linux/include/net/sock.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the AF_INET socket handler.
   8 *
   9 * Version:     @(#)sock.h      1.0.4   05/13/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *              Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *              Alan Cox        :       Volatiles in skbuff pointers. See
  18 *                                      skbuff comments. May be overdone,
  19 *                                      better to prove they can be removed
  20 *                                      than the reverse.
  21 *              Alan Cox        :       Added a zapped field for tcp to note
  22 *                                      a socket is reset and must stay shut up
  23 *              Alan Cox        :       New fields for options
  24 *      Pauline Middelink       :       identd support
  25 *              Alan Cox        :       Eliminate low level recv/recvfrom
  26 *              David S. Miller :       New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  29 *                                      protinfo be just a void pointer, as the
  30 *                                      protocol specific parts were moved to
  31 *                                      respective headers and ipv4/v6, etc now
  32 *                                      use private slabcaches for its socks
  33 *              Pedro Hortas    :       New flags field for socket options
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>       /* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62#include <linux/sockptr.h>
  63#include <linux/indirect_call_wrapper.h>
  64#include <linux/atomic.h>
  65#include <linux/refcount.h>
  66#include <net/dst.h>
  67#include <net/checksum.h>
  68#include <net/tcp_states.h>
  69#include <linux/net_tstamp.h>
  70#include <net/l3mdev.h>
  71#include <uapi/linux/socket.h>
  72
  73/*
  74 * This structure really needs to be cleaned up.
  75 * Most of it is for TCP, and not used by any of
  76 * the other protocols.
  77 */
  78
  79/* Define this to get the SOCK_DBG debugging facility. */
  80#define SOCK_DEBUGGING
  81#ifdef SOCK_DEBUGGING
  82#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  83                                        printk(KERN_DEBUG msg); } while (0)
  84#else
  85/* Validate arguments and do nothing */
  86static inline __printf(2, 3)
  87void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  88{
  89}
  90#endif
  91
  92/* This is the per-socket lock.  The spinlock provides a synchronization
  93 * between user contexts and software interrupt processing, whereas the
  94 * mini-semaphore synchronizes multiple users amongst themselves.
  95 */
  96typedef struct {
  97        spinlock_t              slock;
  98        int                     owned;
  99        wait_queue_head_t       wq;
 100        /*
 101         * We express the mutex-alike socket_lock semantics
 102         * to the lock validator by explicitly managing
 103         * the slock as a lock variant (in addition to
 104         * the slock itself):
 105         */
 106#ifdef CONFIG_DEBUG_LOCK_ALLOC
 107        struct lockdep_map dep_map;
 108#endif
 109} socket_lock_t;
 110
 111struct sock;
 112struct proto;
 113struct net;
 114
 115typedef __u32 __bitwise __portpair;
 116typedef __u64 __bitwise __addrpair;
 117
 118/**
 119 *      struct sock_common - minimal network layer representation of sockets
 120 *      @skc_daddr: Foreign IPv4 addr
 121 *      @skc_rcv_saddr: Bound local IPv4 addr
 122 *      @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 123 *      @skc_hash: hash value used with various protocol lookup tables
 124 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 125 *      @skc_dport: placeholder for inet_dport/tw_dport
 126 *      @skc_num: placeholder for inet_num/tw_num
 127 *      @skc_portpair: __u32 union of @skc_dport & @skc_num
 128 *      @skc_family: network address family
 129 *      @skc_state: Connection state
 130 *      @skc_reuse: %SO_REUSEADDR setting
 131 *      @skc_reuseport: %SO_REUSEPORT setting
 132 *      @skc_ipv6only: socket is IPV6 only
 133 *      @skc_net_refcnt: socket is using net ref counting
 134 *      @skc_bound_dev_if: bound device index if != 0
 135 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 136 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 137 *      @skc_prot: protocol handlers inside a network family
 138 *      @skc_net: reference to the network namespace of this socket
 139 *      @skc_v6_daddr: IPV6 destination address
 140 *      @skc_v6_rcv_saddr: IPV6 source address
 141 *      @skc_cookie: socket's cookie value
 142 *      @skc_node: main hash linkage for various protocol lookup tables
 143 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 144 *      @skc_tx_queue_mapping: tx queue number for this connection
 145 *      @skc_rx_queue_mapping: rx queue number for this connection
 146 *      @skc_flags: place holder for sk_flags
 147 *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 148 *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 149 *      @skc_listener: connection request listener socket (aka rsk_listener)
 150 *              [union with @skc_flags]
 151 *      @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 152 *              [union with @skc_flags]
 153 *      @skc_incoming_cpu: record/match cpu processing incoming packets
 154 *      @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 155 *              [union with @skc_incoming_cpu]
 156 *      @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 157 *              [union with @skc_incoming_cpu]
 158 *      @skc_refcnt: reference count
 159 *
 160 *      This is the minimal network layer representation of sockets, the header
 161 *      for struct sock and struct inet_timewait_sock.
 162 */
 163struct sock_common {
 164        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 165         * address on 64bit arches : cf INET_MATCH()
 166         */
 167        union {
 168                __addrpair      skc_addrpair;
 169                struct {
 170                        __be32  skc_daddr;
 171                        __be32  skc_rcv_saddr;
 172                };
 173        };
 174        union  {
 175                unsigned int    skc_hash;
 176                __u16           skc_u16hashes[2];
 177        };
 178        /* skc_dport && skc_num must be grouped as well */
 179        union {
 180                __portpair      skc_portpair;
 181                struct {
 182                        __be16  skc_dport;
 183                        __u16   skc_num;
 184                };
 185        };
 186
 187        unsigned short          skc_family;
 188        volatile unsigned char  skc_state;
 189        unsigned char           skc_reuse:4;
 190        unsigned char           skc_reuseport:1;
 191        unsigned char           skc_ipv6only:1;
 192        unsigned char           skc_net_refcnt:1;
 193        int                     skc_bound_dev_if;
 194        union {
 195                struct hlist_node       skc_bind_node;
 196                struct hlist_node       skc_portaddr_node;
 197        };
 198        struct proto            *skc_prot;
 199        possible_net_t          skc_net;
 200
 201#if IS_ENABLED(CONFIG_IPV6)
 202        struct in6_addr         skc_v6_daddr;
 203        struct in6_addr         skc_v6_rcv_saddr;
 204#endif
 205
 206        atomic64_t              skc_cookie;
 207
 208        /* following fields are padding to force
 209         * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 210         * assuming IPV6 is enabled. We use this padding differently
 211         * for different kind of 'sockets'
 212         */
 213        union {
 214                unsigned long   skc_flags;
 215                struct sock     *skc_listener; /* request_sock */
 216                struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 217        };
 218        /*
 219         * fields between dontcopy_begin/dontcopy_end
 220         * are not copied in sock_copy()
 221         */
 222        /* private: */
 223        int                     skc_dontcopy_begin[0];
 224        /* public: */
 225        union {
 226                struct hlist_node       skc_node;
 227                struct hlist_nulls_node skc_nulls_node;
 228        };
 229        unsigned short          skc_tx_queue_mapping;
 230#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 231        unsigned short          skc_rx_queue_mapping;
 232#endif
 233        union {
 234                int             skc_incoming_cpu;
 235                u32             skc_rcv_wnd;
 236                u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 237        };
 238
 239        refcount_t              skc_refcnt;
 240        /* private: */
 241        int                     skc_dontcopy_end[0];
 242        union {
 243                u32             skc_rxhash;
 244                u32             skc_window_clamp;
 245                u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 246        };
 247        /* public: */
 248};
 249
 250struct bpf_local_storage;
 251
 252/**
 253  *     struct sock - network layer representation of sockets
 254  *     @__sk_common: shared layout with inet_timewait_sock
 255  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 256  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 257  *     @sk_lock:       synchronizer
 258  *     @sk_kern_sock: True if sock is using kernel lock classes
 259  *     @sk_rcvbuf: size of receive buffer in bytes
 260  *     @sk_wq: sock wait queue and async head
 261  *     @sk_rx_dst: receive input route used by early demux
 262  *     @sk_dst_cache: destination cache
 263  *     @sk_dst_pending_confirm: need to confirm neighbour
 264  *     @sk_policy: flow policy
 265  *     @sk_rx_skb_cache: cache copy of recently accessed RX skb
 266  *     @sk_receive_queue: incoming packets
 267  *     @sk_wmem_alloc: transmit queue bytes committed
 268  *     @sk_tsq_flags: TCP Small Queues flags
 269  *     @sk_write_queue: Packet sending queue
 270  *     @sk_omem_alloc: "o" is "option" or "other"
 271  *     @sk_wmem_queued: persistent queue size
 272  *     @sk_forward_alloc: space allocated forward
 273  *     @sk_napi_id: id of the last napi context to receive data for sk
 274  *     @sk_ll_usec: usecs to busypoll when there is no data
 275  *     @sk_allocation: allocation mode
 276  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 277  *     @sk_pacing_status: Pacing status (requested, handled by sch_fq)
 278  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 279  *     @sk_sndbuf: size of send buffer in bytes
 280  *     @__sk_flags_offset: empty field used to determine location of bitfield
 281  *     @sk_padding: unused element for alignment
 282  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 283  *     @sk_no_check_rx: allow zero checksum in RX packets
 284  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 285  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 286  *     @sk_route_forced_caps: static, forced route capabilities
 287  *             (set in tcp_init_sock())
 288  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 289  *     @sk_gso_max_size: Maximum GSO segment size to build
 290  *     @sk_gso_max_segs: Maximum number of GSO segments
 291  *     @sk_pacing_shift: scaling factor for TCP Small Queues
 292  *     @sk_lingertime: %SO_LINGER l_linger setting
 293  *     @sk_backlog: always used with the per-socket spinlock held
 294  *     @sk_callback_lock: used with the callbacks in the end of this struct
 295  *     @sk_error_queue: rarely used
 296  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 297  *                       IPV6_ADDRFORM for instance)
 298  *     @sk_err: last error
 299  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 300  *                   persistent failure not just 'timed out'
 301  *     @sk_drops: raw/udp drops counter
