linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
  76#include <linux/fsnotify_backend.h>
  77#include <uapi/linux/limits.h>
  78#include <uapi/linux/netfilter/nf_tables.h>
  79
  80#include "audit.h"
  81
  82/* flags stating the success for a syscall */
  83#define AUDITSC_INVALID 0
  84#define AUDITSC_SUCCESS 1
  85#define AUDITSC_FAILURE 2
  86
  87/* no execve audit message should be longer than this (userspace limits),
  88 * see the note near the top of audit_log_execve_info() about this value */
  89#define MAX_EXECVE_AUDIT_LEN 7500
  90
  91/* max length to print of cmdline/proctitle value during audit */
  92#define MAX_PROCTITLE_AUDIT_LEN 128
  93
  94/* number of audit rules */
  95int audit_n_rules;
  96
  97/* determines whether we collect data for signals sent */
  98int audit_signals;
  99
 100struct audit_aux_data {
 101        struct audit_aux_data   *next;
 102        int                     type;
 103};
 104
 105/* Number of target pids per aux struct. */
 106#define AUDIT_AUX_PIDS  16
 107
 108struct audit_aux_data_pids {
 109        struct audit_aux_data   d;
 110        pid_t                   target_pid[AUDIT_AUX_PIDS];
 111        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 112        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 113        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 114        u32                     target_sid[AUDIT_AUX_PIDS];
 115        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 116        int                     pid_count;
 117};
 118
 119struct audit_aux_data_bprm_fcaps {
 120        struct audit_aux_data   d;
 121        struct audit_cap_data   fcap;
 122        unsigned int            fcap_ver;
 123        struct audit_cap_data   old_pcap;
 124        struct audit_cap_data   new_pcap;
 125};
 126
 127struct audit_tree_refs {
 128        struct audit_tree_refs *next;
 129        struct audit_chunk *c[31];
 130};
 131
 132struct audit_nfcfgop_tab {
 133        enum audit_nfcfgop      op;
 134        const char              *s;
 135};
 136
 137static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 138        { AUDIT_XT_OP_REGISTER,                 "xt_register"              },
 139        { AUDIT_XT_OP_REPLACE,                  "xt_replace"               },
 140        { AUDIT_XT_OP_UNREGISTER,               "xt_unregister"            },
 141        { AUDIT_NFT_OP_TABLE_REGISTER,          "nft_register_table"       },
 142        { AUDIT_NFT_OP_TABLE_UNREGISTER,        "nft_unregister_table"     },
 143        { AUDIT_NFT_OP_CHAIN_REGISTER,          "nft_register_chain"       },
 144        { AUDIT_NFT_OP_CHAIN_UNREGISTER,        "nft_unregister_chain"     },
 145        { AUDIT_NFT_OP_RULE_REGISTER,           "nft_register_rule"        },
 146        { AUDIT_NFT_OP_RULE_UNREGISTER,         "nft_unregister_rule"      },
 147        { AUDIT_NFT_OP_SET_REGISTER,            "nft_register_set"         },
 148        { AUDIT_NFT_OP_SET_UNREGISTER,          "nft_unregister_set"       },
 149        { AUDIT_NFT_OP_SETELEM_REGISTER,        "nft_register_setelem"     },
 150        { AUDIT_NFT_OP_SETELEM_UNREGISTER,      "nft_unregister_setelem"   },
 151        { AUDIT_NFT_OP_GEN_REGISTER,            "nft_register_gen"         },
 152        { AUDIT_NFT_OP_OBJ_REGISTER,            "nft_register_obj"         },
 153        { AUDIT_NFT_OP_OBJ_UNREGISTER,          "nft_unregister_obj"       },
 154        { AUDIT_NFT_OP_OBJ_RESET,               "nft_reset_obj"            },
 155        { AUDIT_NFT_OP_FLOWTABLE_REGISTER,      "nft_register_flowtable"   },
 156        { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,    "nft_unregister_flowtable" },
 157        { AUDIT_NFT_OP_INVALID,                 "nft_invalid"              },
 158};
 159
 160static int audit_match_perm(struct audit_context *ctx, int mask)
 161{
 162        unsigned n;
 163
 164        if (unlikely(!ctx))
 165                return 0;
 166        n = ctx->major;
 167
 168        switch (audit_classify_syscall(ctx->arch, n)) {
 169        case 0: /* native */
 170                if ((mask & AUDIT_PERM_WRITE) &&
 171                     audit_match_class(AUDIT_CLASS_WRITE, n))
 172                        return 1;
 173                if ((mask & AUDIT_PERM_READ) &&
 174                     audit_match_class(AUDIT_CLASS_READ, n))
 175                        return 1;
