cannot complete an operation, it will return
 193 * a special value indicating an error.  This function tells you
 194 * whether an error occurred; xa_err() tells you which error occurred.
 195 *
 196 * Context: Any context.
 197 * Return: %true if the entry indicates an error.
 198 */
 199static inline bool xa_is_err(const void *entry)
 200{
 201        return unlikely(xa_is_internal(entry) &&
 202                        entry >= xa_mk_internal(-MAX_ERRNO));
 203}
 204
 205/**
 206 * xa_err() - Turn an XArray result into an errno.
 207 * @entry: Result from calling an XArray function.
 208 *
 209 * If an XArray operation cannot complete an operation, it will return
 210 * a special pointer value which encodes an errno.  This function extracts
 211 * the errno from the pointer value, or returns 0 if the pointer does not
 212 * represent an errno.
 213 *
 214 * Context: Any context.
 215 * Return: A negative errno or 0.
 216 */
 217static inline int xa_err(void *entry)
 218{
 219        /* xa_to_internal() would not do sign extension. */
 220        if (xa_is_err(entry))
 221                return (long)entry >> 2;
 222        return 0;
 223}
 224
 225/**
 226 * struct xa_limit - Represents a range of IDs.
 227 * @min: The lowest ID to allocate (inclusive).
 228 * @max: The maximum ID to allocate (inclusive).
 229 *
 230 * This structure is used either directly or via the XA_LIMIT() macro
 231 * to communicate the range of IDs that are valid for allocation.
 232 * Three common ranges are predefined for you:
 233 * * xa_limit_32b       - [0 - UINT_MAX]
 234 * * xa_limit_31b       - [0 - INT_MAX]
 235 * * xa_limit_16b       - [0 - USHRT_MAX]
 236 */
 237struct xa_limit {
 238        u32 max;
 239        u32 min;
 240};
 241
 242#define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
 243
 244#define xa_limit_32b    XA_LIMIT(0, UINT_MAX)
 245#define xa_limit_31b    XA_LIMIT(0, INT_MAX)
 246#define xa_limit_16b    XA_LIMIT(0, USHRT_MAX)
 247
 248typedef unsigned __bitwise xa_mark_t;
 249#define XA_MARK_0               ((__force xa_mark_t)0U)
 250#define XA_MARK_1               ((__force xa_mark_t)1U)
 251#define XA_MARK_2               ((__force xa_mark_t)2U)
 252#define XA_PRESENT              ((__force xa_mark_t)8U)
 253#define XA_MARK_MAX             XA_MARK_2
 254#define XA_FREE_MARK            XA_MARK_0
 255
 256enum xa_lock_type {
 257        XA_LOCK_IRQ = 1,
 258        XA_LOCK_BH = 2,
 259};
 260
 261/*
 262 * Values for xa_flags.  The radix tree stores its GFP flags in the xa_flags,
 263 * and we remain compatible with that.
 264 */
 265#define XA_FLAGS_LOCK_IRQ       ((__force gfp_t)XA_LOCK_IRQ)
 266#define XA_FLAGS_LOCK_BH        ((__force gfp_t)XA_LOCK_BH)
 267#define XA_FLAGS_TRACK_FREE     ((__force gfp_t)4U)
 268#define XA_FLAGS_ZERO_BUSY      ((__force gfp_t)8U)
 269#define XA_FLAGS_ALLOC_WRAPPED  ((__force gfp_t)16U)
 270#define XA_FLAGS_ACCOUNT        ((__force gfp_t)32U)
 271#define XA_FLAGS_MARK(mark)     ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
 272                                                (__force unsigned)(mark)))
 273
 274/* ALLOC is for a normal 0-based alloc.  ALLOC1 is for an 1-based alloc */
 275#define XA_FLAGS_ALLOC  (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
 276#define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
 277
 278/**
 279 * struct xarray - The anchor of the XArray.
 280 * @xa_lock: Lock that protects the contents of the XArray.
 281 *
 282 * To use the xarray, define it statically or embed it in your data structure.
 283 * It is a very small data structure, so it does not usually make sense to
 284 * allocate it separately and keep a pointer to it in your data structure.
 285 *
 286 * You may use the xa_lock to protect your own data structures as well.
 287 */
 288/*
 289 * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
 290 * If the only non-NULL entry in the array is at index 0, @xa_head is that
 291 * entry.  If any other entry in the array is non-NULL, @xa_head points
 292 * to an @xa_node.
 293 */
 294struct xarray {
 295        spinlock_t      xa_lock;
 296/* private: The rest of the data structure is not to be used directly. */
 297        gfp_t           xa_flags;
 298        void __rcu *    xa_head;
 299};
 300
 301#define XARRAY_INIT(name, flags) {                              \
 302        .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock),          \
 303        .xa_flags = flags,                                      \
 304        .xa_head = NULL,                                        \
 305}
 306
 307/**
 308 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
 309 * @name: A string that names your XArray.
 310 * @flags: XA_FLAG values.
 311 *
 312 * This is intended for file scope definitions of XArrays.  It declares
 313 * and initialises an empty XArray with the chosen name and flags.  It is
 314 * equivalent to calling xa_init_flags() on the array, but it does the
 315 * initialisation at compiletime instead of runtime.
 316 */
 317#define DEFINE_XARRAY_FLAGS(name, flags)                                \
 318        struct xarray name = XARRAY_INIT(name, flags)
 319
 320/**
 321 * DEFINE_XARRAY() - Define an XArray.
 322 * @name: A string that names your XArray.
 323 *
 324 * This is intended for file scope definitions of XArrays.  It declares
 325 * and initialises an empty XArray with the chosen name.  It is equivalent
 326 * to calling xa_init() on the array, but it does the initialisation at
 327 * compiletime instead of runtime.
 328 */
 329#define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
 330
 331/**
 332 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
 333 * @name: A string that names your XArray.
 334 *
 335 * This is intended for file scope definitions of allocating XArrays.
 336 * See also DEFINE_XARRAY().
 337 */
 338#define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
 339
 340/**
 341 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
 342 * @name: A string that names your XArray.
 343 *
 344 * This is intended for file scope definitions of allocating XArrays.
 345 * See also DEFINE_XARRAY().
 346 */
 347#define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
 348
 349void *xa_load(struct xarray *, unsigned long index);
 350void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
 351void *xa_erase(struct xarray *, unsigned long index);
 352void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
 353                        void *entry, gfp_t);
 354bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
 355void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
 356void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
 357void *xa_find(struct xarray *xa, unsigned long *index,
 358                unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
 359void *xa_find_after(struct xarray *xa, unsigned long *index,
 360                unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
 361unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
 362                unsigned long max, unsigned int n, xa_mark_t);
 363void xa_destroy(struct xarray *);
 364
 365/**
 366 * xa_init_flags() - Initialise an empty XArray with flags.
 367 * @xa: XArray.
 368 * @flags: XA_FLAG values.
 369 *
 370 * If you need to initialise an XArray with special flags (eg you need
 371 * to take the lock from interrupt context), use this function instead
 372 * of xa_init().
 373 *
 374 * Context: Any context.
 375 */
 376static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
 377{
 378        spin_lock_init(&xa->xa_lock);
 379        xa->xa_flags = flags;
 380        xa->xa_head = NULL;
 381}
 382
 383/**
 384 * xa_init() - Initialise an empty XArray.
 385 * @xa: XArray.