 302  *     @sk_ack_backlog: current listen backlog
 303  *     @sk_max_ack_backlog: listen backlog set in listen()
 304  *     @sk_uid: user id of owner
 305  *     @sk_prefer_busy_poll: prefer busypolling over softirq processing
 306  *     @sk_busy_poll_budget: napi processing budget when busypolling
 307  *     @sk_priority: %SO_PRIORITY setting
 308  *     @sk_type: socket type (%SOCK_STREAM, etc)
 309  *     @sk_protocol: which protocol this socket belongs in this network family
 310  *     @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
 311  *     @sk_peer_pid: &struct pid for this socket's peer
 312  *     @sk_peer_cred: %SO_PEERCRED setting
 313  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 314  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 315  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 316  *     @sk_txhash: computed flow hash for use on transmit
 317  *     @sk_filter: socket filtering instructions
 318  *     @sk_timer: sock cleanup timer
 319  *     @sk_stamp: time stamp of last packet received
 320  *     @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 321  *     @sk_tsflags: SO_TIMESTAMPING flags
 322  *     @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
 323  *                   for timestamping
 324  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 325  *     @sk_zckey: counter to order MSG_ZEROCOPY notifications
 326  *     @sk_socket: Identd and reporting IO signals
 327  *     @sk_user_data: RPC layer private data
 328  *     @sk_frag: cached page frag
 329  *     @sk_peek_off: current peek_offset value
 330  *     @sk_send_head: front of stuff to transmit
 331  *     @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
 332  *     @sk_tx_skb_cache: cache copy of recently accessed TX skb
 333  *     @sk_security: used by security modules
 334  *     @sk_mark: generic packet mark
 335  *     @sk_cgrp_data: cgroup data for this cgroup
 336  *     @sk_memcg: this socket's memory cgroup association
 337  *     @sk_write_pending: a write to stream socket waits to start
 338  *     @sk_state_change: callback to indicate change in the state of the sock
 339  *     @sk_data_ready: callback to indicate there is data to be processed
 340  *     @sk_write_space: callback to indicate there is bf sending space available
 341  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 342  *     @sk_backlog_rcv: callback to process the backlog
 343  *     @sk_validate_xmit_skb: ptr to an optional validate function
 344  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 345  *     @sk_reuseport_cb: reuseport group container
 346  *     @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
 347  *     @sk_rcu: used during RCU grace period
 348  *     @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 349  *     @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 350  *     @sk_txtime_report_errors: set report errors mode for SO_TXTIME
 351  *     @sk_txtime_unused: unused txtime flags
 352  */
 353struct sock {
 354        /*
 355         * Now struct inet_timewait_sock also uses sock_common, so please just
 356         * don't add nothing before this first member (__sk_common) --acme
 357         */
 358        struct sock_common      __sk_common;
 359#define sk_node                 __sk_common.skc_node
 360#define sk_nulls_node           __sk_common.skc_nulls_node
 361#define sk_refcnt               __sk_common.skc_refcnt
 362#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 363#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 364#define sk_rx_queue_mapping     __sk_common.skc_rx_queue_mapping
 365#endif
 366
 367#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 368#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 369#define sk_hash                 __sk_common.skc_hash
 370#define sk_portpair             __sk_common.skc_portpair
 371#define sk_num                  __sk_common.skc_num
 372#define sk_dport                __sk_common.skc_dport
 373#define sk_addrpair             __sk_common.skc_addrpair
 374#define sk_daddr                __sk_common.skc_daddr
 375#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 376#define sk_family               __sk_common.skc_family
 377#define sk_state                __sk_common.skc_state
 378#define sk_reuse                __sk_common.skc_reuse
 379#define sk_reuseport            __sk_common.skc_reuseport
 380#define sk_ipv6only             __sk_common.skc_ipv6only
 381#define sk_net_refcnt           __sk_common.skc_net_refcnt
 382#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 383#define sk_bind_node            __sk_common.skc_bind_node
 384#define sk_prot                 __sk_common.skc_prot
 385#define sk_net                  __sk_common.skc_net
 386#define sk_v6_daddr             __sk_common.skc_v6_daddr
 387#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 388#define sk_cookie               __sk_common.skc_cookie
 389#define sk_incoming_cpu         __sk_common.skc_incoming_cpu
 390#define sk_flags                __sk_common.skc_flags
 391#define sk_rxhash               __sk_common.skc_rxhash
 392
 393        socket_lock_t           sk_lock;
 394        atomic_t                sk_drops;
 395        int                     sk_rcvlowat;
 396        struct sk_buff_head     sk_error_queue;
 397        struct sk_buff          *sk_rx_skb_cache;
 398        struct sk_buff_head     sk_receive_queue;
 399        /*
 400         * The backlog queue is special, it is always used with
 401         * the per-socket spinlock held and requires low latency
 402         * access. Therefore we special case it's implementation.
 403         * Note : rmem_alloc is in this structure to fill a hole
 404         * on 64bit arches, not because its logically part of
 405         * backlog.
 406         */
 407        struct {
 408                atomic_t        rmem_alloc;
 409                int             len;
 410                struct sk_buff  *head;
 411                struct sk_buff  *tail;
 412        } sk_backlog;
 413#define sk_rmem_alloc sk_backlog.rmem_alloc
 414
 415        int                     sk_forward_alloc;
 416#ifdef CONFIG_NET_RX_BUSY_POLL
 417        unsigned int            sk_ll_usec;
 418        /* ===== mostly read cache line ===== */
 419        unsigned int            sk_napi_id;
 420#endif
 421        int                     sk_rcvbuf;
 422
 423        struct sk_filter __rcu  *sk_filter;
 424        union {
 425                struct socket_wq __rcu  *sk_wq;
 426                /* private: */
 427                struct socket_wq        *sk_wq_raw;
 428                /* public: */
 429        };
 430#ifdef CONFIG_XFRM
 431        struct xfrm_policy __rcu *sk_policy[2];
 432#endif
 433        struct dst_entry        *sk_rx_dst;
 434        struct dst_entry __rcu  *sk_dst_cache;
 435        atomic_t                sk_omem_alloc;
 436        int                     sk_sndbuf;
 437
 438        /* ===== cache line for TX ===== */
 439        int                     sk_wmem_queued;
 440        refcount_t              sk_wmem_alloc;
 441        unsigned long           sk_tsq_flags;
 442        union {
 443                struct sk_buff  *sk_send_head;
 444                struct rb_root  tcp_rtx_queue;
 445        };
 446        struct sk_buff          *sk_tx_skb_cache;
 447        struct sk_buff_head     sk_write_queue;
 448        __s32                   sk_peek_off;
 449        int                     sk_write_pending;
 450        __u32                   sk_dst_pending_confirm;
 451        u32                     sk_pacing_status; /* see enum sk_pacing */
 452        long                    sk_sndtimeo;
 453        struct timer_list       sk_timer;
 454        __u32                   sk_priority;
 455        __u32                   sk_mark;
 456        unsigned long           sk_pacing_rate; /* bytes per second */
 457        unsigned long           sk_max_pacing_rate;
 458        struct page_frag        sk_frag;
 459        netdev_features_t       sk_route_caps;
 460        netdev_features_t       sk_route_nocaps;
 461        netdev_features_t       sk_route_forced_caps;
 462        int                     sk_gso_type;
 463        unsigned int            sk_gso_max_size;
 464        gfp_t                   sk_allocation;
 465        __u32                   sk_txhash;
 466
 467        /*
 468         * Because of non atomicity rules, all
 469         * changes are protected by socket lock.
 470         */
 471        u8                      sk_padding : 1,
 472                                sk_kern_sock : 1,
 473                                sk_no_check_tx : 1,
 474                                sk_no_check_rx : 1,
 475                                sk_userlocks : 4;
 476        u8                      sk_pacing_shift;
 477        u16                     sk_type;
 478        u16                     sk_protocol;
 479        u16                     sk_gso_max_segs;
 480        unsigned long           sk_lingertime;
 481        struct proto            *sk_prot_creator;
 482        rwlock_t                sk_callback_lock;
 483        int                     sk_err,
 484                                sk_err_soft;
 485        u32                     sk_ack_backlog;
 486        u32                     sk_max_ack_backlog;
 487        kuid_t                  sk_uid;
 488#ifdef CONFIG_NET_RX_BUSY_POLL
 489        u8                      sk_prefer_busy_poll;
 490        u16                     sk_busy_poll_budget;
 491#endif
 492        spinlock_t              sk_peer_lock;
 493        struct pid              *sk_peer_pid;
 494        const struct cred       *sk_peer_cred;
 495
 496        long                    sk_rcvtimeo;
 497        ktime_t                 sk_stamp;
 498#if BITS_PER_LONG==32
 499        seqlock_t               sk_stamp_seq;
 500#endif
 501        u16                     sk_tsflags;
 502        int                     sk_bind_phc;
 503        u8                      sk_shutdown;
 504        u32                     sk_tskey;
 505        atomic_t                sk_zckey;
 506
 507        u8                      sk_clockid;
 508        u8                      sk_txtime_deadline_mode : 1,
 509                                sk_txtime_report_errors : 1,
 510                                sk_txtime_unused : 6;
 511
 512        struct socket           *sk_socket;
 513        void                    *sk_user_data;
 514#ifdef CONFIG_SECURITY
 515        void                    *sk_security;
 516#endif
 517        struct sock_cgroup_data sk_cgrp_data;
 518        struct mem_cgroup       *sk_memcg;
 519        void                    (*sk_state_change)(struct sock *sk);
 520        void                    (*sk_data_ready)(struct sock *sk);
 521        void                    (*sk_write_space)(struct sock *sk);
 522        void                    (*sk_error_report)(struct sock *sk);
 523        int                     (*sk_backlog_rcv)(struct sock *sk,
 524                                                  struct sk_buff *skb);
 525#ifdef CONFIG_SOCK_VALIDATE_XMIT
 526        struct sk_buff*         (*sk_validate_xmit_skb)(struct sock *sk,
 527                                                        struct net_device *dev,
 528                                                        struct sk_buff *skb);
 529#endif
 530        void                    (*sk_destruct)(struct sock *sk);
 531        struct sock_reuseport __rcu     *sk_reuseport_cb;
 532#ifdef CONFIG_BPF_SYSCALL
 533        struct bpf_local_storage __rcu  *sk_bpf_storage;
 534#endif
 535        struct rcu_head         sk_rcu;
 536};
 537
 538enum sk_pacing {
 539        SK_PACING_NONE          = 0,
 540        SK_PACING_NEEDED        = 1,
 541        SK_PACING_FQ            = 2,
 542};
 543
 544/* Pointer stored in sk_user_data might not be suitable for copying
 545 * when cloning the socket. For instance, it can point to a reference
 546 * counted object. sk_user_data bottom bit is set if pointer must not
 547 * be copied.