 176                if ((mask & AUDIT_PERM_ATTR) &&
 177                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 178                        return 1;
 179                return 0;
 180        case 1: /* 32bit on biarch */
 181                if ((mask & AUDIT_PERM_WRITE) &&
 182                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 183                        return 1;
 184                if ((mask & AUDIT_PERM_READ) &&
 185                     audit_match_class(AUDIT_CLASS_READ_32, n))
 186                        return 1;
 187                if ((mask & AUDIT_PERM_ATTR) &&
 188                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 189                        return 1;
 190                return 0;
 191        case 2: /* open */
 192                return mask & ACC_MODE(ctx->argv[1]);
 193        case 3: /* openat */
 194                return mask & ACC_MODE(ctx->argv[2]);
 195        case 4: /* socketcall */
 196                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 197        case 5: /* execve */
 198                return mask & AUDIT_PERM_EXEC;
 199        default:
 200                return 0;
 201        }
 202}
 203
 204static int audit_match_filetype(struct audit_context *ctx, int val)
 205{
 206        struct audit_names *n;
 207        umode_t mode = (umode_t)val;
 208
 209        if (unlikely(!ctx))
 210                return 0;
 211
 212        list_for_each_entry(n, &ctx->names_list, list) {
 213                if ((n->ino != AUDIT_INO_UNSET) &&
 214                    ((n->mode & S_IFMT) == mode))
 215                        return 1;
 216        }
 217
 218        return 0;
 219}
 220
 221/*
 222 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 223 * ->first_trees points to its beginning, ->trees - to the current end of data.
 224 * ->tree_count is the number of free entries in array pointed to by ->trees.
 225 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 226 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 227 * it's going to remain 1-element for almost any setup) until we free context itself.
 228 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 229 */
 230
 231static void audit_set_auditable(struct audit_context *ctx)
 232{
 233        if (!ctx->prio) {
 234                ctx->prio = 1;
 235                ctx->current_state = AUDIT_STATE_RECORD;
 236        }
 237}
 238
 239static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 240{
 241        struct audit_tree_refs *p = ctx->trees;
 242        int left = ctx->tree_count;
 243
 244        if (likely(left)) {
 245                p->c[--left] = chunk;
 246                ctx->tree_count = left;
 247                return 1;
 248        }
 249        if (!p)
 250                return 0;
 251        p = p->next;
 252        if (p) {
 253                p->c[30] = chunk;
 254                ctx->trees = p;
 255                ctx->tree_count = 30;
 256                return 1;
 257        }
 258        return 0;
 259}
 260
 261static int grow_tree_refs(struct audit_context *ctx)
 262{
 263        struct audit_tree_refs *p = ctx->trees;
 264
 265        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 266        if (!ctx->trees) {
 267                ctx->trees = p;
 268                return 0;
 269        }
 270        if (p)
 271                p->next = ctx->trees;
 272        else
 273                ctx->first_trees = ctx->trees;
 274        ctx->tree_count = 31;
 275        return 1;
 276}
 277
 278static void unroll_tree_refs(struct audit_context *ctx,
 279                      struct audit_tree_refs *p, int count)
 280{
 281        struct audit_tree_refs *q;
 282        int n;
 283
 284        if (!p) {
 285                /* we started with empty chain */
 286                p = ctx->first_trees;
 287                count = 31;
 288                /* if the very first allocation has failed, nothing to do */
 289                if (!p)
 290                        return;
 291        }
 292        n = count;
 293        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 294                while (n--) {
 295                        audit_put_chunk(q->c[n]);
 296                        q->c[n] = NULL;
 297                }
 298        }
 299        while (n-- > ctx->tree_count) {
 300                audit_put_chunk(q->c[n]);
 301                q->c[n] = NULL;
 302        }
