1/* SPDX-License-Identifier: GPL-2.0+ */ 2#ifndef _LINUX_XARRAY_H 3#define _LINUX_XARRAY_H 4/* 5 * eXtensible Arrays 6 * Copyright (c) 2017 Microsoft Corporation 7 * Author: Matthew Wilcox <willy@infradead.org> 8 * 9 * See Documentation/core-api/xarray.rst for how to use the XArray. 10 */ 11 12#include <linux/bug.h> 13#include <linux/compiler.h> 14#include <linux/gfp.h> 15#include <linux/kconfig.h> 16#include <linux/kernel.h> 17#include <linux/rcupdate.h> 18#include <linux/spinlock.h> 19#include <linux/types.h> 20 21/* 22 * The bottom two bits of the entry determine how the XArray interprets 23 * the contents: 24 * 25 * 00: Pointer entry 26 * 10: Internal entry 27 * x1: Value entry or tagged pointer 28 * 29 * Attempting to store internal entries in the XArray is a bug. 30 * 31 * Most internal entries are pointers to the next node in the tree. 32 * The following internal entries have a special meaning: 33 * 34 * 0-62: Sibling entries 35 * 256: Retry entry 36 * 257: Zero entry 37 * 38 * Errors are also represented as internal entries, but use the negative 39 * space (-4094 to -2). They're never stored in the slots array; only 40 * returned by the normal API. 41 */ 42 43#define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) 44 45/** 46 * xa_mk_value() - Create an XArray entry from an integer. 47 * @v: Value to store in XArray. 48 * 49 * Context: Any context. 50 * Return: An entry suitable for storing in the XArray. 51 */ 52static inline void *xa_mk_value(unsigned long v) 53{ 54 WARN_ON((long)v < 0); 55 return (void *)((v << 1) | 1); 56} 57 58/** 59 * xa_to_value() - Get value stored in an XArray entry. 60 * @entry: XArray entry. 61 * 62 * Context: Any context. 63 * Return: The value stored in the XArray entry. 64 */ 65static inline unsigned long xa_to_value(const void *entry) 66{ 67 return (unsigned long)entry >> 1; 68} 69 70/** 71 * xa_is_value() - Determine if an entry is a value. 72 * @entry: XArray entry. 73 * 74 * Context: Any context. 75 * Return: True if the entry is a value, false if it is a pointer. 76 */ 77static inline bool xa_is_value(const void *entry) 78{ 79 return (unsigned long)entry & 1; 80} 81 82/** 83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer. 84 * @p: Plain pointer. 85 * @tag: Tag value (0, 1 or 3). 86 * 87 * If the user of the XArray prefers, they can tag their pointers instead 88 * of storing value entries. Three tags are available (0, 1 and 3). 89 * These are distinct from the xa_mark_t as they are not replicated up 90 * through the array and cannot be searched for. 91 * 92 * Context: Any context. 93 * Return: An XArray entry. 94 */ 95static inline void *xa_tag_pointer(void *p, unsigned long tag) 96{ 97 return (void *)((unsigned long)p | tag); 98} 99 100/** 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer. 102 * @entry: XArray entry. 103 * 104 * If you have stored a tagged pointer in the XArray, call this function 105 * to get the untagged version of the pointer. 106 * 107 * Context: Any context. 108 * Return: A pointer. 109 */ 110static inline void *xa_untag_pointer(void *entry) 111{ 112 return (void *)((unsigned long)entry & ~3UL); 113} 114 115/** 116 * xa_pointer_tag() - Get the tag stored in an XArray entry. 117 * @entry: XArray entry. 118 * 119 * If you have stored a tagged pointer in the XArray, call this function 120 * to get the tag of that pointer. 121 * 122 * Context: Any context. 123 * Return: A tag. 124 */ 125static inline unsigned int xa_pointer_tag(void *entry) 126{ 127 return (unsigned long)entry & 3UL; 128} 129 130/* 131 * xa_mk_internal() - Create an internal entry. 132 * @v: Value to turn into an internal entry. 133 * 134 * Internal entries are used for a number of purposes. Entries 0-255 are 135 * used for sibling entries (only 0-62 are used by the current code). 256 136 * is used for the retry entry. 257 is used for the reserved / zero entry. 137 * Negative internal entries are used to represent errnos. Node pointers 138 * are also tagged as internal entries in some situations. 139 * 140 * Context: Any context. 141 * Return: An XArray internal entry corresponding to this value. 142 */ 143static inline void *xa_mk_internal(unsigned long v) 144{ 145 return (void *)((v << 2) | 2); 146} 147 148/* 149 * xa_to_internal() - Extract the value from an internal entry. 150 * @entry: XArray entry. 151 * 152 * Context: Any context. 153 * Return: The value which was stored in the internal entry. 154 */ 155static inline unsigned long xa_to_internal(const void *entry) 156{ 157 return (unsigned long)entry >> 2; 158} 159 160/* 161 * xa_is_internal() - Is the entry an internal entry? 162 * @entry: XArray entry. 163 * 164 * Context: Any context. 165 * Return: %true if the entry is an internal entry. 166 */ 167static inline bool xa_is_internal(const void *entry) 168{ 169 return ((unsigned long)entry & 3) == 2; 170} 171 172#define XA_ZERO_ENTRY xa_mk_internal(257) 173 174/** 175 * xa_is_zero() - Is the entry a zero entry? 176 * @entry: Entry retrieved from the XArray 177 * 178 * The normal API will return NULL as the contents of a slot containing 179 * a zero entry. You can only see zero entries by using the advanced API. 180 * 181 * Return: %true if the entry is a zero entry. 182 */ 183static inline bool xa_is_zero(const void *entry) 184{ 185 return unlikely(entry == XA_ZERO_ENTRY); 186} 187 188/** 189 * xa_is_err() - Report whether an XArray operation returned an error 190 * @entry: Result from calling an XArray function 191 * 192 * If an XArray operation cannot complete an operation, it will return 193 * a special value indicating an error. This function tells you 194 * whether an error occurred; xa_err() tells you which error occurred. 195 * 196 * Context: Any context. 197 * Return: %true if the entry indicates an error. 198 */ 199static inline bool xa_is_err(const void *entry) 200{ 201 return unlikely(xa_is_internal(entry) && 202 entry >= xa_mk_internal(-MAX_ERRNO)); 203} 204 205/** 206 * xa_err() - Turn an XArray result into an errno. 207 * @entry: Result from calling an XArray function. 208 * 209 * If an XArray operation cannot complete an operation, it will return 210 * a special pointer value which encodes an errno. This function extracts 211 * the errno from the pointer value, or returns 0 if the pointer does not 212 * represent an errno. 213 * 214 * Context: Any context. 215 * Return: A negative errno or 0. 216 */ 217static inline int xa_err(void *entry) 218{ 219 /* xa_to_internal() would not do sign extension. */ 220 if (xa_is_err(entry)) 221 return (long)entry >> 2; 222 return 0; 223} 224 225/** 226 * struct xa_limit - Represents a range of IDs. 227 * @min: The lowest ID to allocate (inclusive). 228 * @max: The maximum ID to allocate (inclusive). 229 * 230 * This structure is used either directly or via the XA_LIMIT() macro 231 * to communicate the range of IDs that are valid for allocation. 232 * Three common ranges are predefined for you: 233 * * xa_limit_32b - [0 - UINT_MAX] 234 * * xa_limit_31b - [0 - INT_MAX] 235 * * xa_limit_16b - [0 - USHRT_MAX] 236 */ 237struct xa_limit { 238 u32 max; 239 u32 min; 240}; 241 242#define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max } 243 244#define xa_limit_32b XA_LIMIT(0, UINT_MAX) 245#define xa_limit_31b XA_LIMIT(0, INT_MAX) 246#define xa_limit_16b XA_LIMIT(0, USHRT_MAX) 247 248typedef unsigned __bitwise xa_mark_t; 249#define XA_MARK_0 ((__force xa_mark_t)0U) 250#define XA_MARK_1 ((__force xa_mark_t)1U) 251#define XA_MARK_2 ((__force xa_mark_t)2U) 252#define XA_PRESENT ((__force xa_mark_t)8U) 253#define XA_MARK_MAX XA_MARK_2 254#define XA_FREE_MARK XA_MARK_0 255 256enum xa_lock_type { 257 XA_LOCK_IRQ = 1, 258 XA_LOCK_BH = 2, 259}; 260 261/* 262 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, 263 * and we remain compatible with that. 264 */ 265#define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) 266#define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) 267#define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) 268#define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U) 269#define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U) 270#define XA_FLAGS_ACCOUNT ((__force gfp_t)32U) 271#define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ 272 (__force unsigned)(mark))) 273 274/* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */ 275#define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) 276#define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY) 277 278/** 279 * struct xarray - The anchor of the XArray. 