 548 */
 549#define SK_USER_DATA_NOCOPY     1UL
 550#define SK_USER_DATA_BPF        2UL     /* Managed by BPF */
 551#define SK_USER_DATA_PTRMASK    ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
 552
 553/**
 554 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 555 * @sk: socket
 556 */
 557static inline bool sk_user_data_is_nocopy(const struct sock *sk)
 558{
 559        return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
 560}
 561
 562#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 563
 564#define rcu_dereference_sk_user_data(sk)                                \
 565({                                                                      \
 566        void *__tmp = rcu_dereference(__sk_user_data((sk)));            \
 567        (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);              \
 568})
 569#define rcu_assign_sk_user_data(sk, ptr)                                \
 570({                                                                      \
 571        uintptr_t __tmp = (uintptr_t)(ptr);                             \
 572        WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);                    \
 573        rcu_assign_pointer(__sk_user_data((sk)), __tmp);                \
 574})
 575#define rcu_assign_sk_user_data_nocopy(sk, ptr)                         \
 576({                                                                      \
 577        uintptr_t __tmp = (uintptr_t)(ptr);                             \
 578        WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);                    \
 579        rcu_assign_pointer(__sk_user_data((sk)),                        \
 580                           __tmp | SK_USER_DATA_NOCOPY);                \
 581})
 582
 583/*
 584 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 585 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 586 * on a socket means that the socket will reuse everybody else's port
 587 * without looking at the other's sk_reuse value.
 588 */
 589
 590#define SK_NO_REUSE     0
 591#define SK_CAN_REUSE    1
 592#define SK_FORCE_REUSE  2
 593
 594int sk_set_peek_off(struct sock *sk, int val);
 595
 596static inline int sk_peek_offset(struct sock *sk, int flags)
 597{
 598        if (unlikely(flags & MSG_PEEK)) {
 599                return READ_ONCE(sk->sk_peek_off);
 600        }
 601
 602        return 0;
 603}
 604
 605static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 606{
 607        s32 off = READ_ONCE(sk->sk_peek_off);
 608
 609        if (unlikely(off >= 0)) {
 610                off = max_t(s32, off - val, 0);
 611                WRITE_ONCE(sk->sk_peek_off, off);
 612        }
 613}
 614
 615static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 616{
 617        sk_peek_offset_bwd(sk, -val);
 618}
 619
 620/*
 621 * Hashed lists helper routines
 622 */
 623static inline struct sock *sk_entry(const struct hlist_node *node)
 624{
 625        return hlist_entry(node, struct sock, sk_node);
 626}
 627
 628static inline struct sock *__sk_head(const struct hlist_head *head)
 629{
 630        return hlist_entry(head->first, struct sock, sk_node);
 631}
 632
 633static inline struct sock *sk_head(const struct hlist_head *head)
 634{
 635        return hlist_empty(head) ? NULL : __sk_head(head);
 636}
 637
 638static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 639{
 640        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 641}
 642
 643static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 644{
 645        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 646}
 647
 648static inline struct sock *sk_next(const struct sock *sk)
 649{
 650        return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 651}
 652
 653static inline struct sock *sk_nulls_next(const struct sock *sk)
 654{
 655        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 656                hlist_nulls_entry(sk->sk_nulls_node.next,
 657                                  struct sock, sk_nulls_node) :
 658                NULL;
 659}
 660
 661static inline bool sk_unhashed(const struct sock *sk)
 662{
 663        return hlist_unhashed(&sk->sk_node);
 664}
 665
 666static inline bool sk_hashed(const struct sock *sk)
 667{
 668        return !sk_unhashed(sk);
 669}
 670
 671static inline void sk_node_init(struct hlist_node *node)
 672{
 673        node->pprev = NULL;
 674}
 675
 676static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 677{
 678        node->pprev = NULL;
 679}
 680
 681static inline void __sk_del_node(struct sock *sk)
 682{
 683        __hlist_del(&sk->sk_node);
 684}
 685
 686/* NB: equivalent to hlist_del_init_rcu */
 687static inline bool __sk_del_node_init(struct sock *sk)
 688{
 689        if (sk_hashed(sk)) {
 690                __sk_del_node(sk);
 691                sk_node_init(&sk->sk_node);
 692                return true;
 693        }
 694        return false;
 695}
 696
 697/* Grab socket reference count. This operation is valid only
 698   when sk is ALREADY grabbed f.e. it is found in hash table
 699   or a list and the lookup is made under lock preventing hash table
 700   modifications.
 701 */
 702
 703static __always_inline void sock_hold(struct sock *sk)
 704{
 705        refcount_inc(&sk->sk_refcnt);
 706}
 707
 708/* Ungrab socket in the context, which assumes that socket refcnt
 709   cannot hit zero, f.e. it is true in context of any socketcall.
 710 */
 711static __always_inline void __sock_put(struct sock *sk)
 712{
 713        refcount_dec(&sk->sk_refcnt);
 714}
 715
 716static inline bool sk_del_node_init(struct sock *sk)
 717{
 718        bool rc = __sk_del_node_init(sk);
 719
 720        if (rc) {
 721                /* paranoid for a while -acme */
 722                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 723                __sock_put(sk);
 724        }
 725        return rc;
 726}
 727#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 728
 729static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 730{
 731        if (sk_hashed(sk)) {
 732                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 733                return true;
 734        }
 735        return false;
 736}
 737
 738static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 739{
 740        bool rc = __sk_nulls_del_node_init_rcu(sk);
 741
 742        if (rc) {
 743                /* paranoid for a while -acme */
 744                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 745                __sock_put(sk);
 746        }
 747        return rc;
 748}
 749
 750static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 751{
 752        hlist_add_head(&sk->sk_node, list);
 753}
 754
 755static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 756{
 757        sock_hold(sk);
 758        __sk_add_node(sk, list);
 759}
 760
 761static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 762{
 763        sock_hold(sk);
 764        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 765            sk->sk_family == AF_INET6)
 766                hlist_add_tail_rcu(&sk->sk_node, list);
 767        else
 768                hlist_add_head_rcu(&sk->sk_node, list);
 769}
 770
 771static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 772{
 773        sock_hold(sk);
 774        hlist_add_tail_rcu(&sk->sk_node, list);
 775}
 776
 777static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 778{
 779        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 780}
 781
 782static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
 783{
 784        hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 785}
 786
 787static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 788{
 789        sock_hold(sk);
 790        __sk_nulls_add_node_rcu(sk, list);
 791}
 792
 793static inline void __sk_del_bind_node(struct sock *sk)
 794{
 795        __hlist_del(&sk->sk_bind_node);
 796}
 797
 798static inline void sk_add_bind_node(struct sock *sk,
 799                                        struct hlist_head *list)
 800{
 801        hlist_add_head(&sk->sk_bind_node, list);
 802}
 803
 804#define sk_for_each(__sk, list) \
 805        hlist_for_each_entry(__sk, list, sk_node)
 806#define sk_for_each_rcu(__sk, list) \
 807        hlist_for_each_entry_rcu(__sk, list, sk_node)
 808#define sk_nulls_for_each(__sk, node, list) \
 809        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 810#define sk_nulls_for_each_rcu(__sk, node, list) \
 811        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 812#define sk_for_each_from(__sk) \
 813        hlist_for_each_entry_from(__sk, sk_node)
 814#define sk_nulls_for_each_from(__sk, node) \
 815        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 816                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 817#define sk_for_each_safe(__sk, tmp, list) \
 818        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 819#define sk_for_each_bound(__sk, list) \
 820        hlist_for_each_entry(__sk, list, sk_bind_node)
 821
 822/**
 823 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 824 * @tpos:       the type * to use as a loop cursor.
 825 * @pos:        the &struct hlist_node to use as a loop cursor.
 826 * @head:       the head for your list.
 827 * @offset:     offset of hlist_node within the struct.
 828 *
 829 */
 830#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 831        for (pos = rcu_dereference(hlist_first_rcu(head));                     \
 832             pos != NULL &&                                                    \
 833                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 834             pos = rcu_dereference(hlist_next_rcu(pos)))
 835
 836static inline struct user_namespace *sk_user_ns(struct sock *sk)
 837{
 838        /* Careful only use this in a context where these parameters
 839         * can not change and must all be valid, such as recvmsg from
 840         * userspace.
 841         */
 842        return sk->sk_socket->file->f_cred->user_ns;
 843}
 844
 845/* Sock flags */
 846enum sock_flags {
 847        SOCK_DEAD,
 848        SOCK_DONE,
 849        SOCK_URGINLINE,
 850        SOCK_KEEPOPEN,
 851        SOCK_LINGER,
 852        SOCK_DESTROY,
 853        SOCK_BROADCAST,
 854        SOCK_TIMESTAMP,
 855        SOCK_ZAPPED,
 856        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 857        SOCK_DBG, /* %SO_DEBUG setting */
 858        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 859        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 860        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 861        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 862        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 863        SOCK_FASYNC, /* fasync() active */
 864        SOCK_RXQ_OVFL,
 865        SOCK_ZEROCOPY, /* buffers from userspace */
 866        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 867        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 868                     * Will use last 4 bytes of packet sent from
 869                     * user-space instead.
 870                     */
 871        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 872        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 873        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 874        SOCK_TXTIME,
 875        SOCK_XDP, /* XDP is attached */
 876        SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 877};
 878
 879#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 880
 881static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 882{
 883        nsk->sk_flags = osk->sk_flags;
 884}
 885
 886static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 887{
 888        __set_bit(flag, &sk->sk_flags);
 889}
 890
 891static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 892{
 893        __clear_bit(flag, &sk->sk_flags);
 894}
 895
 896static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
 897                                     int valbool)
 898{
 899        if (valbool)
 900                sock_set_flag(sk, bit);
 901        else
 902                sock_reset_flag(sk, bit);
 903}
 904
 905static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 906{
 907        return test_bit(flag, &sk->sk_flags);
 908}
 909
 910#ifdef CONFIG_NET
 911DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 912static inline int sk_memalloc_socks(void)
 913{
 914        return static_branch_unlikely(&memalloc_socks_key);
 915}
 916
 917void __receive_sock(struct file *file);
 918#else
 919
 920static inline int sk_memalloc_socks(void)
 921{
 922        return 0;
 923}
 924
 925static inline void __receive_sock(struct file *file)
 926{ }
 927#endif
 928
 929static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 930{
 931        return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 932}
 933
 934static inline void sk_acceptq_removed(struct sock *sk)
 935{
 936        WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
 937}
 938
 939static inline void sk_acceptq_added(struct sock *sk)
 940{
 941        WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
 942}
 943
 944/* Note: If you think the test should be:
 945 *      return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
 946 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
 947 */
 948static inline bool sk_acceptq_is_full(const struct sock *sk)
 949{
 950        return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
 951}
 952
 953/*
 954 * Compute minimal free write space needed to queue new packets.