 386 *
 387 * An empty XArray is full of NULL entries.
 388 *
 389 * Context: Any context.
 390 */
 391static inline void xa_init(struct xarray *xa)
 392{
 393        xa_init_flags(xa, 0);
 394}
 395
 396/**
 397 * xa_empty() - Determine if an array has any present entries.
 398 * @xa: XArray.
 399 *
 400 * Context: Any context.
 401 * Return: %true if the array contains only NULL pointers.
 402 */
 403static inline bool xa_empty(const struct xarray *xa)
 404{
 405        return xa->xa_head == NULL;
 406}
 407
 408/**
 409 * xa_marked() - Inquire whether any entry in this array has a mark set
 410 * @xa: Array
 411 * @mark: Mark value
 412 *
 413 * Context: Any context.
 414 * Return: %true if any entry has this mark set.
 415 */
 416static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
 417{
 418        return xa->xa_flags & XA_FLAGS_MARK(mark);
 419}
 420
 421/**
 422 * xa_for_each_range() - Iterate over a portion of an XArray.
 423 * @xa: XArray.
 424 * @index: Index of @entry.
 425 * @entry: Entry retrieved from array.
 426 * @start: First index to retrieve from array.
 427 * @last: Last index to retrieve from array.
 428 *
 429 * During the iteration, @entry will have the value of the entry stored
 430 * in @xa at @index.  You may modify @index during the iteration if you
 431 * want to skip or reprocess indices.  It is safe to modify the array
 432 * during the iteration.  At the end of the iteration, @entry will be set
 433 * to NULL and @index will have a value less than or equal to max.
 434 *
 435 * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n).  You have
 436 * to handle your own locking with xas_for_each(), and if you have to unlock
 437 * after each iteration, it will also end up being O(n.log(n)).
 438 * xa_for_each_range() will spin if it hits a retry entry; if you intend to
 439 * see retry entries, you should use the xas_for_each() iterator instead.
 440 * The xas_for_each() iterator will expand into more inline code than
 441 * xa_for_each_range().
 442 *
 443 * Context: Any context.  Takes and releases the RCU lock.
 444 */
 445#define xa_for_each_range(xa, index, entry, start, last)                \
 446        for (index = start,                                             \
 447             entry = xa_find(xa, &index, last, XA_PRESENT);             \
 448             entry;                                                     \
 449             entry = xa_find_after(xa, &index, last, XA_PRESENT))
 450
 451/**
 452 * xa_for_each_start() - Iterate over a portion of an XArray.
 453 * @xa: XArray.
 454 * @index: Index of @entry.
 455 * @entry: Entry retrieved from array.
 456 * @start: First index to retrieve from array.
 457 *
 458 * During the iteration, @entry will have the value of the entry stored
 459 * in @xa at @index.  You may modify @index during the iteration if you
 460 * want to skip or reprocess indices.  It is safe to modify the array
 461 * during the iteration.  At the end of the iteration, @entry will be set
 462 * to NULL and @index will have a value less than or equal to max.
 463 *
 464 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n).  You have
 465 * to handle your own locking with xas_for_each(), and if you have to unlock
 466 * after each iteration, it will also end up being O(n.log(n)).
 467 * xa_for_each_start() will spin if it hits a retry entry; if you intend to
 468 * see retry entries, you should use the xas_for_each() iterator instead.
 469 * The xas_for_each() iterator will expand into more inline code than
 470 * xa_for_each_start().
 471 *
 472 * Context: Any context.  Takes and releases the RCU lock.
 473 */
 474#define xa_for_each_start(xa, index, entry, start) \
 475        xa_for_each_range(xa, index, entry, start, ULONG_MAX)
 476
 477/**
 478 * xa_for_each() - Iterate over present entries in an XArray.
 479 * @xa: XArray.
 480 * @index: Index of @entry.
 481 * @entry: Entry retrieved from array.
 482 *
 483 * During the iteration, @entry will have the value of the entry stored
 484 * in @xa at @index.  You may modify @index during the iteration if you want
 485 * to skip or reprocess indices.  It is safe to modify the array during the
 486 * iteration.  At the end of the iteration, @entry will be set to NULL and
 487 * @index will have a value less than or equal to max.
 488 *
 489 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n).  You have
 490 * to handle your own locking with xas_for_each(), and if you have to unlock
 491 * after each iteration, it will also end up being O(n.log(n)).  xa_for_each()
 492 * will spin if it hits a retry entry; if you intend to see retry entries,
 493 * you should use the xas_for_each() iterator instead.  The xas_for_each()
 494 * iterator will expand into more inline code than xa_for_each().
 495 *
 496 * Context: Any context.  Takes and releases the RCU lock.
 497 */
 498#define xa_for_each(xa, index, entry) \
 499        xa_for_each_start(xa, index, entry, 0)
 500
 501/**
 502 * xa_for_each_marked() - Iterate over marked entries in an XArray.
 503 * @xa: XArray.
 504 * @index: Index of @entry.
 505 * @entry: Entry retrieved from array.
 506 * @filter: Selection criterion.
 507 *
 508 * During the iteration, @entry will have the value of the entry stored
 509 * in @xa at @index.  The iteration will skip all entries in the array
 510 * which do not match @filter.  You may modify @index during the iteration
 511 * if you want to skip or reprocess indices.  It is safe to modify the array
 512 * during the iteration.  At the end of the iteration, @entry will be set to
 513 * NULL and @index will have a value less than or equal to max.
 514 *
 515 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
 516 * You have to handle your own locking with xas_for_each(), and if you have
 517 * to unlock after each iteration, it will also end up being O(n.log(n)).
 518 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
 519 * see retry entries, you should use the xas_for_each_marked() iterator
 520 * instead.  The xas_for_each_marked() iterator will expand into more inline
 521 * code than xa_for_each_marked().
 522 *
 523 * Context: Any context.  Takes and releases the RCU lock.
 524 */
 525#define xa_for_each_marked(xa, index, entry, filter) \
 526        for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
 527             entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
 528
 529#define xa_trylock(xa)          spin_trylock(&(xa)->xa_lock)
 530#define xa_lock(xa)             spin_lock(&(xa)->xa_lock)
 531#define xa_unlock(xa)           spin_unlock(&(xa)->xa_lock)
 532#define xa_lock_bh(xa)          spin_lock_bh(&(xa)->xa_lock)
 533#define xa_unlock_bh(xa)        spin_unlock_bh(&(xa)->xa_lock)
 534#define xa_lock_irq(xa)         spin_lock_irq(&(xa)->xa_lock)
 535#define xa_unlock_irq(xa)       spin_unlock_irq(&(xa)->xa_lock)
 536#define xa_lock_irqsave(xa, flags) \
 537                                spin_lock_irqsave(&(xa)->xa_lock, flags)
 538#define xa_unlock_irqrestore(xa, flags) \
 539                                spin_unlock_irqrestore(&(xa)->xa_lock, flags)
 540#define xa_lock_nested(xa, subclass) \
 541                                spin_lock_nested(&(xa)->xa_lock, subclass)
 542#define xa_lock_bh_nested(xa, subclass) \
 543                                spin_lock_bh_nested(&(xa)->xa_lock, subclass)
 544#define xa_lock_irq_nested(xa, subclass) \
 545                                spin_lock_irq_nested(&(xa)->xa_lock, subclass)
 546#define xa_lock_irqsave_nested(xa, flags, subclass) \
 547                spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass)
 548
 549/*
 550 * Versions of the normal API which require the caller to hold the
 551 * xa_lock.  If the GFP flags allow it, they will drop the lock to
 552 * allocate memory, then reacquire it afterwards.  These functions
 553 * may also re-enable interrupts if the XArray flags indicate the
 554 * locking should be interrupt safe.