280 * @xa_lock: Lock that protects the contents of the XArray. 281 * 282 * To use the xarray, define it statically or embed it in your data structure. 283 * It is a very small data structure, so it does not usually make sense to 284 * allocate it separately and keep a pointer to it in your data structure. 285 * 286 * You may use the xa_lock to protect your own data structures as well. 287 */ 288/* 289 * If all of the entries in the array are NULL, @xa_head is a NULL pointer. 290 * If the only non-NULL entry in the array is at index 0, @xa_head is that 291 * entry. If any other entry in the array is non-NULL, @xa_head points 292 * to an @xa_node. 293 */ 294struct xarray { 295 spinlock_t xa_lock; 296/* private: The rest of the data structure is not to be used directly. */ 297 gfp_t xa_flags; 298 void __rcu * xa_head; 299}; 300 301#define XARRAY_INIT(name, flags) { \ 302 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ 303 .xa_flags = flags, \ 304 .xa_head = NULL, \ 305} 306 307/** 308 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. 309 * @name: A string that names your XArray. 310 * @flags: XA_FLAG values. 311 * 312 * This is intended for file scope definitions of XArrays. It declares 313 * and initialises an empty XArray with the chosen name and flags. It is 314 * equivalent to calling xa_init_flags() on the array, but it does the 315 * initialisation at compiletime instead of runtime. 316 */ 317#define DEFINE_XARRAY_FLAGS(name, flags) \ 318 struct xarray name = XARRAY_INIT(name, flags) 319 320/** 321 * DEFINE_XARRAY() - Define an XArray. 322 * @name: A string that names your XArray. 323 * 324 * This is intended for file scope definitions of XArrays. It declares 325 * and initialises an empty XArray with the chosen name. It is equivalent 326 * to calling xa_init() on the array, but it does the initialisation at 327 * compiletime instead of runtime. 328 */ 329#define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) 330 331/** 332 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0. 333 * @name: A string that names your XArray. 334 * 335 * This is intended for file scope definitions of allocating XArrays. 336 * See also DEFINE_XARRAY(). 337 */ 338#define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) 339 340/** 341 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1. 342 * @name: A string that names your XArray. 343 * 344 * This is intended for file scope definitions of allocating XArrays. 345 * See also DEFINE_XARRAY(). 346 */ 347#define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1) 348 349void *xa_load(struct xarray *, unsigned long index); 350void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 351void *xa_erase(struct xarray *, unsigned long index); 352void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, 353 void *entry, gfp_t); 354bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); 355void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 356void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 357void *xa_find(struct xarray *xa, unsigned long *index, 358 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 359void *xa_find_after(struct xarray *xa, unsigned long *index, 360 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 361unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, 362 unsigned long max, unsigned int n, xa_mark_t); 363void xa_destroy(struct xarray *); 364 365/** 366 * xa_init_flags() - Initialise an empty XArray with flags. 367 * @xa: XArray. 368 * @flags: XA_FLAG values. 369 * 370 * If you need to initialise an XArray with special flags (eg you need 371 * to take the lock from interrupt context), use this function instead 372 * of xa_init(). 373 * 374 * Context: Any context. 375 */ 376static inline void xa_init_flags(struct xarray *xa, gfp_t flags) 377{ 378 spin_lock_init(&xa->xa_lock); 379 xa->xa_flags = flags; 380 xa->xa_head = NULL; 381} 382 383/** 384 * xa_init() - Initialise an empty XArray. 385 * @xa: XArray. 386 * 387 * An empty XArray is full of NULL entries. 388 * 389 * Context: Any context. 390 */ 391static inline void xa_init(struct xarray *xa) 392{ 393 xa_init_flags(xa, 0); 394} 395 396/** 397 * xa_empty() - Determine if an array has any present entries. 398 * @xa: XArray. 399 * 400 * Context: Any context. 401 * Return: %true if the array contains only NULL pointers. 402 */ 403static inline bool xa_empty(const struct xarray *xa) 404{ 405 return xa->xa_head == NULL; 406} 407 408/** 409 * xa_marked() - Inquire whether any entry in this array has a mark set 410 * @xa: Array 411 * @mark: Mark value 412 * 413 * Context: Any context. 414 * Return: %true if any entry has this mark set. 415 */ 416static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) 417{ 418 return xa->xa_flags & XA_FLAGS_MARK(mark); 419} 420 421/** 422 * xa_for_each_range() - Iterate over a portion of an XArray. 423 * @xa: XArray. 424 * @index: Index of @entry. 425 * @entry: Entry retrieved from array. 426 * @start: First index to retrieve from array. 427 * @last: Last index to retrieve from array. 428 * 429 * During the iteration, @entry will have the value of the entry stored 430 * in @xa at @index. You may modify @index during the iteration if you 431 * want to skip or reprocess indices. It is safe to modify the array 432 * during the iteration. At the end of the iteration, @entry will be set 433 * to NULL and @index will have a value less than or equal to max. 434 * 435 * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n). You have 436 * to handle your own locking with xas_for_each(), and if you have to unlock 437 * after each iteration, it will also end up being O(n.log(n)). 438 * xa_for_each_range() will spin if it hits a retry entry; if you intend to 439 * see retry entries, you should use the xas_for_each() iterator instead. 440 * The xas_for_each() iterator will expand into more inline code than 441 * xa_for_each_range(). 442 * 443 * Context: Any context. Takes and releases the RCU lock. 444 */ 445#define xa_for_each_range(xa, index, entry, start, last) \ 446 for (index = start, \ 447 entry = xa_find(xa, &index, last, XA_PRESENT); \ 448 entry; \ 449 entry = xa_find_after(xa, &index, last, XA_PRESENT)) 450 451/** 452 * xa_for_each_start() - Iterate over a portion of an XArray. 453 * @xa: XArray. 454 * @index: Index of @entry. 455 * @entry: Entry retrieved from array. 456 * @start: First index to retrieve from array. 457 * 458 * During the iteration, @entry will have the value of the entry stored 459 * in @xa at @index. You may modify @index during the iteration if you 460 * want to skip or reprocess indices. It is safe to modify the array 461 * during the iteration. At the end of the iteration, @entry will be set 462 * to NULL and @index will have a value less than or equal to max. 463 * 464 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have 465 * to handle your own locking with xas_for_each(), and if you have to unlock 466 * after each iteration, it will also end up being O(n.log(n)). 