 955 */
 956static inline int sk_stream_min_wspace(const struct sock *sk)
 957{
 958        return READ_ONCE(sk->sk_wmem_queued) >> 1;
 959}
 960
 961static inline int sk_stream_wspace(const struct sock *sk)
 962{
 963        return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 964}
 965
 966static inline void sk_wmem_queued_add(struct sock *sk, int val)
 967{
 968        WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 969}
 970
 971void sk_stream_write_space(struct sock *sk);
 972
 973/* OOB backlog add */
 974static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 975{
 976        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 977        skb_dst_force(skb);
 978
 979        if (!sk->sk_backlog.tail)
 980                WRITE_ONCE(sk->sk_backlog.head, skb);
 981        else
 982                sk->sk_backlog.tail->next = skb;
 983
 984        WRITE_ONCE(sk->sk_backlog.tail, skb);
 985        skb->next = NULL;
 986}
 987
 988/*
 989 * Take into account size of receive queue and backlog queue
 990 * Do not take into account this skb truesize,
 991 * to allow even a single big packet to come.
 992 */
 993static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 994{
 995        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 996
 997        return qsize > limit;
 998}
 999
1000/* The per-socket spinlock must be held here. */
1001static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1002                                              unsigned int limit)
1003{
1004        if (sk_rcvqueues_full(sk, limit))
1005                return -ENOBUFS;
1006
1007        /*
1008         * If the skb was allocated from pfmemalloc reserves, only
1009         * allow SOCK_MEMALLOC sockets to use it as this socket is
1010         * helping free memory
1011         */
1012        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1013                return -ENOMEM;
1014
1015        __sk_add_backlog(sk, skb);
1016        sk->sk_backlog.len += skb->truesize;
1017        return 0;
1018}
1019
1020int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1021
1022static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1023{
1024        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1025                return __sk_backlog_rcv(sk, skb);
1026
1027        return sk->sk_backlog_rcv(sk, skb);
1028}
1029
1030static inline void sk_incoming_cpu_update(struct sock *sk)
1031{
1032        int cpu = raw_smp_processor_id();
1033
1034        if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1035                WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1036}
1037
1038static inline void sock_rps_record_flow_hash(__u32 hash)
1039{
1040#ifdef CONFIG_RPS
1041        struct rps_sock_flow_table *sock_flow_table;
1042
1043        rcu_read_lock();
1044        sock_flow_table = rcu_dereference(rps_sock_flow_table);
1045        rps_record_sock_flow(sock_flow_table, hash);
1046        rcu_read_unlock();
1047#endif
1048}
1049
1050static inline void sock_rps_record_flow(const struct sock *sk)
1051{
1052#ifdef CONFIG_RPS
1053        if (static_branch_unlikely(&rfs_needed)) {
1054                /* Reading sk->sk_rxhash might incur an expensive cache line
1055                 * miss.
1056                 *
1057                 * TCP_ESTABLISHED does cover almost all states where RFS
1058                 * might be useful, and is cheaper [1] than testing :
1059                 *      IPv4: inet_sk(sk)->inet_daddr
1060                 *      IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1061                 * OR   an additional socket flag
1062                 * [1] : sk_state and sk_prot are in the same cache line.
1063                 */
1064                if (sk->sk_state == TCP_ESTABLISHED)
1065                        sock_rps_record_flow_hash(sk->sk_rxhash);
1066        }
1067#endif
1068}
1069
1070static inline void sock_rps_save_rxhash(struct sock *sk,
1071                                        const struct sk_buff *skb)
1072{
1073#ifdef CONFIG_RPS
1074        if (unlikely(sk->sk_rxhash != skb->hash))
1075                sk->sk_rxhash = skb->hash;
1076#endif
1077}
1078
1079static inline void sock_rps_reset_rxhash(struct sock *sk)
1080{
1081#ifdef CONFIG_RPS
1082        sk->sk_rxhash = 0;
1083#endif
1084}
1085
1086#define sk_wait_event(__sk, __timeo, __condition, __wait)               \
1087        ({      int __rc;                                               \
1088                release_sock(__sk);                                     \
1089                __rc = __condition;                                     \
1090                if (!__rc) {                                            \
1091                        *(__timeo) = wait_woken(__wait,                 \
1092                                                TASK_INTERRUPTIBLE,     \
1093                                                *(__timeo));            \
1094                }                                                       \
1095                sched_annotate_sleep();                                 \
1096                lock_sock(__sk);                                        \
1097                __rc = __condition;                                     \
1098                __rc;                                                   \
1099        })
1100
1101int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1102int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1103void sk_stream_wait_close(struct sock *sk, long timeo_p);
1104int sk_stream_error(struct sock *sk, int flags, int err);
1105void sk_stream_kill_queues(struct sock *sk);
1106void sk_set_memalloc(struct sock *sk);
1107void sk_clear_memalloc(struct sock *sk);
1108
1109void __sk_flush_backlog(struct sock *sk);
1110
1111static inline bool sk_flush_backlog(struct sock *sk)
1112{
1113        if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1114                __sk_flush_backlog(sk);
1115                return true;
1116        }
1117        return false;
1118}
1119
1120int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1121
1122struct request_sock_ops;
1123struct timewait_sock_ops;
1124struct inet_hashinfo;
1125struct raw_hashinfo;
1126struct smc_hashinfo;
1127struct module;
1128struct sk_psock;
1129
1130/*
1131 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1132 * un-modified. Special care is taken when initializing object to zero.
1133 */
1134static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1135{
1136        if (offsetof(struct sock, sk_node.next) != 0)
1137                memset(sk, 0, offsetof(struct sock, sk_node.next));
1138        memset(&sk->sk_node.pprev, 0,
1139               size - offsetof(struct sock, sk_node.pprev));
1140}
1141
1142/* Networking protocol blocks we attach to sockets.
1143 * socket layer -> transport layer interface
1144 */
1145struct proto {
1146        void                    (*close)(struct sock *sk,
1147                                        long timeout);
1148        int                     (*pre_connect)(struct sock *sk,
1149                                        struct sockaddr *uaddr,
1150                                        int addr_len);
1151        int                     (*connect)(struct sock *sk,
1152                                        struct sockaddr *uaddr,
1153                                        int addr_len);
1154        int                     (*disconnect)(struct sock *sk, int flags);
1155
1156        struct sock *           (*accept)(struct sock *sk, int flags, int *err,
1157                                          bool kern);
1158
1159        int                     (*ioctl)(struct sock *sk, int cmd,
1160                                         unsigned long arg);
1161        int                     (*init)(struct sock *sk);
1162        void                    (*destroy)(struct sock *sk);
1163        void                    (*shutdown)(struct sock *sk, int how);
1164        int                     (*setsockopt)(struct sock *sk, int level,
1165                                        int optname, sockptr_t optval,
1166                                        unsigned int optlen);
1167        int                     (*getsockopt)(struct sock *sk, int level,
1168                                        int optname, char __user *optval,
1169                                        int __user *option);
1170        void                    (*keepalive)(struct sock *sk, int valbool);
1171#ifdef CONFIG_COMPAT
1172        int                     (*compat_ioctl)(struct sock *sk,
1173                                        unsigned int cmd, unsigned long arg);
1174#endif
1175        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1176                                           size_t len);
1177        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1178                                           size_t len, int noblock, int flags,
1179                                           int *addr_len);
1180        int                     (*sendpage)(struct sock *sk, struct page *page,
1181                                        int offset, size_t size, int flags);
1182        int                     (*bind)(struct sock *sk,
1183                                        struct sockaddr *addr, int addr_len);
1184        int                     (*bind_add)(struct sock *sk,
1185                                        struct sockaddr *addr, int addr_len);
1186
1187        int                     (*backlog_rcv) (struct sock *sk,
1188                                                struct sk_buff *skb);
1189        bool                    (*bpf_bypass_getsockopt)(int level,
1190                                                         int optname);
1191
1192        void            (*release_cb)(struct sock *sk);
1193
1194        /* Keeping track of sk's, looking them up, and port selection methods. */
1195        int                     (*hash)(struct sock *sk);
1196        void                    (*unhash)(struct sock *sk);
1197        void                    (*rehash)(struct sock *sk);
1198        int                     (*get_port)(struct sock *sk, unsigned short snum);
1199#ifdef CONFIG_BPF_SYSCALL
1200        int                     (*psock_update_sk_prot)(struct sock *sk,
1201                                                        struct sk_psock *psock,
1202                                                        bool restore);
1203#endif
1204
1205        /* Keeping track of sockets in use */
1206#ifdef CONFIG_PROC_FS
1207        unsigned int            inuse_idx;
1208#endif
1209
1210        bool                    (*stream_memory_free)(const struct sock *sk, int wake);
1211        bool                    (*sock_is_readable)(struct sock *sk);
1212        /* Memory pressure */
1213        void                    (*enter_memory_pressure)(struct sock *sk);
1214        void                    (*leave_memory_pressure)(struct sock *sk);
1215        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1216        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1217        /*
1218         * Pressure flag: try to collapse.
1219         * Technical note: it is used by multiple contexts non atomically.
1220         * All the __sk_mem_schedule() is of this nature: accounting
1221         * is strict, actions are advisory and have some latency.
1222         */
1223        unsigned long           *memory_pressure;
1224        long                    *sysctl_mem;
1225
1226        int                     *sysctl_wmem;
1227        int                     *sysctl_rmem;
1228        u32                     sysctl_wmem_offset;
1229        u32                     sysctl_rmem_offset;
1230
1231        int                     max_header;
1232        bool                    no_autobind;
1233
1234        struct kmem_cache       *slab;
1235        unsigned int            obj_size;
1236        slab_flags_t            slab_flags;
1237        unsigned int            useroffset;     /* Usercopy region offset */
1238        unsigned int            usersize;       /* Usercopy region size */
1239
1240        struct percpu_counter   *orphan_count;
1241
1242        struct request_sock_ops *rsk_prot;
1243        struct timewait_sock_ops *twsk_prot;
1244
1245        union {
1246                struct inet_hashinfo    *hashinfo;
1247                struct udp_table        *udp_table;
1248                struct raw_hashinfo     *raw_hash;
1249                struct smc_hashinfo     *smc_hash;
1250        } h;
1251
1252        struct module           *owner;
1253
1254        char                    name[32];
1255
1256        struct list_head        node;
1257#ifdef SOCK_REFCNT_DEBUG
1258        atomic_t                socks;
1259#endif
1260        int                     (*diag_destroy)(struct sock *sk, int err);
1261} __randomize_layout;
1262
1263int proto_register(struct proto *prot, int alloc_slab);
1264void proto_unregister(struct proto *prot);
1265int sock_load_diag_module(int family, int protocol);
1266
1267#ifdef SOCK_REFCNT_DEBUG
1268static inline void sk_refcnt_debug_inc(struct sock *sk)
1269{
1270        atomic_inc(&sk->sk_prot->socks);
1271}
1272
1273static inline void sk_refcnt_debug_dec(struct sock *sk)
1274{
1275        atomic_dec(&sk->sk_prot->socks);
1276        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1277               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1278}
1279
1280static inline void sk_refcnt_debug_release(const struct sock *sk)
1281{
1282        if (refcount_read(&sk->sk_refcnt) != 1)
1283                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1284                       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1285}
1286#else /* SOCK_REFCNT_DEBUG */
1287#define sk_refcnt_debug_inc(sk) do { } while (0)
1288#define sk_refcnt_debug_dec(sk) do { } while (0)
1289#define sk_refcnt_debug_release(sk) do { } while (0)
1290#endif /* SOCK_REFCNT_DEBUG */
1291
1292INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1293
1294static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1295{
1296        if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1297                return false;
1298
1299#ifdef CONFIG_INET
1300        return sk->sk_prot->stream_memory_free ?