 555 */
 556void *__xa_erase(struct xarray *, unsigned long index);
 557void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
 558void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
 559                void *entry, gfp_t);
 560int __must_check __xa_insert(struct xarray *, unsigned long index,
 561                void *entry, gfp_t);
 562int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
 563                struct xa_limit, gfp_t);
 564int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
 565                struct xa_limit, u32 *next, gfp_t);
 566void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
 567void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
 568
 569/**
 570 * xa_store_bh() - Store this entry in the XArray.
 571 * @xa: XArray.
 572 * @index: Index into array.
 573 * @entry: New entry.
 574 * @gfp: Memory allocation flags.
 575 *
 576 * This function is like calling xa_store() except it disables softirqs
 577 * while holding the array lock.
 578 *
 579 * Context: Any context.  Takes and releases the xa_lock while
 580 * disabling softirqs.
 581 * Return: The old entry at this index or xa_err() if an error happened.
 582 */
 583static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
 584                void *entry, gfp_t gfp)
 585{
 586        void *curr;
 587
 588        xa_lock_bh(xa);
 589        curr = __xa_store(xa, index, entry, gfp);
 590        xa_unlock_bh(xa);
 591
 592        return curr;
 593}
 594
 595/**
 596 * xa_store_irq() - Store this entry in the XArray.
 597 * @xa: XArray.
 598 * @index: Index into array.
 599 * @entry: New entry.
 600 * @gfp: Memory allocation flags.
 601 *
 602 * This function is like calling xa_store() except it disables interrupts
 603 * while holding the array lock.
 604 *
 605 * Context: Process context.  Takes and releases the xa_lock while
 606 * disabling interrupts.
 607 * Return: The old entry at this index or xa_err() if an error happened.
 608 */
 609static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
 610                void *entry, gfp_t gfp)
 611{
 612        void *curr;
 613
 614        xa_lock_irq(xa);
 615        curr = __xa_store(xa, index, entry, gfp);
 616        xa_unlock_irq(xa);
 617
 618        return curr;
 619}
 620
 621/**
 622 * xa_erase_bh() - Erase this entry from the XArray.
 623 * @xa: XArray.
 624 * @index: Index of entry.
 625 *
 626 * After this function returns, loading from @index will return %NULL.
 627 * If the index is part of a multi-index entry, all indices will be erased
 628 * and none of the entries will be part of a multi-index entry.
 629 *
 630 * Context: Any context.  Takes and releases the xa_lock while
 631 * disabling softirqs.
 632 * Return: The entry which used to be at this index.
 633 */
 634static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
 635{
 636        void *entry;
 637
 638        xa_lock_bh(xa);
 639        entry = __xa_erase(xa, index);
 640        xa_unlock_bh(xa);
 641
 642        return entry;
 643}
 644
 645/**
 646 * xa_erase_irq() - Erase this entry from the XArray.
 647 * @xa: XArray.
 648 * @index: Index of entry.
 649 *
 650 * After this function returns, loading from @index will return %NULL.
 651 * If the index is part of a multi-index entry, all indices will be erased
 652 * and none of the entries will be part of a multi-index entry.
 653 *
 654 * Context: Process context.  Takes and releases the xa_lock while
 655 * disabling interrupts.
 656 * Return: The entry which used to be at this index.
 657 */
 658static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
 659{
 660        void *entry;
 661
 662        xa_lock_irq(xa);
 663        entry = __xa_erase(xa, index);
 664        xa_unlock_irq(xa);
 665
 666        return entry;
 667}
 668
 669/**
 670 * xa_cmpxchg() - Conditionally replace an entry in the XArray.
 671 * @xa: XArray.
 672 * @index: Index into array.
 673 * @old: Old value to test against.
 674 * @entry: New value to place in array.
 675 * @gfp: Memory allocation flags.
 676 *
 677 * If the entry at @index is the same as @old, replace it with @entry.
 678 * If the return value is equal to @old, then the exchange was successful.
 679 *
 680 * Context: Any context.  Takes and releases the xa_lock.  May sleep
 681 * if the @gfp flags permit.
 682 * Return: The old value at this index or xa_err() if an error happened.
 683 */
 684static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
 685                        void *old, void *entry, gfp_t gfp)
 686{
 687        void *curr;
 688
 689        xa_lock(xa);
 690        curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 691        xa_unlock(xa);
 692
 693        return curr;
 694}
 695
 696/**
 697 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
 698 * @xa: XArray.
 699 * @index: Index into array.
 700 * @old: Old value to test against.
 701 * @entry: New value to place in array.
 702 * @gfp: Memory allocation flags.
 703 *
 704 * This function is like calling xa_cmpxchg() except it disables softirqs
 705 * while holding the array lock.
 706 *
 707 * Context: Any context.  Takes and releases the xa_lock while
 708 * disabling softirqs.  May sleep if the @gfp flags permit.
 709 * Return: The old value at this index or xa_err() if an error happened.
 710 */
 711static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
 712                        void *old, void *entry, gfp_t gfp)
 713{
 714        void *curr;
 715
 716        xa_lock_bh(xa);
 717        curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 718        xa_unlock_bh(xa);
 719
 720        return curr;
 721}
 722
 723/**
 724 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
 725 * @xa: XArray.
 726 * @index: Index into array.
 727 * @old: Old value to test against.
 728 * @entry: New value to place in array.
 729 * @gfp: Memory allocation flags.
 730 *
 731 * This function is like calling xa_cmpxchg() except it disables interrupts
 732 * while holding the array lock.
 733 *
 734 * Context: Process context.  Takes and releases the xa_lock while
 735 * disabling interrupts.  May sleep if the @gfp flags permit.
 736 * Return: The old value at this index or xa_err() if an error happened.
 737 */
 738static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
 739                        void *old, void *entry, gfp_t gfp)
 740{
 741        void *curr;
 742
 743        xa_lock_irq(xa);
 744        curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 745        xa_unlock_irq(xa);
 746
 747        return curr;
 748}
 749
 750/**
 751 * xa_insert() - Store this entry in the XArray unless another entry is
 752 *                      already present.
 753 * @xa: XArray.
 754 * @index: Index into array.
 755 * @entry: New entry.
 756 * @gfp: Memory allocation flags.
 757 *
 758 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 759 * if no entry is present.  Inserting will fail if a reserved entry is
 760 * present, even though loading from this index will return NULL.
 761 *
 762 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 763 * the @gfp flags permit.
 764 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 765 * -ENOMEM if memory could not be allocated.
 766 */
 767static inline int __must_check xa_insert(struct xarray *xa,
 768                unsigned long index, void *entry, gfp_t gfp)
 769{
 770        int err;
 771
 772        xa_lock(xa);
 773        err = __xa_insert(xa, index, entry, gfp);
 774        xa_unlock(xa);
 775
 776        return err;
 777}
 778
 779/**
 780 * xa_insert_bh() - Store this entry in the XArray unless another entry is
 781 *                      already present.
 782 * @xa: XArray.
 783 * @index: Index into array.
 784 * @entry: New entry.
 785 * @gfp: Memory allocation flags.