467 * xa_for_each_start() will spin if it hits a retry entry; if you intend to 468 * see retry entries, you should use the xas_for_each() iterator instead. 469 * The xas_for_each() iterator will expand into more inline code than 470 * xa_for_each_start(). 471 * 472 * Context: Any context. Takes and releases the RCU lock. 473 */ 474#define xa_for_each_start(xa, index, entry, start) \ 475 xa_for_each_range(xa, index, entry, start, ULONG_MAX) 476 477/** 478 * xa_for_each() - Iterate over present entries in an XArray. 479 * @xa: XArray. 480 * @index: Index of @entry. 481 * @entry: Entry retrieved from array. 482 * 483 * During the iteration, @entry will have the value of the entry stored 484 * in @xa at @index. You may modify @index during the iteration if you want 485 * to skip or reprocess indices. It is safe to modify the array during the 486 * iteration. At the end of the iteration, @entry will be set to NULL and 487 * @index will have a value less than or equal to max. 488 * 489 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have 490 * to handle your own locking with xas_for_each(), and if you have to unlock 491 * after each iteration, it will also end up being O(n.log(n)). xa_for_each() 492 * will spin if it hits a retry entry; if you intend to see retry entries, 493 * you should use the xas_for_each() iterator instead. The xas_for_each() 494 * iterator will expand into more inline code than xa_for_each(). 495 * 496 * Context: Any context. Takes and releases the RCU lock. 497 */ 498#define xa_for_each(xa, index, entry) \ 499 xa_for_each_start(xa, index, entry, 0) 500 501/** 502 * xa_for_each_marked() - Iterate over marked entries in an XArray. 503 * @xa: XArray. 504 * @index: Index of @entry. 505 * @entry: Entry retrieved from array. 506 * @filter: Selection criterion. 507 * 508 * During the iteration, @entry will have the value of the entry stored 509 * in @xa at @index. The iteration will skip all entries in the array 510 * which do not match @filter. You may modify @index during the iteration 511 * if you want to skip or reprocess indices. It is safe to modify the array 512 * during the iteration. At the end of the iteration, @entry will be set to 513 * NULL and @index will have a value less than or equal to max. 514 * 515 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n). 516 * You have to handle your own locking with xas_for_each(), and if you have 517 * to unlock after each iteration, it will also end up being O(n.log(n)). 518 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to 519 * see retry entries, you should use the xas_for_each_marked() iterator 520 * instead. The xas_for_each_marked() iterator will expand into more inline 521 * code than xa_for_each_marked(). 522 * 523 * Context: Any context. Takes and releases the RCU lock. 524 */ 525#define xa_for_each_marked(xa, index, entry, filter) \ 526 for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \ 527 entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter)) 528 529#define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) 530#define xa_lock(xa) spin_lock(&(xa)->xa_lock) 531#define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) 532#define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) 533#define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) 534#define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) 535#define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) 536#define xa_lock_irqsave(xa, flags) \ 537 spin_lock_irqsave(&(xa)->xa_lock, flags) 538#define xa_unlock_irqrestore(xa, flags) \ 539 spin_unlock_irqrestore(&(xa)->xa_lock, flags) 540#define xa_lock_nested(xa, subclass) \ 541 spin_lock_nested(&(xa)->xa_lock, subclass) 542#define xa_lock_bh_nested(xa, subclass) \ 543 spin_lock_bh_nested(&(xa)->xa_lock, subclass) 544#define xa_lock_irq_nested(xa, subclass) \ 545 spin_lock_irq_nested(&(xa)->xa_lock, subclass) 546#define xa_lock_irqsave_nested(xa, flags, subclass) \ 547 spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass) 548 549/* 550 * Versions of the normal API which require the caller to hold the 551 * xa_lock. If the GFP flags allow it, they will drop the lock to 552 * allocate memory, then reacquire it afterwards. These functions 553 * may also re-enable interrupts if the XArray flags indicate the 554 * locking should be interrupt safe. 555 */ 556void *__xa_erase(struct xarray *, unsigned long index); 557void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 558void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, 559 void *entry, gfp_t); 560int __must_check __xa_insert(struct xarray *, unsigned long index, 561 void *entry, gfp_t); 562int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry, 563 struct xa_limit, gfp_t); 564int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry, 565 struct xa_limit, u32 *next, gfp_t); 566void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 567void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 568 569/** 570 * xa_store_bh() - Store this entry in the XArray. 571 * @xa: XArray. 572 * @index: Index into array. 573 * @entry: New entry. 574 * @gfp: Memory allocation flags. 575 * 576 * This function is like calling xa_store() except it disables softirqs 577 * while holding the array lock. 578 * 579 * Context: Any context. Takes and releases the xa_lock while 580 * disabling softirqs. 581 * Return: The old entry at this index or xa_err() if an error happened. 582 */ 583static inline void *xa_store_bh(struct xarray *xa, unsigned long index, 584 void *entry, gfp_t gfp) 585{ 586 void *curr; 587 588 xa_lock_bh(xa); 589 curr = __xa_store(xa, index, entry, gfp); 590 xa_unlock_bh(xa); 591 592 return curr; 593} 594 595/** 596 * xa_store_irq() - Store this entry in the XArray. 597 * @xa: XArray. 598 * @index: Index into array. 599 * @entry: New entry. 600 * @gfp: Memory allocation flags. 601 * 602 * This function is like calling xa_store() except it disables interrupts 603 * while holding the array lock. 604 * 605 * Context: Process context. Takes and releases the xa_lock while 606 * disabling interrupts. 607 * Return: The old entry at this index or xa_err() if an error happened. 608 */ 609static inline void *xa_store_irq(struct xarray *xa, unsigned long index, 610 void *entry, gfp_t gfp) 611{ 612 void *curr; 613 614 xa_lock_irq(xa); 615 curr = __xa_store(xa, index, entry, gfp); 616 xa_unlock_irq(xa); 617 618 return curr; 619} 620 621/** 622 * xa_erase_bh() - Erase this entry from the XArray. 623 * @xa: XArray. 624 * @index: Index of entry. 625 * 626 * After this function returns, loading from @index will return %NULL. 627 * If the index is part of a multi-index entry, all indices will be erased 628 * and none of the entries will be part of a multi-index entry. 629 * 630 * Context: Any context. Takes and releases the xa_lock while 631 * disabling softirqs. 632 * Return: The entry which used to be at this index. 633 */ 634static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) 635{ 636 void *entry; 637 638 xa_lock_bh(xa); 639 entry = __xa_erase(xa, index); 640 xa_unlock_bh(xa); 641 642 return entry; 643} 644 645/** 646 * xa_erase_irq() - Erase this entry from the XArray. 647 * @xa: XArray. 648 * @index: Index of entry. 649 * 650 * After this function returns, loading from @index will return %NULL. 651 * If the index is part of a multi-index entry, all indices will be erased 652 * and none of the entries will be part of a multi-index entry. 653 * 654 * Context: Process context. Takes and releases the xa_lock while 655 * disabling interrupts. 656 * Return: The entry which used to be at this index. 657 */ 658static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) 659{ 660 void *entry; 661 662 xa_lock_irq(xa); 663 entry = __xa_erase(xa, index); 664 xa_unlock_irq(xa); 665 666 return entry; 667} 668 669/** 670 * xa_cmpxchg() - Conditionally replace an entry in the XArray. 