1301                INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1302                                tcp_stream_memory_free,
1303                                sk, wake) : true;
1304#else
1305        return sk->sk_prot->stream_memory_free ?
1306                sk->sk_prot->stream_memory_free(sk, wake) : true;
1307#endif
1308}
1309
1310static inline bool sk_stream_memory_free(const struct sock *sk)
1311{
1312        return __sk_stream_memory_free(sk, 0);
1313}
1314
1315static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1316{
1317        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1318               __sk_stream_memory_free(sk, wake);
1319}
1320
1321static inline bool sk_stream_is_writeable(const struct sock *sk)
1322{
1323        return __sk_stream_is_writeable(sk, 0);
1324}
1325
1326static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1327                                            struct cgroup *ancestor)
1328{
1329#ifdef CONFIG_SOCK_CGROUP_DATA
1330        return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1331                                    ancestor);
1332#else
1333        return -ENOTSUPP;
1334#endif
1335}
1336
1337static inline bool sk_has_memory_pressure(const struct sock *sk)
1338{
1339        return sk->sk_prot->memory_pressure != NULL;
1340}
1341
1342static inline bool sk_under_memory_pressure(const struct sock *sk)
1343{
1344        if (!sk->sk_prot->memory_pressure)
1345                return false;
1346
1347        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1348            mem_cgroup_under_socket_pressure(sk->sk_memcg))
1349                return true;
1350
1351        return !!*sk->sk_prot->memory_pressure;
1352}
1353
1354static inline long
1355sk_memory_allocated(const struct sock *sk)
1356{
1357        return atomic_long_read(sk->sk_prot->memory_allocated);
1358}
1359
1360static inline long
1361sk_memory_allocated_add(struct sock *sk, int amt)
1362{
1363        return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1364}
1365
1366static inline void
1367sk_memory_allocated_sub(struct sock *sk, int amt)
1368{
1369        atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1370}
1371
1372#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1373
1374static inline void sk_sockets_allocated_dec(struct sock *sk)
1375{
1376        percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1377                                 SK_ALLOC_PERCPU_COUNTER_BATCH);
1378}
1379
1380static inline void sk_sockets_allocated_inc(struct sock *sk)
1381{
1382        percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1383                                 SK_ALLOC_PERCPU_COUNTER_BATCH);
1384}
1385
1386static inline u64
1387sk_sockets_allocated_read_positive(struct sock *sk)
1388{
1389        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1390}
1391
1392static inline int
1393proto_sockets_allocated_sum_positive(struct proto *prot)
1394{
1395        return percpu_counter_sum_positive(prot->sockets_allocated);
1396}
1397
1398static inline long
1399proto_memory_allocated(struct proto *prot)
1400{
1401        return atomic_long_read(prot->memory_allocated);
1402}
1403
1404static inline bool
1405proto_memory_pressure(struct proto *prot)
1406{
1407        if (!prot->memory_pressure)
1408                return false;
1409        return !!*prot->memory_pressure;
1410}
1411
1412
1413#ifdef CONFIG_PROC_FS
1414/* Called with local bh disabled */
1415void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1416int sock_prot_inuse_get(struct net *net, struct proto *proto);
1417int sock_inuse_get(struct net *net);
1418#else
1419static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1420                int inc)
1421{
1422}
1423#endif
1424
1425
1426/* With per-bucket locks this operation is not-atomic, so that
1427 * this version is not worse.
1428 */
1429static inline int __sk_prot_rehash(struct sock *sk)
1430{
1431        sk->sk_prot->unhash(sk);
1432        return sk->sk_prot->hash(sk);
1433}
1434
1435/* About 10 seconds */
1436#define SOCK_DESTROY_TIME (10*HZ)
1437
1438/* Sockets 0-1023 can't be bound to unless you are superuser */
1439#define PROT_SOCK       1024
1440
1441#define SHUTDOWN_MASK   3
1442#define RCV_SHUTDOWN    1
1443#define SEND_SHUTDOWN   2
1444
1445#define SOCK_BINDADDR_LOCK      4
1446#define SOCK_BINDPORT_LOCK      8
1447
1448struct socket_alloc {
1449        struct socket socket;
1450        struct inode vfs_inode;
1451};
1452
1453static inline struct socket *SOCKET_I(struct inode *inode)
1454{
1455        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1456}
1457
1458static inline struct inode *SOCK_INODE(struct socket *socket)
1459{
1460        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1461}
1462
1463/*
1464 * Functions for memory accounting
1465 */
1466int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1467int __sk_mem_schedule(struct sock *sk, int size, int kind);
1468void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1469void __sk_mem_reclaim(struct sock *sk, int amount);
1470
1471/* We used to have PAGE_SIZE here, but systems with 64KB pages
1472 * do not necessarily have 16x time more memory than 4KB ones.
1473 */
1474#define SK_MEM_QUANTUM 4096
1475#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1476#define SK_MEM_SEND     0
1477#define SK_MEM_RECV     1
1478
1479/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1480static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1481{
1482        long val = sk->sk_prot->sysctl_mem[index];
1483
1484#if PAGE_SIZE > SK_MEM_QUANTUM
1485        val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1486#elif PAGE_SIZE < SK_MEM_QUANTUM
1487        val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1488#endif
1489        return val;
1490}
1491
1492static inline int sk_mem_pages(int amt)
1493{
1494        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1495}
1496
1497static inline bool sk_has_account(struct sock *sk)
1498{
1499        /* return true if protocol supports memory accounting */
1500        return !!sk->sk_prot->memory_allocated;
1501}
1502
1503static inline bool sk_wmem_schedule(struct sock *sk, int size)
1504{
1505        if (!sk_has_account(sk))
1506                return true;
1507        return size <= sk->sk_forward_alloc ||
1508                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1509}
1510
1511static inline bool
1512sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1513{
1514        if (!sk_has_account(sk))
1515                return true;
1516        return size <= sk->sk_forward_alloc ||
1517                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1518                skb_pfmemalloc(skb);
1519}
1520
1521static inline void sk_mem_reclaim(struct sock *sk)
1522{
1523        if (!sk_has_account(sk))
1524                return;
1525        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1526                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1527}
1528
1529static inline void sk_mem_reclaim_partial(struct sock *sk)
1530{
1531        if (!sk_has_account(sk))
1532                return;
1533        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1534                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1535}
1536
1537static inline void sk_mem_charge(struct sock *sk, int size)
1538{
1539        if (!sk_has_account(sk))
1540                return;
1541        sk->sk_forward_alloc -= size;
1542}
1543
1544static inline void sk_mem_uncharge(struct sock *sk, int size)
1545{
1546        if (!sk_has_account(sk))
1547                return;
1548        sk->sk_forward_alloc += size;
1549
1550        /* Avoid a possible overflow.
1551         * TCP send queues can make this happen, if sk_mem_reclaim()
1552         * is not called and more than 2 GBytes are released at once.
1553         *
1554         * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1555         * no need to hold that much forward allocation anyway.
1556         */
1557        if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1558                __sk_mem_reclaim(sk, 1 << 20);
1559}
1560
1561DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1562static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1563{
1564        sk_wmem_queued_add(sk, -skb->truesize);
1565        sk_mem_uncharge(sk, skb->truesize);
1566        if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1567            !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1568                skb_ext_reset(skb);
1569                skb_zcopy_clear(skb, true);
1570                sk->sk_tx_skb_cache = skb;
1571                return;
1572        }
1573        __kfree_skb(skb);
1574}
1575
1576static inline void sock_release_ownership(struct sock *sk)
1577{
1578        if (sk->sk_lock.owned) {
1579                sk->sk_lock.owned = 0;
1580
1581                /* The sk_lock has mutex_unlock() semantics: */
1582                mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1583        }
1584}
1585
1586/*
1587 * Macro so as to not evaluate some arguments when
1588 * lockdep is not enabled.
1589 *
1590 * Mark both the sk_lock and the sk_lock.slock as a
1591 * per-address-family lock class.
1592 */
1593#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1594do {                                                                    \
1595        sk->sk_lock.owned = 0;                                          \
1596        init_waitqueue_head(&sk->sk_lock.wq);                           \
1597        spin_lock_init(&(sk)->sk_lock.slock);                           \
1598        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1599                        sizeof((sk)->sk_lock));                         \
1600        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1601                                (skey), (sname));                               \
1602        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1603} while (0)
1604
1605static inline bool lockdep_sock_is_held(const struct sock *sk)
1606{
1607        return lockdep_is_held(&sk->sk_lock) ||
1608               lockdep_is_held(&sk->sk_lock.slock);
1609}
1610
1611void lock_sock_nested(struct sock *sk, int subclass);
1612
1613static inline void lock_sock(struct sock *sk)
1614{
1615        lock_sock_nested(sk, 0);
1616}
1617
1618void __lock_sock(struct sock *sk);
1619void __release_sock(struct sock *sk);
1620void release_sock(struct sock *sk);
1621
1622/* BH context may only use the following locking interface. */
1623#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1624#define bh_lock_sock_nested(__sk) \
1625                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1626                                SINGLE_DEPTH_NESTING)
1627#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1628
1629bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1630
1631/**
1632 * lock_sock_fast - fast version of lock_sock
1633 * @sk: socket
1634 *
1635 * This version should be used for very small section, where process wont block
1636 * return false if fast path is taken:
1637 *
1638 *   sk_lock.slock locked, owned = 0, BH disabled
1639 *
1640 * return true if slow path is taken:
1641 *
1642 *   sk_lock.slock unlocked, owned = 1, BH enabled
1643 */
1644static inline bool lock_sock_fast(struct sock *sk)
1645{
1646        /* The sk_lock has mutex_lock() semantics here. */
1647        mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1648
1649        return __lock_sock_fast(sk);
1650}
1651
1652/* fast socket lock variant for caller already holding a [different] socket lock */
1653static inline bool lock_sock_fast_nested(struct sock *sk)
1654{
1655        mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1656
1657        return __lock_sock_fast(sk);
1658}
1659
1660/**
1661 * unlock_sock_fast - complement of lock_sock_fast
1662 * @sk: socket
1663 * @slow: slow mode
1664 *
1665 * fast unlock socket for user context.