 786 *
 787 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 788 * if no entry is present.  Inserting will fail if a reserved entry is
 789 * present, even though loading from this index will return NULL.
 790 *
 791 * Context: Any context.  Takes and releases the xa_lock while
 792 * disabling softirqs.  May sleep if the @gfp flags permit.
 793 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 794 * -ENOMEM if memory could not be allocated.
 795 */
 796static inline int __must_check xa_insert_bh(struct xarray *xa,
 797                unsigned long index, void *entry, gfp_t gfp)
 798{
 799        int err;
 800
 801        xa_lock_bh(xa);
 802        err = __xa_insert(xa, index, entry, gfp);
 803        xa_unlock_bh(xa);
 804
 805        return err;
 806}
 807
 808/**
 809 * xa_insert_irq() - Store this entry in the XArray unless another entry is
 810 *                      already present.
 811 * @xa: XArray.
 812 * @index: Index into array.
 813 * @entry: New entry.
 814 * @gfp: Memory allocation flags.
 815 *
 816 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 817 * if no entry is present.  Inserting will fail if a reserved entry is
 818 * present, even though loading from this index will return NULL.
 819 *
 820 * Context: Process context.  Takes and releases the xa_lock while
 821 * disabling interrupts.  May sleep if the @gfp flags permit.
 822 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 823 * -ENOMEM if memory could not be allocated.
 824 */
 825static inline int __must_check xa_insert_irq(struct xarray *xa,
 826                unsigned long index, void *entry, gfp_t gfp)
 827{
 828        int err;
 829
 830        xa_lock_irq(xa);
 831        err = __xa_insert(xa, index, entry, gfp);
 832        xa_unlock_irq(xa);
 833
 834        return err;
 835}
 836
 837/**
 838 * xa_alloc() - Find somewhere to store this entry in the XArray.
 839 * @xa: XArray.
 840 * @id: Pointer to ID.
 841 * @entry: New entry.
 842 * @limit: Range of ID to allocate.
 843 * @gfp: Memory allocation flags.
 844 *
 845 * Finds an empty entry in @xa between @limit.min and @limit.max,
 846 * stores the index into the @id pointer, then stores the entry at
 847 * that index.  A concurrent lookup will not see an uninitialised @id.
 848 *
 849 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 850 * the @gfp flags permit.
 851 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 852 * -EBUSY if there are no free entries in @limit.
 853 */
 854static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
 855                void *entry, struct xa_limit limit, gfp_t gfp)
 856{
 857        int err;
 858
 859        xa_lock(xa);
 860        err = __xa_alloc(xa, id, entry, limit, gfp);
 861        xa_unlock(xa);
 862
 863        return err;
 864}
 865
 866/**
 867 * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
 868 * @xa: XArray.
 869 * @id: Pointer to ID.
 870 * @entry: New entry.
 871 * @limit: Range of ID to allocate.
 872 * @gfp: Memory allocation flags.
 873 *
 874 * Finds an empty entry in @xa between @limit.min and @limit.max,
 875 * stores the index into the @id pointer, then stores the entry at
 876 * that index.  A concurrent lookup will not see an uninitialised @id.
 877 *
 878 * Context: Any context.  Takes and releases the xa_lock while
 879 * disabling softirqs.  May sleep if the @gfp flags permit.
 880 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 881 * -EBUSY if there are no free entries in @limit.
 882 */
 883static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
 884                void *entry, struct xa_limit limit, gfp_t gfp)
 885{
 886        int err;
 887
 888        xa_lock_bh(xa);
 889        err = __xa_alloc(xa, id, entry, limit, gfp);
 890        xa_unlock_bh(xa);
 891
 892        return err;
 893}
 894
 895/**
 896 * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
 897 * @xa: XArray.
 898 * @id: Pointer to ID.
 899 * @entry: New entry.
 900 * @limit: Range of ID to allocate.
 901 * @gfp: Memory allocation flags.
 902 *
 903 * Finds an empty entry in @xa between @limit.min and @limit.max,
 904 * stores the index into the @id pointer, then stores the entry at
 905 * that index.  A concurrent lookup will not see an uninitialised @id.
 906 *
 907 * Context: Process context.  Takes and releases the xa_lock while
 908 * disabling interrupts.  May sleep if the @gfp flags permit.
 909 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 910 * -EBUSY if there are no free entries in @limit.
 911 */
 912static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
 913                void *entry, struct xa_limit limit, gfp_t gfp)
 914{
 915        int err;
 916
 917        xa_lock_irq(xa);
 918        err = __xa_alloc(xa, id, entry, limit, gfp);
 919        xa_unlock_irq(xa);
 920
 921        return err;
 922}
 923
 924/**
 925 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
 926 * @xa: XArray.
 927 * @id: Pointer to ID.
 928 * @entry: New entry.
 929 * @limit: Range of allocated ID.
 930 * @next: Pointer to next ID to allocate.
 931 * @gfp: Memory allocation flags.
 932 *
 933 * Finds an empty entry in @xa between @limit.min and @limit.max,
 934 * stores the index into the @id pointer, then stores the entry at
 935 * that index.  A concurrent lookup will not see an uninitialised @id.
 936 * The search for an empty entry will start at @next and will wrap
 937 * around if necessary.
 938 *
 939 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 940 * the @gfp flags permit.
 941 * Return: 0 if the allocation succeeded without wrapping.  1 if the
 942 * allocation succeeded after wrapping, -ENOMEM if memory could not be
 943 * allocated or -EBUSY if there are no free entries in @limit.
 944 */
 945static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
 946                struct xa_limit limit, u32 *next, gfp_t gfp)
 947{
 948        int err;
 949
 950        xa_lock(xa);
 951        err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 952        xa_unlock(xa);
 953
 954        return err;
 955}
 956
 957/**
 958 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
 959 * @xa: XArray.
 960 * @id: Pointer to ID.
 961 * @entry: New entry.
 962 * @limit: Range of allocated ID.
 963 * @next: Pointer to next ID to allocate.
 964 * @gfp: Memory allocation flags.
 965 *
 966 * Finds an empty entry in @xa between @limit.min and @limit.max,
 967 * stores the index into the @id pointer, then stores the entry at
 968 * that index.  A concurrent lookup will not see an uninitialised @id.
 969 * The search for an empty entry will start at @next and will wrap
 970 * around if necessary.
 971 *
 972 * Context: Any context.  Takes and releases the xa_lock while
 973 * disabling softirqs.  May sleep if the @gfp flags permit.
 974 * Return: 0 if the allocation succeeded without wrapping.  1 if the
 975 * allocation succeeded after wrapping, -ENOMEM if memory could not be
 976 * allocated or -EBUSY if there are no free entries in @limit.
 977 */
 978static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
 979                struct xa_limit limit, u32 *next, gfp_t gfp)
 980{
 981        int err;
 982
 983        xa_lock_bh(xa);
 984        err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 985        xa_unlock_bh(xa);
 986
 987        return err;
 988}
 989
 990/**
 991 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
 992 * @xa: XArray.
 993 * @id: Pointer to ID.
 994 * @entry: New entry.
 995 * @limit: Range of allocated ID.
 996 * @next: Pointer to next ID to allocate.
 997 * @gfp: Memory allocation flags.
 998 *
 999 * Finds an empty entry in @xa between @limit.min and @limit.max,
1000 * stores the index into the @id pointer, then stores the entry at
1001 * that index.  A concurrent lookup will not see an uninitialised @id.