671 * @xa: XArray. 672 * @index: Index into array. 673 * @old: Old value to test against. 674 * @entry: New value to place in array. 675 * @gfp: Memory allocation flags. 676 * 677 * If the entry at @index is the same as @old, replace it with @entry. 678 * If the return value is equal to @old, then the exchange was successful. 679 * 680 * Context: Any context. Takes and releases the xa_lock. May sleep 681 * if the @gfp flags permit. 682 * Return: The old value at this index or xa_err() if an error happened. 683 */ 684static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, 685 void *old, void *entry, gfp_t gfp) 686{ 687 void *curr; 688 689 xa_lock(xa); 690 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 691 xa_unlock(xa); 692 693 return curr; 694} 695 696/** 697 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray. 698 * @xa: XArray. 699 * @index: Index into array. 700 * @old: Old value to test against. 701 * @entry: New value to place in array. 702 * @gfp: Memory allocation flags. 703 * 704 * This function is like calling xa_cmpxchg() except it disables softirqs 705 * while holding the array lock. 706 * 707 * Context: Any context. Takes and releases the xa_lock while 708 * disabling softirqs. May sleep if the @gfp flags permit. 709 * Return: The old value at this index or xa_err() if an error happened. 710 */ 711static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index, 712 void *old, void *entry, gfp_t gfp) 713{ 714 void *curr; 715 716 xa_lock_bh(xa); 717 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 718 xa_unlock_bh(xa); 719 720 return curr; 721} 722 723/** 724 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray. 725 * @xa: XArray. 726 * @index: Index into array. 727 * @old: Old value to test against. 728 * @entry: New value to place in array. 729 * @gfp: Memory allocation flags. 730 * 731 * This function is like calling xa_cmpxchg() except it disables interrupts 732 * while holding the array lock. 733 * 734 * Context: Process context. Takes and releases the xa_lock while 735 * disabling interrupts. May sleep if the @gfp flags permit. 736 * Return: The old value at this index or xa_err() if an error happened. 737 */ 738static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index, 739 void *old, void *entry, gfp_t gfp) 740{ 741 void *curr; 742 743 xa_lock_irq(xa); 744 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 745 xa_unlock_irq(xa); 746 747 return curr; 748} 749 750/** 751 * xa_insert() - Store this entry in the XArray unless another entry is 752 * already present. 753 * @xa: XArray. 754 * @index: Index into array. 755 * @entry: New entry. 756 * @gfp: Memory allocation flags. 757 * 758 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 759 * if no entry is present. Inserting will fail if a reserved entry is 760 * present, even though loading from this index will return NULL. 761 * 762 * Context: Any context. Takes and releases the xa_lock. May sleep if 763 * the @gfp flags permit. 764 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 765 * -ENOMEM if memory could not be allocated. 766 */ 767static inline int __must_check xa_insert(struct xarray *xa, 768 unsigned long index, void *entry, gfp_t gfp) 769{ 770 int err; 771 772 xa_lock(xa); 773 err = __xa_insert(xa, index, entry, gfp); 774 xa_unlock(xa); 775 776 return err; 777} 778 779/** 780 * xa_insert_bh() - Store this entry in the XArray unless another entry is 781 * already present. 782 * @xa: XArray. 783 * @index: Index into array. 784 * @entry: New entry. 785 * @gfp: Memory allocation flags. 786 * 787 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 788 * if no entry is present. Inserting will fail if a reserved entry is 789 * present, even though loading from this index will return NULL. 790 * 791 * Context: Any context. Takes and releases the xa_lock while 792 * disabling softirqs. May sleep if the @gfp flags permit. 793 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 794 * -ENOMEM if memory could not be allocated. 795 */ 796static inline int __must_check xa_insert_bh(struct xarray *xa, 797 unsigned long index, void *entry, gfp_t gfp) 798{ 799 int err; 800 801 xa_lock_bh(xa); 802 err = __xa_insert(xa, index, entry, gfp); 803 xa_unlock_bh(xa); 804 805 return err; 806} 807 808/** 809 * xa_insert_irq() - Store this entry in the XArray unless another entry is 810 * already present. 811 * @xa: XArray. 812 * @index: Index into array. 813 * @entry: New entry. 814 * @gfp: Memory allocation flags. 815 * 816 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 817 * if no entry is present. Inserting will fail if a reserved entry is 818 * present, even though loading from this index will return NULL. 819 * 820 * Context: Process context. Takes and releases the xa_lock while 821 * disabling interrupts. May sleep if the @gfp flags permit. 822 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 823 * -ENOMEM if memory could not be allocated. 824 */ 825static inline int __must_check xa_insert_irq(struct xarray *xa, 826 unsigned long index, void *entry, gfp_t gfp) 827{ 828 int err; 829 830 xa_lock_irq(xa); 831 err = __xa_insert(xa, index, entry, gfp); 832 xa_unlock_irq(xa); 833 834 return err; 835} 836 837/** 838 * xa_alloc() - Find somewhere to store this entry in the XArray. 839 * @xa: XArray. 840 * @id: Pointer to ID. 841 * @entry: New entry. 842 * @limit: Range of ID to allocate. 843 * @gfp: Memory allocation flags. 844 * 845 * Finds an empty entry in @xa between @limit.min and @limit.max, 846 * stores the index into the @id pointer, then stores the entry at 847 * that index. A concurrent lookup will not see an uninitialised @id. 848 * 849 * Context: Any context. Takes and releases the xa_lock. May sleep if 850 * the @gfp flags permit. 851 * Return: 0 on success, -ENOMEM if memory could not be allocated or 852 * -EBUSY if there are no free entries in @limit. 853 */ 854static inline __must_check int xa_alloc(struct xarray *xa, u32 *id, 855 void *entry, struct xa_limit limit, gfp_t gfp) 856{ 857 int err; 858 859 xa_lock(xa); 860 err = __xa_alloc(xa, id, entry, limit, gfp); 861 xa_unlock(xa); 862 863 return err; 864} 865 866/** 867 * xa_alloc_bh() - Find somewhere to store this entry in the XArray. 868 * @xa: XArray. 869 * @id: Pointer to ID. 870 * @entry: New entry. 871 * @limit: Range of ID to allocate. 872 * @gfp: Memory allocation flags. 873 * 874 * Finds an empty entry in @xa between @limit.min and @limit.max, 875 * stores the index into the @id pointer, then stores the entry at 876 * that index. A concurrent lookup will not see an uninitialised @id. 877 * 878 * Context: Any context. Takes and releases the xa_lock while 879 * disabling softirqs. May sleep if the @gfp flags permit. 880 * Return: 0 on success, -ENOMEM if memory could not be allocated or 881 * -EBUSY if there are no free entries in @limit. 882 */ 883static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id, 884 void *entry, struct xa_limit limit, gfp_t gfp) 885{ 886 int err; 887 888 xa_lock_bh(xa); 889 err = __xa_alloc(xa, id, entry, limit, gfp); 890 xa_unlock_bh(xa); 891 892 return err; 893} 894 895/** 896 * xa_alloc_irq() - Find somewhere to store this entry in the XArray. 897 * @xa: XArray. 898 * @id: Pointer to ID. 899 * @entry: New entry. 900 * @limit: Range of ID to allocate. 901 * @gfp: Memory allocation flags. 902 * 903 * Finds an empty entry in @xa between @limit.min and @limit.max, 904 * stores the index into the @id pointer, then stores the entry at 905 * that index. A concurrent lookup will not see an uninitialised @id. 906 * 907 * Context: Process context. Takes and releases the xa_lock while 908 * disabling interrupts. May sleep if the @gfp flags permit. 909 * Return: 0 on success, -ENOMEM if memory could not be allocated or 910 * -EBUSY if there are no free entries in @limit. 