1666 * If slow mode is on, we call regular release_sock()
1667 */
1668static inline void unlock_sock_fast(struct sock *sk, bool slow)
1669        __releases(&sk->sk_lock.slock)
1670{
1671        if (slow) {
1672                release_sock(sk);
1673                __release(&sk->sk_lock.slock);
1674        } else {
1675                mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1676                spin_unlock_bh(&sk->sk_lock.slock);
1677        }
1678}
1679
1680/* Used by processes to "lock" a socket state, so that
1681 * interrupts and bottom half handlers won't change it
1682 * from under us. It essentially blocks any incoming
1683 * packets, so that we won't get any new data or any
1684 * packets that change the state of the socket.
1685 *
1686 * While locked, BH processing will add new packets to
1687 * the backlog queue.  This queue is processed by the
1688 * owner of the socket lock right before it is released.
1689 *
1690 * Since ~2.3.5 it is also exclusive sleep lock serializing
1691 * accesses from user process context.
1692 */
1693
1694static inline void sock_owned_by_me(const struct sock *sk)
1695{
1696#ifdef CONFIG_LOCKDEP
1697        WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1698#endif
1699}
1700
1701static inline bool sock_owned_by_user(const struct sock *sk)
1702{
1703        sock_owned_by_me(sk);
1704        return sk->sk_lock.owned;
1705}
1706
1707static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1708{
1709        return sk->sk_lock.owned;
1710}
1711
1712/* no reclassification while locks are held */
1713static inline bool sock_allow_reclassification(const struct sock *csk)
1714{
1715        struct sock *sk = (struct sock *)csk;
1716
1717        return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1718}
1719
1720struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1721                      struct proto *prot, int kern);
1722void sk_free(struct sock *sk);
1723void sk_destruct(struct sock *sk);
1724struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1725void sk_free_unlock_clone(struct sock *sk);
1726
1727struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1728                             gfp_t priority);
1729void __sock_wfree(struct sk_buff *skb);
1730void sock_wfree(struct sk_buff *skb);
1731struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1732                             gfp_t priority);
1733void skb_orphan_partial(struct sk_buff *skb);
1734void sock_rfree(struct sk_buff *skb);
1735void sock_efree(struct sk_buff *skb);
1736#ifdef CONFIG_INET
1737void sock_edemux(struct sk_buff *skb);
1738void sock_pfree(struct sk_buff *skb);
1739#else
1740#define sock_edemux sock_efree
1741#endif
1742
1743int sock_setsockopt(struct socket *sock, int level, int op,
1744                    sockptr_t optval, unsigned int optlen);
1745
1746int sock_getsockopt(struct socket *sock, int level, int op,
1747                    char __user *optval, int __user *optlen);
1748int sock_gettstamp(struct socket *sock, void __user *userstamp,
1749                   bool timeval, bool time32);
1750struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1751                                    int noblock, int *errcode);
1752struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1753                                     unsigned long data_len, int noblock,
1754                                     int *errcode, int max_page_order);
1755void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1756void sock_kfree_s(struct sock *sk, void *mem, int size);
1757void sock_kzfree_s(struct sock *sk, void *mem, int size);
1758void sk_send_sigurg(struct sock *sk);
1759
1760struct sockcm_cookie {
1761        u64 transmit_time;
1762        u32 mark;
1763        u16 tsflags;
1764};
1765
1766static inline void sockcm_init(struct sockcm_cookie *sockc,
1767                               const struct sock *sk)
1768{
1769        *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1770}
1771
1772int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1773                     struct sockcm_cookie *sockc);
1774int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1775                   struct sockcm_cookie *sockc);
1776
1777/*
1778 * Functions to fill in entries in struct proto_ops when a protocol
1779 * does not implement a particular function.
1780 */
1781int sock_no_bind(struct socket *, struct sockaddr *, int);
1782int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1783int sock_no_socketpair(struct socket *, struct socket *);
1784int sock_no_accept(struct socket *, struct socket *, int, bool);
1785int sock_no_getname(struct socket *, struct sockaddr *, int);
1786int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1787int sock_no_listen(struct socket *, int);
1788int sock_no_shutdown(struct socket *, int);
1789int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1790int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1791int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1792int sock_no_mmap(struct file *file, struct socket *sock,
1793                 struct vm_area_struct *vma);
1794ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1795                         size_t size, int flags);
1796ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1797                                int offset, size_t size, int flags);
1798
1799/*
1800 * Functions to fill in entries in struct proto_ops when a protocol
1801 * uses the inet style.
1802 */
1803int sock_common_getsockopt(struct socket *sock, int level, int optname,
1804                                  char __user *optval, int __user *optlen);
1805int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1806                        int flags);
1807int sock_common_setsockopt(struct socket *sock, int level, int optname,
1808                           sockptr_t optval, unsigned int optlen);
1809
1810void sk_common_release(struct sock *sk);
1811
1812/*
1813 *      Default socket callbacks and setup code
1814 */
1815
1816/* Initialise core socket variables */
1817void sock_init_data(struct socket *sock, struct sock *sk);
1818
1819/*
1820 * Socket reference counting postulates.
1821 *
1822 * * Each user of socket SHOULD hold a reference count.
1823 * * Each access point to socket (an hash table bucket, reference from a list,
1824 *   running timer, skb in flight MUST hold a reference count.
1825 * * When reference count hits 0, it means it will never increase back.
1826 * * When reference count hits 0, it means that no references from
1827 *   outside exist to this socket and current process on current CPU
1828 *   is last user and may/should destroy this socket.
1829 * * sk_free is called from any context: process, BH, IRQ. When
1830 *   it is called, socket has no references from outside -> sk_free
1831 *   may release descendant resources allocated by the socket, but
1832 *   to the time when it is called, socket is NOT referenced by any
1833 *   hash tables, lists etc.
1834 * * Packets, delivered from outside (from network or from another process)
1835 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1836 *   when they sit in queue. Otherwise, packets will leak to hole, when
1837 *   socket is looked up by one cpu and unhasing is made by another CPU.
1838 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1839 *   (leak to backlog). Packet socket does all the processing inside
1840 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1841 *   use separate SMP lock, so that they are prone too.
1842 */
1843
1844/* Ungrab socket and destroy it, if it was the last reference. */
1845static inline void sock_put(struct sock *sk)
1846{
1847        if (refcount_dec_and_test(&sk->sk_refcnt))
1848                sk_free(sk);
1849}
1850/* Generic version of sock_put(), dealing with all sockets
1851 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1852 */
1853void sock_gen_put(struct sock *sk);
1854
1855int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1856                     unsigned int trim_cap, bool refcounted);
1857static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1858                                 const int nested)
1859{
1860        return __sk_receive_skb(sk, skb, nested, 1, true);
1861}
1862
1863static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1864{
1865        /* sk_tx_queue_mapping accept only upto a 16-bit value */
1866        if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1867                return;
1868        sk->sk_tx_queue_mapping = tx_queue;
1869}
1870
1871#define NO_QUEUE_MAPPING        USHRT_MAX
1872
1873static inline void sk_tx_queue_clear(struct sock *sk)
1874{
1875        sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1876}
1877
1878static inline int sk_tx_queue_get(const struct sock *sk)
1879{
1880        if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1881                return sk->sk_tx_queue_mapping;
1882
1883        return -1;
1884}
1885
1886static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1887{
1888#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1889        if (skb_rx_queue_recorded(skb)) {
1890                u16 rx_queue = skb_get_rx_queue(skb);
1891
1892                if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1893                        return;
1894
1895                sk->sk_rx_queue_mapping = rx_queue;
1896        }
1897#endif
1898}
1899
1900static inline void sk_rx_queue_clear(struct sock *sk)
1901{
1902#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1903        sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1904#endif
1905}
1906
1907static inline int sk_rx_queue_get(const struct sock *sk)
1908{
1909#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1910        if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1911                return sk->sk_rx_queue_mapping;
1912#endif
1913
1914        return -1;
1915}
1916
1917static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1918{
1919        sk->sk_socket = sock;
1920}
1921
1922static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1923{
1924        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1925        return &rcu_dereference_raw(sk->sk_wq)->wait;
1926}
1927/* Detach socket from process context.
1928 * Announce socket dead, detach it from wait queue and inode.
1929 * Note that parent inode held reference count on this struct sock,
1930 * we do not release it in this function, because protocol
1931 * probably wants some additional cleanups or even continuing
1932 * to work with this socket (TCP).