1002 * The search for an empty entry will start at @next and will wrap
1003 * around if necessary.
1004 *
1005 * Context: Process context.  Takes and releases the xa_lock while
1006 * disabling interrupts.  May sleep if the @gfp flags permit.
1007 * Return: 0 if the allocation succeeded without wrapping.  1 if the
1008 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1009 * allocated or -EBUSY if there are no free entries in @limit.
1010 */
1011static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
1012                struct xa_limit limit, u32 *next, gfp_t gfp)
1013{
1014        int err;
1015
1016        xa_lock_irq(xa);
1017        err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
1018        xa_unlock_irq(xa);
1019
1020        return err;
1021}
1022
1023/**
1024 * xa_reserve() - Reserve this index in the XArray.
1025 * @xa: XArray.
1026 * @index: Index into array.
1027 * @gfp: Memory allocation flags.
1028 *
1029 * Ensures there is somewhere to store an entry at @index in the array.
1030 * If there is already something stored at @index, this function does
1031 * nothing.  If there was nothing there, the entry is marked as reserved.
1032 * Loading from a reserved entry returns a %NULL pointer.
1033 *
1034 * If you do not use the entry that you have reserved, call xa_release()
1035 * or xa_erase() to free any unnecessary memory.
1036 *
1037 * Context: Any context.  Takes and releases the xa_lock.
1038 * May sleep if the @gfp flags permit.
1039 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1040 */
1041static inline __must_check
1042int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1043{
1044        return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1045}
1046
1047/**
1048 * xa_reserve_bh() - Reserve this index in the XArray.
1049 * @xa: XArray.
1050 * @index: Index into array.
1051 * @gfp: Memory allocation flags.
1052 *
1053 * A softirq-disabling version of xa_reserve().
1054 *
1055 * Context: Any context.  Takes and releases the xa_lock while
1056 * disabling softirqs.
1057 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1058 */
1059static inline __must_check
1060int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1061{
1062        return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1063}
1064
1065/**
1066 * xa_reserve_irq() - Reserve this index in the XArray.
1067 * @xa: XArray.
1068 * @index: Index into array.
1069 * @gfp: Memory allocation flags.
1070 *
1071 * An interrupt-disabling version of xa_reserve().
1072 *
1073 * Context: Process context.  Takes and releases the xa_lock while
1074 * disabling interrupts.
1075 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1076 */
1077static inline __must_check
1078int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1079{
1080        return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1081}
1082
1083/**
1084 * xa_release() - Release a reserved entry.
1085 * @xa: XArray.
1086 * @index: Index of entry.
1087 *
1088 * After calling xa_reserve(), you can call this function to release the
1089 * reservation.  If the entry at @index has been stored to, this function
1090 * will do nothing.
1091 */
1092static inline void xa_release(struct xarray *xa, unsigned long index)
1093{
1094        xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1095}
1096
1097/* Everything below here is the Advanced API.  Proceed with caution. */
1098
1099/*
1100 * The xarray is constructed out of a set of 'chunks' of pointers.  Choosing
1101 * the best chunk size requires some tradeoffs.  A power of two recommends
1102 * itself so that we can walk the tree based purely on shifts and masks.
1103 * Generally, the larger the better; as the number of slots per level of the
1104 * tree increases, the less tall the tree needs to be.  But that needs to be
1105 * balanced against the memory consumption of each node.  On a 64-bit system,
1106 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page.  If we
1107 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1108 */
1109#ifndef XA_CHUNK_SHIFT
1110#define XA_CHUNK_SHIFT          (CONFIG_BASE_SMALL ? 4 : 6)
1111#endif
1112#define XA_CHUNK_SIZE           (1UL << XA_CHUNK_SHIFT)
1113#define XA_CHUNK_MASK           (XA_CHUNK_SIZE - 1)
1114#define XA_MAX_MARKS            3
1115#define XA_MARK_LONGS           DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
1116
1117/*
1118 * @count is the count of every non-NULL element in the ->slots array
1119 * whether that is a value entry, a retry entry, a user pointer,
1120 * a sibling entry or a pointer to the next level of the tree.
1121 * @nr_values is the count of every element in ->slots which is
1122 * either a value entry or a sibling of a value entry.
1123 */
1124struct xa_node {
1125        unsigned char   shift;          /* Bits remaining in each slot */
1126        unsigned char   offset;         /* Slot offset in parent */
1127        unsigned char   count;          /* Total entry count */
1128        unsigned char   nr_values;      /* Value entry count */
1129        struct xa_node __rcu *parent;   /* NULL at top of tree */
1130        struct xarray   *array;         /* The array we belong to */
1131        union {
1132                struct list_head private_list;  /* For tree user */
1133                struct rcu_head rcu_head;       /* Used when freeing node */
1134        };
1135        void __rcu      *slots[XA_CHUNK_SIZE];
1136        union {
1137                unsigned long   tags[XA_MAX_MARKS][XA_MARK_LONGS];
1138                unsigned long   marks[XA_MAX_MARKS][XA_MARK_LONGS];
1139        };
1140};
1141
1142void xa_dump(const struct xarray *);
1143void xa_dump_node(const struct xa_node *);
1144
1145#ifdef XA_DEBUG
1146#define XA_BUG_ON(xa, x) do {                                   \
1147                if (x) {                                        \
1148                        xa_dump(xa);                            \
1149                        BUG();                                  \
1150                }                                               \
1151        } while (0)
1152#define XA_NODE_BUG_ON(node, x) do {                            \
1153                if (x) {                                        \
1154                        if (node) xa_dump_node(node);           \
1155                        BUG();                                  \
1156                }                                               \
1157        } while (0)
1158#else
1159#define XA_BUG_ON(xa, x)        do { } while (0)
1160#define XA_NODE_BUG_ON(node, x) do { } while (0)
1161#endif
1162
1163/* Private */
1164static inline void *xa_head(const struct xarray *xa)
1165{
1166        return rcu_dereference_check(xa->xa_head,
1167                                                lockdep_is_held(&xa->xa_lock));
1168}
1169
1170/* Private */
1171static inline void *xa_head_locked(const struct xarray *xa)
1172{
1173        return rcu_dereference_protected(xa->xa_head,
1174                                                lockdep_is_held(&xa->xa_lock));
1175}
1176
1177/* Private */
1178static inline void *xa_entry(const struct xarray *xa,
1179                                const struct xa_node *node, unsigned int offset)
1180{
1181        XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1182        return rcu_dereference_check(node->slots[offset],
1183                                                lockdep_is_held(&xa->xa_lock));
1184}
1185
1186/* Private */
1187static inline void *xa_entry_locked(const struct xarray *xa,
1188                                const struct xa_node *node, unsigned int offset)
1189{
1190        XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1191        return rcu_dereference_protected(node->slots[offset],
1192                                                lockdep_is_held(&xa->xa_lock));
1193}
1194
1195/* Private */
1196static inline struct xa_node *xa_parent(const struct xarray *xa,
1197                                        const struct xa_node *node)
1198{
1199        return rcu_dereference_check(node->parent,
1200                                                lockdep_is_held(&xa->xa_lock));
1201}
1202
1203/* Private */
1204static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1205                                        const struct xa_node *node)
1206{
1207        return rcu_dereference_protected(node->parent,
1208                                                lockdep_is_held(&xa->xa_lock));
1209}
1210
1211/* Private */
1212static inline void *xa_mk_node(const struct xa_node *node)
1213{
1214        return (void *)((unsigned long)node | 2);
1215}
1216
1217/* Private */
1218static inline struct xa_node *xa_to_node(const void *entry)
1219{
1220        return (struct xa_node *)((unsigned long)entry - 2);
1221}
1222
1223/* Private */
1224static inline bool xa_is_node(const void *entry)
1225{
1226        return xa_is_internal(entry) && (unsigned long)entry > 4096;
1227}
1228
1229/* Private */
1230static inline void *xa_mk_sibling(unsigned int offset)
1231{
1232        return xa_mk_internal(offset);
1233}
1234
1235/* Private */
1236static inline unsigned long xa_to_sibling(const void *entry)
1237{
1238        return xa_to_internal(entry);
1239}
1240
1241/**
1242 * xa_is_sibling() - Is the entry a sibling entry?