911 */ 912static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id, 913 void *entry, struct xa_limit limit, gfp_t gfp) 914{ 915 int err; 916 917 xa_lock_irq(xa); 918 err = __xa_alloc(xa, id, entry, limit, gfp); 919 xa_unlock_irq(xa); 920 921 return err; 922} 923 924/** 925 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 926 * @xa: XArray. 927 * @id: Pointer to ID. 928 * @entry: New entry. 929 * @limit: Range of allocated ID. 930 * @next: Pointer to next ID to allocate. 931 * @gfp: Memory allocation flags. 932 * 933 * Finds an empty entry in @xa between @limit.min and @limit.max, 934 * stores the index into the @id pointer, then stores the entry at 935 * that index. A concurrent lookup will not see an uninitialised @id. 936 * The search for an empty entry will start at @next and will wrap 937 * around if necessary. 938 * 939 * Context: Any context. Takes and releases the xa_lock. May sleep if 940 * the @gfp flags permit. 941 * Return: 0 if the allocation succeeded without wrapping. 1 if the 942 * allocation succeeded after wrapping, -ENOMEM if memory could not be 943 * allocated or -EBUSY if there are no free entries in @limit. 944 */ 945static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 946 struct xa_limit limit, u32 *next, gfp_t gfp) 947{ 948 int err; 949 950 xa_lock(xa); 951 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 952 xa_unlock(xa); 953 954 return err; 955} 956 957/** 958 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray. 959 * @xa: XArray. 960 * @id: Pointer to ID. 961 * @entry: New entry. 962 * @limit: Range of allocated ID. 963 * @next: Pointer to next ID to allocate. 964 * @gfp: Memory allocation flags. 965 * 966 * Finds an empty entry in @xa between @limit.min and @limit.max, 967 * stores the index into the @id pointer, then stores the entry at 968 * that index. A concurrent lookup will not see an uninitialised @id. 969 * The search for an empty entry will start at @next and will wrap 970 * around if necessary. 971 * 972 * Context: Any context. Takes and releases the xa_lock while 973 * disabling softirqs. May sleep if the @gfp flags permit. 974 * Return: 0 if the allocation succeeded without wrapping. 1 if the 975 * allocation succeeded after wrapping, -ENOMEM if memory could not be 976 * allocated or -EBUSY if there are no free entries in @limit. 977 */ 978static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry, 979 struct xa_limit limit, u32 *next, gfp_t gfp) 980{ 981 int err; 982 983 xa_lock_bh(xa); 984 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 985 xa_unlock_bh(xa); 986 987 return err; 988} 989 990/** 991 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray. 992 * @xa: XArray. 993 * @id: Pointer to ID. 994 * @entry: New entry. 995 * @limit: Range of allocated ID. 996 * @next: Pointer to next ID to allocate. 997 * @gfp: Memory allocation flags. 998 * 999 * Finds an empty entry in @xa between @limit.min and @limit.max, 1000 * stores the index into the @id pointer, then stores the entry at
1001 * that index. A concurrent lookup will not see an uninitialised @id. 1002 * The search for an empty entry will start at @next and will wrap 1003 * around if necessary. 1004 * 1005 * Context: Process context. Takes and releases the xa_lock while 1006 * disabling interrupts. May sleep if the @gfp flags permit. 1007 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1008 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1009 * allocated or -EBUSY if there are no free entries in @limit. 1010 */ 1011static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry, 1012 struct xa_limit limit, u32 *next, gfp_t gfp) 1013{ 1014 int err; 1015 1016 xa_lock_irq(xa); 1017 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 1018 xa_unlock_irq(xa); 1019 1020 return err; 1021} 1022 1023/** 1024 * xa_reserve() - Reserve this index in the XArray. 1025 * @xa: XArray. 1026 * @index: Index into array. 1027 * @gfp: Memory allocation flags. 1028 * 1029 * Ensures there is somewhere to store an entry at @index in the array. 1030 * If there is already something stored at @index, this function does 1031 * nothing. If there was nothing there, the entry is marked as reserved. 1032 * Loading from a reserved entry returns a %NULL pointer. 1033 * 1034 * If you do not use the entry that you have reserved, call xa_release() 1035 * or xa_erase() to free any unnecessary memory. 1036 * 1037 * Context: Any context. Takes and releases the xa_lock. 1038 * May sleep if the @gfp flags permit. 1039 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1040 */ 1041static inline __must_check 1042int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) 1043{ 1044 return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1045} 1046 1047/** 1048 * xa_reserve_bh() - Reserve this index in the XArray. 1049 * @xa: XArray. 1050 * @index: Index into array. 1051 * @gfp: Memory allocation flags. 1052 * 1053 * A softirq-disabling version of xa_reserve(). 1054 * 1055 * Context: Any context. Takes and releases the xa_lock while 1056 * disabling softirqs. 1057 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1058 */ 1059static inline __must_check 1060int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) 1061{ 1062 return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1063} 1064 1065/** 1066 * xa_reserve_irq() - Reserve this index in the XArray. 1067 * @xa: XArray. 1068 * @index: Index into array. 1069 * @gfp: Memory allocation flags. 1070 * 1071 * An interrupt-disabling version of xa_reserve(). 1072 * 1073 * Context: Process context. Takes and releases the xa_lock while 1074 * disabling interrupts. 1075 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1076 */ 1077static inline __must_check 1078int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) 1079{ 1080 return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1081} 1082 1083/** 1084 * xa_release() - Release a reserved entry. 1085 * @xa: XArray. 1086 * @index: Index of entry. 1087 * 1088 * After calling xa_reserve(), you can call this function to release the 1089 * reservation. If the entry at @index has been stored to, this function 1090 * will do nothing. 1091 */ 1092static inline void xa_release(struct xarray *xa, unsigned long index) 1093{ 1094 xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0); 1095} 1096 1097/* Everything below here is the Advanced API. Proceed with caution. */ 1098 1099/* 1100 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing 1101 * the best chunk size requires some tradeoffs. A power of two recommends 1102 * itself so that we can walk the tree based purely on shifts and masks. 1103 * Generally, the larger the better; as the number of slots per level of the 1104 * tree increases, the less tall the tree needs to be. But that needs to be 1105 * balanced against the memory consumption of each node. On a 64-bit system, 1106 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we 1107 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. 1108 */ 1109#ifndef XA_CHUNK_SHIFT 1110#define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 1111#endif 1112#define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) 1113#define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) 1114#define XA_MAX_MARKS 3 1115#define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) 1116 1117/* 1118 * @count is the count of every non-NULL element in the ->slots array 1119 * whether that is a value entry, a retry entry, a user pointer, 1120 * a sibling entry or a pointer to the next level of the tree. 1121 * @nr_values is the count of every element in ->slots which is 1122 * either a value entry or a sibling of a value entry. 