1933 */
1934static inline void sock_orphan(struct sock *sk)
1935{
1936        write_lock_bh(&sk->sk_callback_lock);
1937        sock_set_flag(sk, SOCK_DEAD);
1938        sk_set_socket(sk, NULL);
1939        sk->sk_wq  = NULL;
1940        write_unlock_bh(&sk->sk_callback_lock);
1941}
1942
1943static inline void sock_graft(struct sock *sk, struct socket *parent)
1944{
1945        WARN_ON(parent->sk);
1946        write_lock_bh(&sk->sk_callback_lock);
1947        rcu_assign_pointer(sk->sk_wq, &parent->wq);
1948        parent->sk = sk;
1949        sk_set_socket(sk, parent);
1950        sk->sk_uid = SOCK_INODE(parent)->i_uid;
1951        security_sock_graft(sk, parent);
1952        write_unlock_bh(&sk->sk_callback_lock);
1953}
1954
1955kuid_t sock_i_uid(struct sock *sk);
1956unsigned long sock_i_ino(struct sock *sk);
1957
1958static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1959{
1960        return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1961}
1962
1963static inline u32 net_tx_rndhash(void)
1964{
1965        u32 v = prandom_u32();
1966
1967        return v ?: 1;
1968}
1969
1970static inline void sk_set_txhash(struct sock *sk)
1971{
1972        /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1973        WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1974}
1975
1976static inline bool sk_rethink_txhash(struct sock *sk)
1977{
1978        if (sk->sk_txhash) {
1979                sk_set_txhash(sk);
1980                return true;
1981        }
1982        return false;
1983}
1984
1985static inline struct dst_entry *
1986__sk_dst_get(struct sock *sk)
1987{
1988        return rcu_dereference_check(sk->sk_dst_cache,
1989                                     lockdep_sock_is_held(sk));
1990}
1991
1992static inline struct dst_entry *
1993sk_dst_get(struct sock *sk)
1994{
1995        struct dst_entry *dst;
1996
1997        rcu_read_lock();
1998        dst = rcu_dereference(sk->sk_dst_cache);
1999        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2000                dst = NULL;
2001        rcu_read_unlock();
2002        return dst;
2003}
2004
2005static inline void __dst_negative_advice(struct sock *sk)
2006{
2007        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2008
2009        if (dst && dst->ops->negative_advice) {
2010                ndst = dst->ops->negative_advice(dst);
2011
2012                if (ndst != dst) {
2013                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
2014                        sk_tx_queue_clear(sk);
2015                        sk->sk_dst_pending_confirm = 0;
2016                }
2017        }
2018}
2019
2020static inline void dst_negative_advice(struct sock *sk)
2021{
2022        sk_rethink_txhash(sk);
2023        __dst_negative_advice(sk);
2024}
2025
2026static inline void
2027__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2028{
2029        struct dst_entry *old_dst;
2030
2031        sk_tx_queue_clear(sk);
2032        sk->sk_dst_pending_confirm = 0;
2033        old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2034                                            lockdep_sock_is_held(sk));
2035        rcu_assign_pointer(sk->sk_dst_cache, dst);
2036        dst_release(old_dst);
2037}
2038
2039static inline void
2040sk_dst_set(struct sock *sk, struct dst_entry *dst)
2041{
2042        struct dst_entry *old_dst;
2043
2044        sk_tx_queue_clear(sk);
2045        sk->sk_dst_pending_confirm = 0;
2046        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2047        dst_release(old_dst);
2048}
2049
2050static inline void
2051__sk_dst_reset(struct sock *sk)
2052{
2053        __sk_dst_set(sk, NULL);
2054}
2055
2056static inline void
2057sk_dst_reset(struct sock *sk)
2058{
2059        sk_dst_set(sk, NULL);
2060}
2061
2062struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2063
2064struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2065
2066static inline void sk_dst_confirm(struct sock *sk)
2067{
2068        if (!READ_ONCE(sk->sk_dst_pending_confirm))
2069                WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2070}
2071
2072static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2073{
2074        if (skb_get_dst_pending_confirm(skb)) {
2075                struct sock *sk = skb->sk;
2076                unsigned long now = jiffies;
2077
2078                /* avoid dirtying neighbour */
2079                if (READ_ONCE(n->confirmed) != now)
2080                        WRITE_ONCE(n->confirmed, now);
2081                if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2082                        WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2083        }
2084}
2085
2086bool sk_mc_loop(struct sock *sk);
2087
2088static inline bool sk_can_gso(const struct sock *sk)
2089{
2090        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2091}
2092
2093void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2094
2095static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2096{
2097        sk->sk_route_nocaps |= flags;
2098        sk->sk_route_caps &= ~flags;
2099}
2100
2101static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2102                                           struct iov_iter *from, char *to,
2103                                           int copy, int offset)
2104{
2105        if (skb->ip_summed == CHECKSUM_NONE) {
2106                __wsum csum = 0;
2107                if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2108                        return -EFAULT;
2109                skb->csum = csum_block_add(skb->csum, csum, offset);
2110        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2111                if (!copy_from_iter_full_nocache(to, copy, from))
2112                        return -EFAULT;
2113        } else if (!copy_from_iter_full(to, copy, from))
2114                return -EFAULT;
2115
2116        return 0;
2117}
2118
2119static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2120                                       struct iov_iter *from, int copy)
2121{
2122        int err, offset = skb->len;
2123
2124        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2125                                       copy, offset);
2126        if (err)
2127                __skb_trim(skb, offset);
2128
2129        return err;
2130}
2131
2132static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2133                                           struct sk_buff *skb,
2134                                           struct page *page,
2135                                           int off, int copy)
2136{
2137        int err;
2138
2139        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2140                                       copy, skb->len);
2141        if (err)
2142                return err;
2143
2144        skb->len             += copy;
2145        skb->data_len        += copy;
2146        skb->truesize        += copy;
2147        sk_wmem_queued_add(sk, copy);
2148        sk_mem_charge(sk, copy);
2149        return 0;
2150}
2151
2152/**
2153 * sk_wmem_alloc_get - returns write allocations
2154 * @sk: socket
2155 *
2156 * Return: sk_wmem_alloc minus initial offset of one
2157 */
2158static inline int sk_wmem_alloc_get(const struct sock *sk)
2159{
2160        return refcount_read(&sk->sk_wmem_alloc) - 1;
2161}
2162
2163/**
2164 * sk_rmem_alloc_get - returns read allocations
2165 * @sk: socket
2166 *
2167 * Return: sk_rmem_alloc
2168 */
2169static inline int sk_rmem_alloc_get(const struct sock *sk)
2170{
2171        return atomic_read(&sk->sk_rmem_alloc);
2172}
2173
2174/**
2175 * sk_has_allocations - check if allocations are outstanding
2176 * @sk: socket
2177 *
2178 * Return: true if socket has write or read allocations
2179 */
2180static inline bool sk_has_allocations(const struct sock *sk)
2181{
2182        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2183}
2184
2185/**
2186 * skwq_has_sleeper - check if there are any waiting processes
2187 * @wq: struct socket_wq
2188 *
2189 * Return: true if socket_wq has waiting processes
2190 *
2191 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2192 * barrier call. They were added due to the race found within the tcp code.
2193 *
2194 * Consider following tcp code paths::
2195 *
2196 *   CPU1                CPU2
2197 *   sys_select          receive packet
2198 *   ...                 ...
2199 *   __add_wait_queue    update tp->rcv_nxt
2200 *   ...                 ...
2201 *   tp->rcv_nxt check   sock_def_readable
2202 *   ...                 {
2203 *   schedule               rcu_read_lock();
2204 *                          wq = rcu_dereference(sk->sk_wq);
2205 *                          if (wq && waitqueue_active(&wq->wait))
2206 *                              wake_up_interruptible(&wq->wait)
2207 *                          ...
2208 *                       }
2209 *
2210 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2211 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2212 * could then endup calling schedule and sleep forever if there are no more
2213 * data on the socket.
2214 *
2215 */
2216static inline bool skwq_has_sleeper(struct socket_wq *wq)
2217{
2218        return wq && wq_has_sleeper(&wq->wait);
2219}
2220
2221/**
2222 * sock_poll_wait - place memory barrier behind the poll_wait call.
2223 * @filp:           file
2224 * @sock:           socket to wait on
2225 * @p:              poll_table
2226 *
2227 * See the comments in the wq_has_sleeper function.
2228 */
2229static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2230                                  poll_table *p)
2231{
2232        if (!poll_does_not_wait(p)) {
2233                poll_wait(filp, &sock->wq.wait, p);
2234                /* We need to be sure we are in sync with the
2235                 * socket flags modification.
2236                 *
2237                 * This memory barrier is paired in the wq_has_sleeper.
2238                 */
2239                smp_mb();
2240        }
2241}
2242
2243static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2244{
2245        /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2246        u32 txhash = READ_ONCE(sk->sk_txhash);
2247
2248        if (txhash) {
2249                skb->l4_hash = 1;
2250                skb->hash = txhash;
2251        }
2252}
2253
2254void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2255
2256/*
2257 *      Queue a received datagram if it will fit. Stream and sequenced
2258 *      protocols can't normally use this as they need to fit buffers in
2259 *      and play with them.
2260 *
2261 *      Inlined as it's very short and called for pretty much every
2262 *      packet ever received.
2263 */
2264static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2265{
2266        skb_orphan(skb);
2267        skb->sk = sk;
2268        skb->destructor = sock_rfree;
2269        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2270        sk_mem_charge(sk, skb->truesize);
2271}
2272
2273static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2274{
2275        if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2276                skb_orphan(skb);
2277                skb->destructor = sock_efree;
2278                skb->sk = sk;
2279                return true;
2280        }
2281        return false;
2282}
2283
2284static inline void skb_prepare_for_gro(struct sk_buff *skb)
2285{
2286        if (skb->destructor != sock_wfree) {
2287                skb_orphan(skb);
2288                return;
2289        }
2290        skb->slow_gro = 1;
2291}
2292
2293void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2294                    unsigned long expires);
2295
2296void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2297
2298void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2299
2300int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2301                        struct sk_buff *skb, unsigned int flags,
2302                        void (*destructor)(struct sock *sk,
2303                                           struct sk_buff *skb));
2304int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2305int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2306
2307int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2308struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2309
2310/*
2311 *      Recover an error report and clear atomically
2312 */
2313
2314static inline int sock_error(struct sock *sk)
2315{
2316        int err;
2317
2318        /* Avoid an atomic operation for the common case.
2319         * This is racy since another cpu/thread can change sk_err under us.
2320         */
2321        if (likely(data_race(!sk->sk_err)))
2322                return 0;
2323
2324        err = xchg(&sk->sk_err, 0);
2325        return -err;
2326}
2327
2328void sk_error_report(struct sock *sk);
2329
2330static inline unsigned long sock_wspace(struct sock *sk)
2331{
2332        int amt = 0;
2333
2334        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2335                amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2336                if (amt < 0)
2337                        amt = 0;
2338        }
2339        return amt;
2340}
2341
2342/* Note:
2343 *  We use sk->sk_wq_raw, from contexts knowing this
2344 *  pointer is not NULL and cannot disappear/change.
2345 */
2346static inline void sk_set_bit(int nr, struct sock *sk)
2347{
2348        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2349            !sock_flag(sk, SOCK_FASYNC))
2350                return;
2351
2352        set_bit(nr, &sk->sk_wq_raw->flags);
2353}
2354
2355static inline void sk_clear_bit(int nr, struct sock *sk)
2356{
2357        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2358            !sock_flag(sk, SOCK_FASYNC))
2359                return;
2360
2361        clear_bit(nr, &sk->sk_wq_raw->flags);
2362}
2363
2364static inline void sk_wake_async(const struct sock *sk, int how, int band)
2365{
2366        if (sock_flag(sk, SOCK_FASYNC)) {
2367                rcu_read_lock();
2368                sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2369                rcu_read_unlock();
2370        }
2371}
2372
2373/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2374 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2375 * Note: for send buffers, TCP works better if we can build two skbs at
2376 * minimum.
2377 */
2378#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2379
2380#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2381#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2382
2383static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2384{
2385        u32 val;
2386
2387        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2388                return;
2389
2390        val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2391
2392        WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2393}
2394
2395struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2396                                    bool force_schedule);
2397
2398/**
2399 * sk_page_frag - return an appropriate page_frag
2400 * @sk: socket
2401 *
2402 * Use the per task page_frag instead of the per socket one for
2403 * optimization when we know that we're in the normal context and owns
2404 * everything that's associated with %current.
2405 *
2406 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2407 * inside other socket operations and end up recursing into sk_page_frag()
2408 * while it's already in use.
2409 *
2410 * Return: a per task page_frag if context allows that,
2411 * otherwise a per socket one.