1243 * @entry: Entry retrieved from the XArray
1244 *
1245 * Return: %true if the entry is a sibling entry.
1246 */
1247static inline bool xa_is_sibling(const void *entry)
1248{
1249        return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1250                (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1251}
1252
1253#define XA_RETRY_ENTRY          xa_mk_internal(256)
1254
1255/**
1256 * xa_is_retry() - Is the entry a retry entry?
1257 * @entry: Entry retrieved from the XArray
1258 *
1259 * Return: %true if the entry is a retry entry.
1260 */
1261static inline bool xa_is_retry(const void *entry)
1262{
1263        return unlikely(entry == XA_RETRY_ENTRY);
1264}
1265
1266/**
1267 * xa_is_advanced() - Is the entry only permitted for the advanced API?
1268 * @entry: Entry to be stored in the XArray.
1269 *
1270 * Return: %true if the entry cannot be stored by the normal API.
1271 */
1272static inline bool xa_is_advanced(const void *entry)
1273{
1274        return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1275}
1276
1277/**
1278 * typedef xa_update_node_t - A callback function from the XArray.
1279 * @node: The node which is being processed
1280 *
1281 * This function is called every time the XArray updates the count of
1282 * present and value entries in a node.  It allows advanced users to
1283 * maintain the private_list in the node.
1284 *
1285 * Context: The xa_lock is held and interrupts may be disabled.
1286 *          Implementations should not drop the xa_lock, nor re-enable
1287 *          interrupts.
1288 */
1289typedef void (*xa_update_node_t)(struct xa_node *node);
1290
1291void xa_delete_node(struct xa_node *, xa_update_node_t);
1292
1293/*
1294 * The xa_state is opaque to its users.  It contains various different pieces
1295 * of state involved in the current operation on the XArray.  It should be
1296 * declared on the stack and passed between the various internal routines.
1297 * The various elements in it should not be accessed directly, but only
1298 * through the provided accessor functions.  The below documentation is for
1299 * the benefit of those working on the code, not for users of the XArray.
1300 *
1301 * @xa_node usually points to the xa_node containing the slot we're operating
1302 * on (and @xa_offset is the offset in the slots array).  If there is a
1303 * single entry in the array at index 0, there are no allocated xa_nodes to
1304 * point to, and so we store %NULL in @xa_node.  @xa_node is set to
1305 * the value %XAS_RESTART if the xa_state is not walked to the correct
1306 * position in the tree of nodes for this operation.  If an error occurs
1307 * during an operation, it is set to an %XAS_ERROR value.  If we run off the
1308 * end of the allocated nodes, it is set to %XAS_BOUNDS.
1309 */
1310struct xa_state {
1311        struct xarray *xa;
1312        unsigned long xa_index;
1313        unsigned char xa_shift;
1314        unsigned char xa_sibs;
1315        unsigned char xa_offset;
1316        unsigned char xa_pad;           /* Helps gcc generate better code */
1317        struct xa_node *xa_node;
1318        struct xa_node *xa_alloc;
1319        xa_update_node_t xa_update;
1320};
1321
1322/*
1323 * We encode errnos in the xas->xa_node.  If an error has happened, we need to
1324 * drop the lock to fix it, and once we've done so the xa_state is invalid.
1325 */
1326#define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1327#define XAS_BOUNDS      ((struct xa_node *)1UL)
1328#define XAS_RESTART     ((struct xa_node *)3UL)
1329
1330#define __XA_STATE(array, index, shift, sibs)  {        \
1331        .xa = array,                                    \
1332        .xa_index = index,                              \
1333        .xa_shift = shift,                              \
1334        .xa_sibs = sibs,                                \
1335        .xa_offset = 0,                                 \
1336        .xa_pad = 0,                                    \
1337        .xa_node = XAS_RESTART,                         \
1338        .xa_alloc = NULL,                               \
1339        .xa_update = NULL                               \
1340}
1341
1342/**
1343 * XA_STATE() - Declare an XArray operation state.
1344 * @name: Name of this operation state (usually xas).
1345 * @array: Array to operate on.
1346 * @index: Initial index of interest.
1347 *
1348 * Declare and initialise an xa_state on the stack.
1349 */
1350#define XA_STATE(name, array, index)                            \
1351        struct xa_state name = __XA_STATE(array, index, 0, 0)
1352
1353/**
1354 * XA_STATE_ORDER() - Declare an XArray operation state.
1355 * @name: Name of this operation state (usually xas).
1356 * @array: Array to operate on.
1357 * @index: Initial index of interest.
1358 * @order: Order of entry.
1359 *
1360 * Declare and initialise an xa_state on the stack.  This variant of
1361 * XA_STATE() allows you to specify the 'order' of the element you
1362 * want to operate on.`
1363 */
1364#define XA_STATE_ORDER(name, array, index, order)               \
1365        struct xa_state name = __XA_STATE(array,                \
1366                        (index >> order) << order,              \
1367                        order - (order % XA_CHUNK_SHIFT),       \
1368                        (1U << (order % XA_CHUNK_SHIFT)) - 1)
1369
1370#define xas_marked(xas, mark)   xa_marked((xas)->xa, (mark))
1371#define xas_trylock(xas)        xa_trylock((xas)->xa)
1372#define xas_lock(xas)           xa_lock((xas)->xa)
1373#define xas_unlock(xas)         xa_unlock((xas)->xa)
1374#define xas_lock_bh(xas)        xa_lock_bh((xas)->xa)
1375#define xas_unlock_bh(xas)      xa_unlock_bh((xas)->xa)
1376#define xas_lock_irq(xas)       xa_lock_irq((xas)->xa)
1377#define xas_unlock_irq(xas)     xa_unlock_irq((xas)->xa)
1378#define xas_lock_irqsave(xas, flags) \
1379                                xa_lock_irqsave((xas)->xa, flags)
1380#define xas_unlock_irqrestore(xas, flags) \
1381                                xa_unlock_irqrestore((xas)->xa, flags)
1382
1383/**
1384 * xas_error() - Return an errno stored in the xa_state.
1385 * @xas: XArray operation state.
1386 *
1387 * Return: 0 if no error has been noted.  A negative errno if one has.
1388 */
1389static inline int xas_error(const struct xa_state *xas)
1390{
1391        return xa_err(xas->xa_node);
1392}
1393
1394/**
1395 * xas_set_err() - Note an error in the xa_state.
1396 * @xas: XArray operation state.
1397 * @err: Negative error number.
1398 *
1399 * Only call this function with a negative @err; zero or positive errors
1400 * will probably not behave the way you think they should.  If you want
1401 * to clear the error from an xa_state, use xas_reset().