1123 */ 1124struct xa_node { 1125 unsigned char shift; /* Bits remaining in each slot */ 1126 unsigned char offset; /* Slot offset in parent */ 1127 unsigned char count; /* Total entry count */ 1128 unsigned char nr_values; /* Value entry count */ 1129 struct xa_node __rcu *parent; /* NULL at top of tree */ 1130 struct xarray *array; /* The array we belong to */ 1131 union { 1132 struct list_head private_list; /* For tree user */ 1133 struct rcu_head rcu_head; /* Used when freeing node */ 1134 }; 1135 void __rcu *slots[XA_CHUNK_SIZE]; 1136 union { 1137 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; 1138 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; 1139 }; 1140}; 1141 1142void xa_dump(const struct xarray *); 1143void xa_dump_node(const struct xa_node *); 1144 1145#ifdef XA_DEBUG 1146#define XA_BUG_ON(xa, x) do { \ 1147 if (x) { \ 1148 xa_dump(xa); \ 1149 BUG(); \ 1150 } \ 1151 } while (0) 1152#define XA_NODE_BUG_ON(node, x) do { \ 1153 if (x) { \ 1154 if (node) xa_dump_node(node); \ 1155 BUG(); \ 1156 } \ 1157 } while (0) 1158#else 1159#define XA_BUG_ON(xa, x) do { } while (0) 1160#define XA_NODE_BUG_ON(node, x) do { } while (0) 1161#endif 1162 1163/* Private */ 1164static inline void *xa_head(const struct xarray *xa) 1165{ 1166 return rcu_dereference_check(xa->xa_head, 1167 lockdep_is_held(&xa->xa_lock)); 1168} 1169 1170/* Private */ 1171static inline void *xa_head_locked(const struct xarray *xa) 1172{ 1173 return rcu_dereference_protected(xa->xa_head, 1174 lockdep_is_held(&xa->xa_lock)); 1175} 1176 1177/* Private */ 1178static inline void *xa_entry(const struct xarray *xa, 1179 const struct xa_node *node, unsigned int offset) 1180{ 1181 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1182 return rcu_dereference_check(node->slots[offset], 1183 lockdep_is_held(&xa->xa_lock)); 1184} 1185 1186/* Private */ 1187static inline void *xa_entry_locked(const struct xarray *xa, 1188 const struct xa_node *node, unsigned int offset) 1189{ 1190 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1191 return rcu_dereference_protected(node->slots[offset], 1192 lockdep_is_held(&xa->xa_lock)); 1193} 1194 1195/* Private */ 1196static inline struct xa_node *xa_parent(const struct xarray *xa, 1197 const struct xa_node *node) 1198{ 1199 return rcu_dereference_check(node->parent, 1200 lockdep_is_held(&xa->xa_lock)); 1201} 1202 1203/* Private */ 1204static inline struct xa_node *xa_parent_locked(const struct xarray *xa, 1205 const struct xa_node *node) 1206{ 1207 return rcu_dereference_protected(node->parent, 1208 lockdep_is_held(&xa->xa_lock)); 1209} 1210 1211/* Private */ 1212static inline void *xa_mk_node(const struct xa_node *node) 1213{ 1214 return (void *)((unsigned long)node | 2); 1215} 1216 1217/* Private */ 1218static inline struct xa_node *xa_to_node(const void *entry) 1219{ 1220 return (struct xa_node *)((unsigned long)entry - 2); 1221} 1222 1223/* Private */ 1224static inline bool xa_is_node(const void *entry) 1225{ 1226 return xa_is_internal(entry) && (unsigned long)entry > 4096; 1227} 1228 1229/* Private */ 1230static inline void *xa_mk_sibling(unsigned int offset) 1231{ 1232 return xa_mk_internal(offset); 1233} 1234 1235/* Private */ 1236static inline unsigned long xa_to_sibling(const void *entry) 1237{ 1238 return xa_to_internal(entry); 1239} 1240 1241/** 1242 * xa_is_sibling() - Is the entry a sibling entry? 1243 * @entry: Entry retrieved from the XArray 1244 * 1245 * Return: %true if the entry is a sibling entry. 1246 */ 1247static inline bool xa_is_sibling(const void *entry) 1248{ 1249 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && 1250 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); 1251} 1252 1253#define XA_RETRY_ENTRY xa_mk_internal(256) 1254 1255/** 1256 * xa_is_retry() - Is the entry a retry entry? 1257 * @entry: Entry retrieved from the XArray 1258 * 1259 * Return: %true if the entry is a retry entry. 1260 */ 1261static inline bool xa_is_retry(const void *entry) 1262{ 1263 return unlikely(entry == XA_RETRY_ENTRY); 1264} 1265 1266/** 1267 * xa_is_advanced() - Is the entry only permitted for the advanced API? 1268 * @entry: Entry to be stored in the XArray. 1269 * 1270 * Return: %true if the entry cannot be stored by the normal API. 1271 */ 1272static inline bool xa_is_advanced(const void *entry) 1273{ 1274 return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY); 1275} 1276 1277/** 1278 * typedef xa_update_node_t - A callback function from the XArray. 1279 * @node: The node which is being processed 1280 * 1281 * This function is called every time the XArray updates the count of 1282 * present and value entries in a node. It allows advanced users to 1283 * maintain the private_list in the node. 1284 * 1285 * Context: The xa_lock is held and interrupts may be disabled. 1286 * Implementations should not drop the xa_lock, nor re-enable 1287 * interrupts. 1288 */ 1289typedef void (*xa_update_node_t)(struct xa_node *node); 1290 1291void xa_delete_node(struct xa_node *, xa_update_node_t); 1292 1293/* 1294 * The xa_state is opaque to its users. It contains various different pieces 1295 * of state involved in the current operation on the XArray. It should be 1296 * declared on the stack and passed between the various internal routines. 1297 * The various elements in it should not be accessed directly, but only 1298 * through the provided accessor functions. The below documentation is for 1299 * the benefit of those working on the code, not for users of the XArray. 1300 * 1301 * @xa_node usually points to the xa_node containing the slot we're operating 1302 * on (and @xa_offset is the offset in the slots array). If there is a 1303 * single entry in the array at index 0, there are no allocated xa_nodes to 1304 * point to, and so we store %NULL in @xa_node. @xa_node is set to 1305 * the value %XAS_RESTART if the xa_state is not walked to the correct 1306 * position in the tree of nodes for this operation. If an error occurs 1307 * during an operation, it is set to an %XAS_ERROR value. If we run off the 1308 * end of the allocated nodes, it is set to %XAS_BOUNDS. 1309 */ 1310struct xa_state { 1311 struct xarray *xa; 1312 unsigned long xa_index; 1313 unsigned char xa_shift; 1314 unsigned char xa_sibs; 1315 unsigned char xa_offset; 1316 unsigned char xa_pad; /* Helps gcc generate better code */ 1317 struct xa_node *xa_node; 1318 struct xa_node *xa_alloc; 1319 xa_update_node_t xa_update; 1320}; 1321 1322/* 1323 * We encode errnos in the xas->xa_node. If an error has happened, we need to 1324 * drop the lock to fix it, and once we've done so the xa_state is invalid. 1325 */ 1326#define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) 1327#define XAS_BOUNDS ((struct xa_node *)1UL) 1328#define XAS_RESTART ((struct xa_node *)3UL) 1329 1330#define __XA_STATE(array, index, shift, sibs) { \ 1331 .xa = array, \ 1332 .xa_index = index, \ 1333 .xa_shift = shift, \ 1334 .xa_sibs = sibs, \ 1335 .xa_offset = 0, \ 1336 .xa_pad = 0, \ 1337 .xa_node = XAS_RESTART, \ 1338 .xa_alloc = NULL, \ 1339 .xa_update = NULL \ 1340} 1341 1342/** 1343 * XA_STATE() - Declare an XArray operation state. 1344 * @name: Name of this operation state (usually xas). 1345 * @array: Array to operate on. 1346 * @index: Initial index of interest. 1347 * 1348 * Declare and initialise an xa_state on the stack. 1349 */ 1350#define XA_STATE(name, array, index) \ 1351 struct xa_state name = __XA_STATE(array, index, 0, 0) 1352 1353/** 1354 * XA_STATE_ORDER() - Declare an XArray operation state. 1355 * @name: Name of this operation state (usually xas). 1356 * @array: Array to operate on. 1357 * @index: Initial index of interest. 1358 * @order: Order of entry. 1359 * 1360 * Declare and initialise an xa_state on the stack. This variant of 1361 * XA_STATE() allows you to specify the 'order' of the element you 1362 * want to operate on.