2412 */
2413static inline struct page_frag *sk_page_frag(struct sock *sk)
2414{
2415        if (gfpflags_normal_context(sk->sk_allocation))
2416                return &current->task_frag;
2417
2418        return &sk->sk_frag;
2419}
2420
2421bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2422
2423/*
2424 *      Default write policy as shown to user space via poll/select/SIGIO
2425 */
2426static inline bool sock_writeable(const struct sock *sk)
2427{
2428        return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2429}
2430
2431static inline gfp_t gfp_any(void)
2432{
2433        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2434}
2435
2436static inline gfp_t gfp_memcg_charge(void)
2437{
2438        return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2439}
2440
2441static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2442{
2443        return noblock ? 0 : sk->sk_rcvtimeo;
2444}
2445
2446static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2447{
2448        return noblock ? 0 : sk->sk_sndtimeo;
2449}
2450
2451static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2452{
2453        int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2454
2455        return v ?: 1;
2456}
2457
2458/* Alas, with timeout socket operations are not restartable.
2459 * Compare this to poll().
2460 */
2461static inline int sock_intr_errno(long timeo)
2462{
2463        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2464}
2465
2466struct sock_skb_cb {
2467        u32 dropcount;
2468};
2469
2470/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2471 * using skb->cb[] would keep using it directly and utilize its
2472 * alignement guarantee.
2473 */
2474#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2475                            sizeof(struct sock_skb_cb)))
2476
2477#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2478                            SOCK_SKB_CB_OFFSET))
2479
2480#define sock_skb_cb_check_size(size) \
2481        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2482
2483static inline void
2484sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2485{
2486        SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2487                                                atomic_read(&sk->sk_drops) : 0;
2488}
2489
2490static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2491{
2492        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2493
2494        atomic_add(segs, &sk->sk_drops);
2495}
2496
2497static inline ktime_t sock_read_timestamp(struct sock *sk)
2498{
2499#if BITS_PER_LONG==32
2500        unsigned int seq;
2501        ktime_t kt;
2502
2503        do {
2504                seq = read_seqbegin(&sk->sk_stamp_seq);
2505                kt = sk->sk_stamp;
2506        } while (read_seqretry(&sk->sk_stamp_seq, seq));
2507
2508        return kt;
2509#else
2510        return READ_ONCE(sk->sk_stamp);
2511#endif
2512}
2513
2514static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2515{
2516#if BITS_PER_LONG==32
2517        write_seqlock(&sk->sk_stamp_seq);
2518        sk->sk_stamp = kt;
2519        write_sequnlock(&sk->sk_stamp_seq);
2520#else
2521        WRITE_ONCE(sk->sk_stamp, kt);
2522#endif
2523}
2524
2525void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2526                           struct sk_buff *skb);
2527void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2528                             struct sk_buff *skb);
2529
2530static inline void
2531sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2532{
2533        ktime_t kt = skb->tstamp;
2534        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2535
2536        /*
2537         * generate control messages if
2538         * - receive time stamping in software requested
2539         * - software time stamp available and wanted
2540         * - hardware time stamps available and wanted
2541         */
2542        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2543            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2544            (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2545            (hwtstamps->hwtstamp &&
2546             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2547                __sock_recv_timestamp(msg, sk, skb);
2548        else
2549                sock_write_timestamp(sk, kt);
2550
2551        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2552                __sock_recv_wifi_status(msg, sk, skb);
2553}
2554
2555void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2556                              struct sk_buff *skb);
2557
2558#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2559static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2560                                          struct sk_buff *skb)
2561{
2562#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2563                           (1UL << SOCK_RCVTSTAMP))
2564#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2565                           SOF_TIMESTAMPING_RAW_HARDWARE)
2566
2567        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2568                __sock_recv_ts_and_drops(msg, sk, skb);
2569        else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2570                sock_write_timestamp(sk, skb->tstamp);
2571        else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2572                sock_write_timestamp(sk, 0);
2573}
2574
2575void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2576
2577/**
2578 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2579 * @sk:         socket sending this packet
2580 * @tsflags:    timestamping flags to use
2581 * @tx_flags:   completed with instructions for time stamping
2582 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2583 *
2584 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2585 */
2586static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2587                                      __u8 *tx_flags, __u32 *tskey)
2588{
2589        if (unlikely(tsflags)) {
2590                __sock_tx_timestamp(tsflags, tx_flags);
2591                if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2592                    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2593                        *tskey = sk->sk_tskey++;
2594        }
2595        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2596                *tx_flags |= SKBTX_WIFI_STATUS;
2597}
2598
2599static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2600                                     __u8 *tx_flags)
2601{
2602        _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2603}
2604
2605static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2606{
2607        _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2608                           &skb_shinfo(skb)->tskey);
2609}
2610
2611DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2612/**
2613 * sk_eat_skb - Release a skb if it is no longer needed
2614 * @sk: socket to eat this skb from
2615 * @skb: socket buffer to eat
2616 *
2617 * This routine must be called with interrupts disabled or with the socket
2618 * locked so that the sk_buff queue operation is ok.
2619*/
2620static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2621{
2622        __skb_unlink(skb, &sk->sk_receive_queue);
2623        if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2624            !sk->sk_rx_skb_cache) {
2625                sk->sk_rx_skb_cache = skb;
2626                skb_orphan(skb);
2627                return;
2628        }
2629        __kfree_skb(skb);
2630}
2631
2632static inline
2633struct net *sock_net(const struct sock *sk)
2634{
2635        return read_pnet(&sk->sk_net);
2636}
2637
2638static inline
2639void sock_net_set(struct sock *sk, struct net *net)
2640{
2641        write_pnet(&sk->sk_net, net);
2642}
2643
2644static inline bool
2645skb_sk_is_prefetched(struct sk_buff *skb)
2646{
2647#ifdef CONFIG_INET
2648        return skb->destructor == sock_pfree;
2649#else
2650        return false;
2651#endif /* CONFIG_INET */
2652}
2653
2654/* This helper checks if a socket is a full socket,
2655 * ie _not_ a timewait or request socket.
2656 */
2657static inline bool sk_fullsock(const struct sock *sk)
2658{
2659        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2660}
2661
2662static inline bool
2663sk_is_refcounted(struct sock *sk)
2664{
2665        /* Only full sockets have sk->sk_flags. */
2666        return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2667}
2668
2669/**
2670 * skb_steal_sock - steal a socket from an sk_buff
2671 * @skb: sk_buff to steal the socket from
2672 * @refcounted: is set to true if the socket is reference-counted
2673 */
2674static inline struct sock *
2675skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2676{
2677        if (skb->sk) {
2678                struct sock *sk = skb->sk;
2679
2680                *refcounted = true;
2681                if (skb_sk_is_prefetched(skb))
2682                        *refcounted = sk_is_refcounted(sk);
2683                skb->destructor = NULL;
2684                skb->sk = NULL;
2685                return sk;
2686        }
2687        *refcounted = false;
2688        return NULL;
2689}
2690
2691/* Checks if this SKB belongs to an HW offloaded socket
2692 * and whether any SW fallbacks are required based on dev.
2693 * Check decrypted mark in case skb_orphan() cleared socket.
2694 */
2695static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2696                                                   struct net_device *dev)
2697{
2698#ifdef CONFIG_SOCK_VALIDATE_XMIT
2699        struct sock *sk = skb->sk;
2700
2701        if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2702                skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2703#ifdef CONFIG_TLS_DEVICE
2704        } else if (unlikely(skb->decrypted)) {
2705                pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2706                kfree_skb(skb);
2707                skb = NULL;
2708#endif
2709        }
2710#endif
2711
2712        return skb;
2713}
2714
2715/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2716 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2717 */
2718static inline bool sk_listener(const struct sock *sk)
2719{
2720        return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2721}
2722
2723void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2724int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2725                       int type);
2726
2727bool sk_ns_capable(const struct sock *sk,
2728                   struct user_namespace *user_ns, int cap);
2729bool sk_capable(const struct sock *sk, int cap);
2730bool sk_net_capable(const struct sock *sk, int cap);
2731
2732void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2733
2734/* Take into consideration the size of the struct sk_buff overhead in the
2735 * determination of these values, since that is non-constant across
2736 * platforms.  This makes socket queueing behavior and performance
2737 * not depend upon such differences.
2738 */
2739#define _SK_MEM_PACKETS         256
2740#define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
2741#define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2742#define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2743
2744extern __u32 sysctl_wmem_max;
2745extern __u32 sysctl_rmem_max;
2746
2747extern int sysctl_tstamp_allow_data;
2748extern int sysctl_optmem_max;
2749
2750extern __u32 sysctl_wmem_default;
2751extern __u32 sysctl_rmem_default;
2752
2753#define SKB_FRAG_PAGE_ORDER     get_order(32768)
2754DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2755
2756static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2757{
2758        /* Does this proto have per netns sysctl_wmem ? */
2759        if (proto->sysctl_wmem_offset)
2760                return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2761
2762        return *proto->sysctl_wmem;
2763}
2764
2765static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2766{
2767        /* Does this proto have per netns sysctl_rmem ? */
2768        if (proto->sysctl_rmem_offset)
2769                return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2770
2771        return *proto->sysctl_rmem;
2772}
2773
2774/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2775 * Some wifi drivers need to tweak it to get more chunks.
2776 * They can use this helper from their ndo_start_xmit()
2777 */
2778static inline void sk_pacing_shift_update(struct sock *sk, int val)
2779{
2780        if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2781                return;
2782        WRITE_ONCE(sk->sk_pacing_shift, val);
2783}
2784
2785/* if a socket is bound to a device, check that the given device
2786 * index is either the same or that the socket is bound to an L3
2787 * master device and the given device index is also enslaved to
2788 * that L3 master
2789 */
2790static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2791{
2792        int mdif;
2793
2794        if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2795                return true;
2796
2797        mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2798        if (mdif && mdif == sk->sk_bound_dev_if)
2799                return true;
2800
2801        return false;
2802}
2803
2804void sock_def_readable(struct sock *sk);
2805
2806int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2807void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2808int sock_set_timestamping(struct sock *sk, int optname,
2809                          struct so_timestamping timestamping);
2810
2811void sock_enable_timestamps(struct sock *sk);
2812void sock_no_linger(struct sock *sk);
2813void sock_set_keepalive(struct sock *sk);
2814void sock_set_priority(struct sock *sk, u32 priority);
2815void sock_set_rcvbuf(struct sock *sk, int val);
2816void sock_set_mark(struct sock *sk, u32 val);
2817void sock_set_reuseaddr(struct sock *sk);
2818void sock_set_reuseport(struct sock *sk);
2819void sock_set_sndtimeo(struct sock *sk, s64 secs);
2820
2821int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2822
2823static inline bool sk_is_readable(struct sock *sk)
2824{
2825        if (sk->sk_prot->sock_is_readable)
2826                return sk->sk_prot->sock_is_readable(sk);
2827        return false;
2828}
2829#endif  /* _SOCK_H */
2830