1402 */
1403static inline void xas_set_err(struct xa_state *xas, long err)
1404{
1405        xas->xa_node = XA_ERROR(err);
1406}
1407
1408/**
1409 * xas_invalid() - Is the xas in a retry or error state?
1410 * @xas: XArray operation state.
1411 *
1412 * Return: %true if the xas cannot be used for operations.
1413 */
1414static inline bool xas_invalid(const struct xa_state *xas)
1415{
1416        return (unsigned long)xas->xa_node & 3;
1417}
1418
1419/**
1420 * xas_valid() - Is the xas a valid cursor into the array?
1421 * @xas: XArray operation state.
1422 *
1423 * Return: %true if the xas can be used for operations.
1424 */
1425static inline bool xas_valid(const struct xa_state *xas)
1426{
1427        return !xas_invalid(xas);
1428}
1429
1430/**
1431 * xas_is_node() - Does the xas point to a node?
1432 * @xas: XArray operation state.
1433 *
1434 * Return: %true if the xas currently references a node.
1435 */
1436static inline bool xas_is_node(const struct xa_state *xas)
1437{
1438        return xas_valid(xas) && xas->xa_node;
1439}
1440
1441/* True if the pointer is something other than a node */
1442static inline bool xas_not_node(struct xa_node *node)
1443{
1444        return ((unsigned long)node & 3) || !node;
1445}
1446
1447/* True if the node represents RESTART or an error */
1448static inline bool xas_frozen(struct xa_node *node)
1449{
1450        return (unsigned long)node & 2;
1451}
1452
1453/* True if the node represents head-of-tree, RESTART or BOUNDS */
1454static inline bool xas_top(struct xa_node *node)
1455{
1456        return node <= XAS_RESTART;
1457}
1458
1459/**
1460 * xas_reset() - Reset an XArray operation state.
1461 * @xas: XArray operation state.
1462 *
1463 * Resets the error or walk state of the @xas so future walks of the
1464 * array will start from the root.  Use this if you have dropped the
1465 * xarray lock and want to reuse the xa_state.
1466 *
1467 * Context: Any context.
1468 */
1469static inline void xas_reset(struct xa_state *xas)
1470{
1471        xas->xa_node = XAS_RESTART;
1472}
1473
1474/**
1475 * xas_retry() - Retry the operation if appropriate.
1476 * @xas: XArray operation state.
1477 * @entry: Entry from xarray.
1478 *
1479 * The advanced functions may sometimes return an internal entry, such as
1480 * a retry entry or a zero entry.  This function sets up the @xas to restart
1481 * the walk from the head of the array if needed.
1482 *
1483 * Context: Any context.
1484 * Return: true if the operation needs to be retried.
1485 */
1486static inline bool xas_retry(struct xa_state *xas, const void *entry)
1487{
1488        if (xa_is_zero(entry))
1489                return true;
1490        if (!xa_is_retry(entry))
1491                return false;
1492        xas_reset(xas);
1493        return true;
1494}
1495
1496void *xas_load(struct xa_state *);
1497void *xas_store(struct xa_state *, void *entry);
1498void *xas_find(struct xa_state *, unsigned long max);
1499void *xas_find_conflict(struct xa_state *);
1500
1501bool xas_get_mark(const struct xa_state *, xa_mark_t);
1502void xas_set_mark(const struct xa_state *, xa_mark_t);
1503void xas_clear_mark(const struct xa_state *, xa_mark_t);
1504void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1505void xas_init_marks(const struct xa_state *);
1506
1507bool xas_nomem(struct xa_state *, gfp_t);
1508void xas_pause(struct xa_state *);
1509
1510void xas_create_range(struct xa_state *);
1511
1512#ifdef CONFIG_XARRAY_MULTI
1513int xa_get_order(struct xarray *, unsigned long index);
1514void xas_split(struct xa_state *, void *entry, unsigned int order);
1515void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t);
1516#else
1517static inline int xa_get_order(struct xarray *xa, unsigned long index)
1518{
1519        return 0;
1520}
1521
1522static inline void xas_split(struct xa_state *xas, void *entry,
1523                unsigned int order)
1524{
1525        xas_store(xas, entry);
1526}
1527
1528static inline void xas_split_alloc(struct xa_state *xas, void *entry,
1529                unsigned int order, gfp_t gfp)
1530{
1531}
1532#endif
1533
1534/**
1535 * xas_reload() - Refetch an entry from the xarray.
1536 * @xas: XArray operation state.
1537 *
1538 * Use this function to check that a previously loaded entry still has
1539 * the same value.  This is useful for the lockless pagecache lookup where
1540 * we walk the array with only the RCU lock to protect us, lock the page,
1541 * then check that the page hasn't moved since we looked it up.
1542 *
1543 * The caller guarantees that @xas is still valid.  If it may be in an
1544 * error or restart state, call xas_load() instead.
1545 *
1546 * Return: The entry at this location in the xarray.
1547 */
1548static inline void *xas_reload(struct xa_state *xas)
1549{
1550        struct xa_node *node = xas->xa_node;
1551        void *entry;
1552        char offset;
1553
1554        if (!node)
1555                return xa_head(xas->xa);
1556        if (IS_ENABLED(CONFIG_XARRAY_MULTI)) {
1557                offset = (xas->xa_index >> node->shift) & XA_CHUNK_MASK;
1558                entry = xa_entry(xas->xa, node, offset);
1559                if (!xa_is_sibling(entry))
1560                        return entry;
1561                offset = xa_to_sibling(entry);
1562        } else {
1563                offset = xas->xa_offset;
1564        }
1565        return xa_entry(xas->xa, node, offset);
1566}
1567
1568/**
1569 * xas_set() - Set up XArray operation state for a different index.
1570 * @xas: XArray operation state.
1571 * @index: New index into the XArray.
1572 *
1573 * Move the operation state to refer to a different index.  This will
1574 * have the effect of starting a walk from the top; see xas_next()
1575 * to move to an adjacent index.
1576 */
1577static inline void xas_set(struct xa_state *xas, unsigned long index)
1578{
1579        xas->xa_index = index;
1580        xas->xa_node = XAS_RESTART;
1581}
1582
1583/**
1584 * xas_set_order() - Set up XArray operation state for a multislot entry.
1585 * @xas: XArray operation state.
1586 * @index: Target of the operation.
1587 * @order: Entry occupies 2^@order indices.
1588 */
1589static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1590                                        unsigned int order)
1591{
1592#ifdef CONFIG_XARRAY_MULTI
1593        xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1594        xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1595        xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1596        xas->xa_node = XAS_RESTART;
1597#else
1598        BUG_ON(order > 0);
1599        xas_set(xas, index);
1600#endif
1601}
1602
1603/**
1604 * xas_set_update() - Set up XArray operation state for a callback.
1605 * @xas: XArray operation state.
1606 * @update: Function to call when updating a node.
1607 *
1608 * The XArray can notify a caller after it has updated an xa_node.
1609 * This is advanced functionality and is only needed by the page cache.
1610 */
1611static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1612{
1613        xas->xa_update = update;
1614}
1615
1616/**
1617 * xas_next_entry() - Advance iterator to next present entry.
1618 * @xas: XArray operation state.
1619 * @max: Highest index to return.