` 1363 */ 1364#define XA_STATE_ORDER(name, array, index, order) \ 1365 struct xa_state name = __XA_STATE(array, \ 1366 (index >> order) << order, \ 1367 order - (order % XA_CHUNK_SHIFT), \ 1368 (1U << (order % XA_CHUNK_SHIFT)) - 1) 1369 1370#define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) 1371#define xas_trylock(xas) xa_trylock((xas)->xa) 1372#define xas_lock(xas) xa_lock((xas)->xa) 1373#define xas_unlock(xas) xa_unlock((xas)->xa) 1374#define xas_lock_bh(xas) xa_lock_bh((xas)->xa) 1375#define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) 1376#define xas_lock_irq(xas) xa_lock_irq((xas)->xa) 1377#define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) 1378#define xas_lock_irqsave(xas, flags) \ 1379 xa_lock_irqsave((xas)->xa, flags) 1380#define xas_unlock_irqrestore(xas, flags) \ 1381 xa_unlock_irqrestore((xas)->xa, flags) 1382 1383/** 1384 * xas_error() - Return an errno stored in the xa_state. 1385 * @xas: XArray operation state. 1386 * 1387 * Return: 0 if no error has been noted. A negative errno if one has. 1388 */ 1389static inline int xas_error(const struct xa_state *xas) 1390{ 1391 return xa_err(xas->xa_node); 1392} 1393 1394/** 1395 * xas_set_err() - Note an error in the xa_state. 1396 * @xas: XArray operation state. 1397 * @err: Negative error number. 1398 * 1399 * Only call this function with a negative @err; zero or positive errors 1400 * will probably not behave the way you think they should. If you want 1401 * to clear the error from an xa_state, use xas_reset(). 1402 */ 1403static inline void xas_set_err(struct xa_state *xas, long err) 1404{ 1405 xas->xa_node = XA_ERROR(err); 1406} 1407 1408/** 1409 * xas_invalid() - Is the xas in a retry or error state? 1410 * @xas: XArray operation state. 1411 * 1412 * Return: %true if the xas cannot be used for operations. 1413 */ 1414static inline bool xas_invalid(const struct xa_state *xas) 1415{ 1416 return (unsigned long)xas->xa_node & 3; 1417} 1418 1419/** 1420 * xas_valid() - Is the xas a valid cursor into the array? 1421 * @xas: XArray operation state. 1422 * 1423 * Return: %true if the xas can be used for operations. 1424 */ 1425static inline bool xas_valid(const struct xa_state *xas) 1426{ 1427 return !xas_invalid(xas); 1428} 1429 1430/** 1431 * xas_is_node() - Does the xas point to a node? 1432 * @xas: XArray operation state. 1433 * 1434 * Return: %true if the xas currently references a node. 1435 */ 1436static inline bool xas_is_node(const struct xa_state *xas) 1437{ 1438 return xas_valid(xas) && xas->xa_node; 1439} 1440 1441/* True if the pointer is something other than a node */ 1442static inline bool xas_not_node(struct xa_node *node) 1443{ 1444 return ((unsigned long)node & 3) || !node; 1445} 1446 1447/* True if the node represents RESTART or an error */ 1448static inline bool xas_frozen(struct xa_node *node) 1449{ 1450 return (unsigned long)node & 2; 1451} 1452 1453/* True if the node represents head-of-tree, RESTART or BOUNDS */ 1454static inline bool xas_top(struct xa_node *node) 1455{ 1456 return node <= XAS_RESTART; 1457} 1458 1459/** 1460 * xas_reset() - Reset an XArray operation state. 1461 * @xas: XArray operation state. 1462 * 1463 * Resets the error or walk state of the @xas so future walks of the 1464 * array will start from the root. Use this if you have dropped the 1465 * xarray lock and want to reuse the xa_state. 1466 * 1467 * Context: Any context. 1468 */ 1469static inline void xas_reset(struct xa_state *xas) 1470{ 1471 xas->xa_node = XAS_RESTART; 1472} 1473 1474/** 1475 * xas_retry() - Retry the operation if appropriate. 1476 * @xas: XArray operation state. 1477 * @entry: Entry from xarray. 1478 * 1479 * The advanced functions may sometimes return an internal entry, such as 1480 * a retry entry or a zero entry. This function sets up the @xas to restart 1481 * the walk from the head of the array if needed. 1482 * 1483 * Context: Any context. 1484 * Return: true if the operation needs to be retried. 1485 */ 1486static inline bool xas_retry(struct xa_state *xas, const void *entry) 1487{ 1488 if (xa_is_zero(entry)) 1489 return true; 1490 if (!xa_is_retry(entry)) 1491 return false; 1492 xas_reset(xas); 1493 return true; 1494} 1495 1496void *xas_load(struct xa_state *); 1497void *xas_store(struct xa_state *, void *entry); 1498void *xas_find(struct xa_state *, unsigned long max); 1499void *xas_find_conflict(struct xa_state *); 1500 1501bool xas_get_mark(const struct xa_state *, xa_mark_t); 1502void xas_set_mark(const struct xa_state *, xa_mark_t); 1503void xas_clear_mark(const struct xa_state *, xa_mark_t); 1504void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); 1505void xas_init_marks(const struct xa_state *); 1506 1507bool xas_nomem(struct xa_state *, gfp_t); 1508void xas_pause(struct xa_state *); 1509 1510void xas_create_range(struct xa_state *); 1511 1512#ifdef CONFIG_XARRAY_MULTI 1513int xa_get_order(struct xarray *, unsigned long index); 1514void xas_split(struct xa_state *, void *entry, unsigned int order); 1515void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t); 1516#else 1517static inline int xa_get_order(struct xarray *xa, unsigned long index) 1518{ 1519 return 0; 1520} 1521 1522static inline void xas_split(struct xa_state *xas, void *entry, 1523 unsigned int order) 1524{ 1525 xas_store(xas, entry); 1526} 1527 1528static inline void xas_split_alloc(struct xa_state *xas, void *entry, 1529 unsigned int order, gfp_t gfp) 1530{ 1531} 1532#endif 1533 1534/** 1535 * xas_reload() - Refetch an entry from the xarray. 1536 * @xas: XArray operation state. 1537 * 1538 * Use this function to check that a previously loaded entry still has 1539 * the same value. This is useful for the lockless pagecache lookup where 1540 * we walk the array with only the RCU lock to protect us, lock the page, 1541 * then check that the page hasn't moved since we looked it up. 1542 * 1543 * The caller guarantees that @xas is still valid. If it may be in an 1544 * error or restart state, call xas_load() instead. 1545 * 1546 * Return: The entry at this location in the xarray. 1547 */ 1548static inline void *xas_reload(struct xa_state *xas) 1549{ 1550 struct xa_node *node = xas->xa_node; 1551 void *entry; 1552 char offset; 1553 1554 if (!node) 1555 return xa_head(xas->xa); 1556 if (IS_ENABLED(CONFIG_XARRAY_MULTI)) { 1557 offset = (xas->xa_index >> node->shift) & XA_CHUNK_MASK; 1558 entry = xa_entry(xas->xa, node, offset); 1559 if (!xa_is_sibling(entry)) 1560 return entry; 1561 offset = xa_to_sibling(entry); 1562 } else { 1563 offset = xas->xa_offset; 1564 } 1565 return xa_entry(xas->xa, node, offset); 1566} 1567 1568/** 1569 * xas_set() - Set up XArray operation state for a different index. 1570 * @xas: XArray operation state. 1571 * @index: New index into the XArray. 1572 * 1573 * Move the operation state to refer to a different index. This will 1574 * have the effect of starting a walk from the top; see xas_next() 1575 * to move to an adjacent index. 1576 */ 1577static inline void xas_set(struct xa_state *xas, unsigned long index) 1578{ 1579 xas->xa_index = index; 1580 xas->xa_node = XAS_RESTART; 1581} 1582 1583/** 1584 * xas_set_order() - Set up XArray operation state for a multislot entry. 1585 * @xas: XArray operation state. 1586 * @index: Target of the operation. 1587 * @order: Entry occupies 2^@order indices. 1588 */ 1589static inline void xas_set_order(struct xa_state *xas, unsigned long index, 1590 unsigned int order) 1591{ 1592#ifdef CONFIG_XARRAY_MULTI 1593 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; 1594 xas->xa_shift = order - (order % XA_CHUNK_SHIFT); 1595 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1596 xas->xa_node = XAS_RESTART; 1597#else 1598 BUG_ON(order > 0); 1599 xas_set(xas, index); 1600#endif 1601} 1602 1603/** 1604 * xas_set_update() - Set up XArray operation state for a callback. 