1620 *
1621 * xas_next_entry() is an inline function to optimise xarray traversal for
1622 * speed.  It is equivalent to calling xas_find(), and will call xas_find()
1623 * for all the hard cases.
1624 *
1625 * Return: The next present entry after the one currently referred to by @xas.
1626 */
1627static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1628{
1629        struct xa_node *node = xas->xa_node;
1630        void *entry;
1631
1632        if (unlikely(xas_not_node(node) || node->shift ||
1633                        xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1634                return xas_find(xas, max);
1635
1636        do {
1637                if (unlikely(xas->xa_index >= max))
1638                        return xas_find(xas, max);
1639                if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1640                        return xas_find(xas, max);
1641                entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1642                if (unlikely(xa_is_internal(entry)))
1643                        return xas_find(xas, max);
1644                xas->xa_offset++;
1645                xas->xa_index++;
1646        } while (!entry);
1647
1648        return entry;
1649}
1650
1651/* Private */
1652static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1653                xa_mark_t mark)
1654{
1655        unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1656        unsigned int offset = xas->xa_offset;
1657
1658        if (advance)
1659                offset++;
1660        if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1661                if (offset < XA_CHUNK_SIZE) {
1662                        unsigned long data = *addr & (~0UL << offset);
1663                        if (data)
1664                                return __ffs(data);
1665                }
1666                return XA_CHUNK_SIZE;
1667        }
1668
1669        return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1670}
1671
1672/**
1673 * xas_next_marked() - Advance iterator to next marked entry.
1674 * @xas: XArray operation state.
1675 * @max: Highest index to return.
1676 * @mark: Mark to search for.
1677 *
1678 * xas_next_marked() is an inline function to optimise xarray traversal for
1679 * speed.  It is equivalent to calling xas_find_marked(), and will call
1680 * xas_find_marked() for all the hard cases.
1681 *
1682 * Return: The next marked entry after the one currently referred to by @xas.
1683 */
1684static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1685                                                                xa_mark_t mark)
1686{
1687        struct xa_node *node = xas->xa_node;
1688        void *entry;
1689        unsigned int offset;
1690
1691        if (unlikely(xas_not_node(node) || node->shift))
1692                return xas_find_marked(xas, max, mark);
1693        offset = xas_find_chunk(xas, true, mark);
1694        xas->xa_offset = offset;
1695        xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1696        if (xas->xa_index > max)
1697                return NULL;
1698        if (offset == XA_CHUNK_SIZE)
1699                return xas_find_marked(xas, max, mark);
1700        entry = xa_entry(xas->xa, node, offset);
1701        if (!entry)
1702                return xas_find_marked(xas, max, mark);
1703        return entry;
1704}
1705
1706/*
1707 * If iterating while holding a lock, drop the lock and reschedule
1708 * every %XA_CHECK_SCHED loops.
1709 */
1710enum {
1711        XA_CHECK_SCHED = 4096,
1712};
1713
1714/**
1715 * xas_for_each() - Iterate over a range of an XArray.
1716 * @xas: XArray operation state.
1717 * @entry: Entry retrieved from the array.
1718 * @max: Maximum index to retrieve from array.
1719 *
1720 * The loop body will be executed for each entry present in the xarray
1721 * between the current xas position and @max.  @entry will be set to
1722 * the entry retrieved from the xarray.  It is safe to delete entries
1723 * from the array in the loop body.  You should hold either the RCU lock
1724 * or the xa_lock while iterating.  If you need to drop the lock, call
1725 * xas_pause() first.
1726 */
1727#define xas_for_each(xas, entry, max) \
1728        for (entry = xas_find(xas, max); entry; \
1729             entry = xas_next_entry(xas, max))
1730
1731/**
1732 * xas_for_each_marked() - Iterate over a range of an XArray.
1733 * @xas: XArray operation state.
1734 * @entry: Entry retrieved from the array.
1735 * @max: Maximum index to retrieve from array.
1736 * @mark: Mark to search for.
1737 *
1738 * The loop body will be executed for each marked entry in the xarray
1739 * between the current xas position and @max.  @entry will be set to
1740 * the entry retrieved from the xarray.  It is safe to delete entries
1741 * from the array in the loop body.  You should hold either the RCU lock
1742 * or the xa_lock while iterating.  If you need to drop the lock, call
1743 * xas_pause() first.
1744 */
1745#define xas_for_each_marked(xas, entry, max, mark) \
1746        for (entry = xas_find_marked(xas, max, mark); entry; \
1747             entry = xas_next_marked(xas, max, mark))
1748
1749/**
1750 * xas_for_each_conflict() - Iterate over a range of an XArray.
1751 * @xas: XArray operation state.
1752 * @entry: Entry retrieved from the array.
1753 *
1754 * The loop body will be executed for each entry in the XArray that
1755 * lies within the range specified by @xas.  If the loop terminates
1756 * normally, @entry will be %NULL.  The user may break out of the loop,
1757 * which will leave @entry set to the conflicting entry.  The caller
1758 * may also call xa_set_err() to exit the loop while setting an error
1759 * to record the reason.
1760 */
1761#define xas_for_each_conflict(xas, entry) \
1762        while ((entry = xas_find_conflict(xas)))
1763
1764void *__xas_next(struct xa_state *);
1765void *__xas_prev(struct xa_state *);
1766
1767/**
1768 * xas_prev() - Move iterator to previous index.
1769 * @xas: XArray operation state.
1770 *
1771 * If the @xas was in an error state, it will remain in an error state
1772 * and this function will return %NULL.  If the @xas has never been walked,
1773 * it will have the effect of calling xas_load().  Otherwise one will be
1774 * subtracted from the index and the state will be walked to the correct
1775 * location in the array for the next operation.
1776 *
1777 * If the iterator was referencing index 0, this function wraps
1778 * around to %ULONG_MAX.
1779 *
1780 * Return: The entry at the new index.  This may be %NULL or an internal
1781 * entry.
1782 */
1783static inline void *xas_prev(struct xa_state *xas)
1784{
1785        struct xa_node *node = xas->xa_node;
1786
1787        if (unlikely(xas_not_node(node) || node->shift ||
1788                                xas->xa_offset == 0))
1789                return __xas_prev(xas);
1790
1791        xas->xa_index--;
1792        xas->xa_offset--;
1793        return xa_entry(xas->xa, node, xas->xa_offset);
1794}
1795
1796/**
1797 * xas_next() - Move state to next index.
1798 * @xas: XArray operation state.
1799 *
1800 * If the @xas was in an error state, it will remain in an error state
1801 * and this function will return %NULL.  If the @xas has never been walked,
1802 * it will have the effect of calling xas_load().  Otherwise one will be
1803 * added to the index and the state will be walked to the correct
1804 * location in the array for the next operation.
1805 *
1806 * If the iterator was referencing index %ULONG_MAX, this function wraps
1807 * around to 0.
1808 *
1809 * Return: The entry at the new index.  This may be %NULL or an internal
1810 * entry.
1811 */
1812static inline void *xas_next(struct xa_state *xas)
1813{
1814        struct xa_node *node = xas->xa_node;
1815
1816        if (unlikely(xas_not_node(node) || node->shift ||
1817                                xas->xa_offset == XA_CHUNK_MASK))
1818                return __xas_next(xas);
1819
1820        xas->xa_index++;
1821        xas->xa_offset++;
1822        return xa_entry(xas->xa, node, xas->xa_offset);
1823}
1824
1825#endif /* _LINUX_XARRAY_H */
1826