1605 * @xas: XArray operation state. 1606 * @update: Function to call when updating a node. 1607 * 1608 * The XArray can notify a caller after it has updated an xa_node. 1609 * This is advanced functionality and is only needed by the page cache. 1610 */ 1611static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) 1612{ 1613 xas->xa_update = update; 1614} 1615 1616/** 1617 * xas_next_entry() - Advance iterator to next present entry. 1618 * @xas: XArray operation state. 1619 * @max: Highest index to return. 1620 * 1621 * xas_next_entry() is an inline function to optimise xarray traversal for 1622 * speed. It is equivalent to calling xas_find(), and will call xas_find() 1623 * for all the hard cases. 1624 * 1625 * Return: The next present entry after the one currently referred to by @xas. 1626 */ 1627static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) 1628{ 1629 struct xa_node *node = xas->xa_node; 1630 void *entry; 1631 1632 if (unlikely(xas_not_node(node) || node->shift || 1633 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) 1634 return xas_find(xas, max); 1635 1636 do { 1637 if (unlikely(xas->xa_index >= max)) 1638 return xas_find(xas, max); 1639 if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) 1640 return xas_find(xas, max); 1641 entry = xa_entry(xas->xa, node, xas->xa_offset + 1); 1642 if (unlikely(xa_is_internal(entry))) 1643 return xas_find(xas, max); 1644 xas->xa_offset++; 1645 xas->xa_index++; 1646 } while (!entry); 1647 1648 return entry; 1649} 1650 1651/* Private */ 1652static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, 1653 xa_mark_t mark) 1654{ 1655 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; 1656 unsigned int offset = xas->xa_offset; 1657 1658 if (advance) 1659 offset++; 1660 if (XA_CHUNK_SIZE == BITS_PER_LONG) { 1661 if (offset < XA_CHUNK_SIZE) { 1662 unsigned long data = *addr & (~0UL << offset); 1663 if (data) 1664 return __ffs(data); 1665 } 1666 return XA_CHUNK_SIZE; 1667 } 1668 1669 return find_next_bit(addr, XA_CHUNK_SIZE, offset); 1670} 1671 1672/** 1673 * xas_next_marked() - Advance iterator to next marked entry. 1674 * @xas: XArray operation state. 1675 * @max: Highest index to return. 1676 * @mark: Mark to search for. 1677 * 1678 * xas_next_marked() is an inline function to optimise xarray traversal for 1679 * speed. It is equivalent to calling xas_find_marked(), and will call 1680 * xas_find_marked() for all the hard cases. 1681 * 1682 * Return: The next marked entry after the one currently referred to by @xas. 1683 */ 1684static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, 1685 xa_mark_t mark) 1686{ 1687 struct xa_node *node = xas->xa_node; 1688 void *entry; 1689 unsigned int offset; 1690 1691 if (unlikely(xas_not_node(node) || node->shift)) 1692 return xas_find_marked(xas, max, mark); 1693 offset = xas_find_chunk(xas, true, mark); 1694 xas->xa_offset = offset; 1695 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; 1696 if (xas->xa_index > max) 1697 return NULL; 1698 if (offset == XA_CHUNK_SIZE) 1699 return xas_find_marked(xas, max, mark); 1700 entry = xa_entry(xas->xa, node, offset); 1701 if (!entry) 1702 return xas_find_marked(xas, max, mark); 1703 return entry; 1704} 1705 1706/* 1707 * If iterating while holding a lock, drop the lock and reschedule 1708 * every %XA_CHECK_SCHED loops. 1709 */ 1710enum { 1711 XA_CHECK_SCHED = 4096, 1712}; 1713 1714/** 1715 * xas_for_each() - Iterate over a range of an XArray. 1716 * @xas: XArray operation state. 1717 * @entry: Entry retrieved from the array. 1718 * @max: Maximum index to retrieve from array. 1719 * 1720 * The loop body will be executed for each entry present in the xarray 1721 * between the current xas position and @max. @entry will be set to 1722 * the entry retrieved from the xarray. It is safe to delete entries 1723 * from the array in the loop body. You should hold either the RCU lock 1724 * or the xa_lock while iterating. If you need to drop the lock, call 1725 * xas_pause() first. 1726 */ 1727#define xas_for_each(xas, entry, max) \ 1728 for (entry = xas_find(xas, max); entry; \ 1729 entry = xas_next_entry(xas, max)) 1730 1731/** 1732 * xas_for_each_marked() - Iterate over a range of an XArray. 1733 * @xas: XArray operation state. 1734 * @entry: Entry retrieved from the array. 1735 * @max: Maximum index to retrieve from array. 1736 * @mark: Mark to search for. 1737 * 1738 * The loop body will be executed for each marked entry in the xarray 1739 * between the current xas position and @max. @entry will be set to 1740 * the entry retrieved from the xarray. It is safe to delete entries 1741 * from the array in the loop body. You should hold either the RCU lock 1742 * or the xa_lock while iterating. If you need to drop the lock, call 1743 * xas_pause() first. 1744 */ 1745#define xas_for_each_marked(xas, entry, max, mark) \ 1746 for (entry = xas_find_marked(xas, max, mark); entry; \ 1747 entry = xas_next_marked(xas, max, mark)) 1748 1749/** 1750 * xas_for_each_conflict() - Iterate over a range of an XArray. 1751 * @xas: XArray operation state. 1752 * @entry: Entry retrieved from the array. 1753 * 1754 * The loop body will be executed for each entry in the XArray that 1755 * lies within the range specified by @xas. If the loop terminates 1756 * normally, @entry will be %NULL. The user may break out of the loop, 1757 * which will leave @entry set to the conflicting entry. The caller 1758 * may also call xa_set_err() to exit the loop while setting an error 1759 * to record the reason. 1760 */ 1761#define xas_for_each_conflict(xas, entry) \ 1762 while ((entry = xas_find_conflict(xas))) 1763 1764void *__xas_next(struct xa_state *); 1765void *__xas_prev(struct xa_state *); 1766 1767/** 1768 * xas_prev() - Move iterator to previous index. 1769 * @xas: XArray operation state. 1770 * 1771 * If the @xas was in an error state, it will remain in an error state 1772 * and this function will return %NULL. If the @xas has never been walked, 1773 * it will have the effect of calling xas_load(). Otherwise one will be 1774 * subtracted from the index and the state will be walked to the correct 1775 * location in the array for the next operation. 1776 * 1777 * If the iterator was referencing index 0, this function wraps 1778 * around to %ULONG_MAX. 1779 * 1780 * Return: The entry at the new index. This may be %NULL or an internal 1781 * entry. 1782 */ 1783static inline void *xas_prev(struct xa_state *xas) 1784{ 1785 struct xa_node *node = xas->xa_node; 1786 1787 if (unlikely(xas_not_node(node) || node->shift || 1788 xas->xa_offset == 0)) 1789 return __xas_prev(xas); 1790 1791 xas->xa_index--; 1792 xas->xa_offset--; 1793 return xa_entry(xas->xa, node, xas->xa_offset); 1794} 1795 1796/** 1797 * xas_next() - Move state to next index. 1798 * @xas: XArray operation state. 1799 * 1800 * If the @xas was in an error state, it will remain in an error state 1801 * and this function will return %NULL. If the @xas has never been walked, 1802 * it will have the effect of calling xas_load(). Otherwise one will be 1803 * added to the index and the state will be walked to the correct 1804 * location in the array for the next operation. 1805 * 1806 * If the iterator was referencing index %ULONG_MAX, this function wraps 1807 * around to 0. 1808 * 1809 * Return: The entry at the new index. This may be %NULL or an internal 1810 * entry. 1811 */ 1812static inline void *xas_next(struct xa_state *xas) 1813{ 1814 struct xa_node *node = xas->xa_node; 1815 1816 if (unlikely(xas_not_node(node) || node->shift || 1817 xas->xa_offset == XA_CHUNK_MASK)) 1818 return __xas_next(xas); 1819 1820 xas->xa_index++; 1821 xas->xa_offset++; 1822 return xa_entry(xas->xa, node, xas->xa_offset); 1823} 1824 1825#endif /* _LINUX_XARRAY_H */ 1826