 303        ctx->trees = p;
 304        ctx->tree_count = count;
 305}
 306
 307static void free_tree_refs(struct audit_context *ctx)
 308{
 309        struct audit_tree_refs *p, *q;
 310
 311        for (p = ctx->first_trees; p; p = q) {
 312                q = p->next;
 313                kfree(p);
 314        }
 315}
 316
 317static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 318{
 319        struct audit_tree_refs *p;
 320        int n;
 321
 322        if (!tree)
 323                return 0;
 324        /* full ones */
 325        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 326                for (n = 0; n < 31; n++)
 327                        if (audit_tree_match(p->c[n], tree))
 328                                return 1;
 329        }
 330        /* partial */
 331        if (p) {
 332                for (n = ctx->tree_count; n < 31; n++)
 333                        if (audit_tree_match(p->c[n], tree))
 334                                return 1;
 335        }
 336        return 0;
 337}
 338
 339static int audit_compare_uid(kuid_t uid,
 340                             struct audit_names *name,
 341                             struct audit_field *f,
 342                             struct audit_context *ctx)
 343{
 344        struct audit_names *n;
 345        int rc;
 346
 347        if (name) {
 348                rc = audit_uid_comparator(uid, f->op, name->uid);
 349                if (rc)
 350                        return rc;
 351        }
 352
 353        if (ctx) {
 354                list_for_each_entry(n, &ctx->names_list, list) {
 355                        rc = audit_uid_comparator(uid, f->op, n->uid);
 356                        if (rc)
 357                                return rc;
 358                }
 359        }
 360        return 0;
 361}
 362
 363static int audit_compare_gid(kgid_t gid,
 364                             struct audit_names *name,
 365                             struct audit_field *f,
 366                             struct audit_context *ctx)
 367{
 368        struct audit_names *n;
 369        int rc;
 370
 371        if (name) {
 372                rc = audit_gid_comparator(gid, f->op, name->gid);
 373                if (rc)
 374                        return rc;
 375        }
 376
 377        if (ctx) {
 378                list_for_each_entry(n, &ctx->names_list, list) {
 379                        rc = audit_gid_comparator(gid, f->op, n->gid);
 380                        if (rc)
 381                                return rc;
 382                }
 383        }
 384        return 0;
 385}
 386
 387static int audit_field_compare(struct task_struct *tsk,
 388                               const struct cred *cred,
 389                               struct audit_field *f,
 390                               struct audit_context *ctx,
 391                               struct audit_names *name)
 392{
 393        switch (f->val) {
 394        /* process to file object comparisons */
 395        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 396                return audit_compare_uid(cred->uid, name, f, ctx);
 397        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 398                return audit_compare_gid(cred->gid, name, f, ctx);
 399        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 400                return audit_compare_uid(cred->euid, name, f, ctx);
 401        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 402                return audit_compare_gid(cred->egid, name, f, ctx);
 403        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 404                return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 405        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 406                return audit_compare_uid(cred->suid, name, f, ctx);
 407        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 408                return audit_compare_gid(cred->sgid, name, f, ctx);
 409        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 410                return audit_compare_uid(cred->fsuid, name, f, ctx);
 411        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 412                return audit_compare_gid(cred->fsgid, name, f, ctx);
 413        /* uid comparisons */
 414        case AUDIT_COMPARE_UID_TO_AUID:
 415                return audit_uid_comparator(cred->uid, f->op,
 416                                            audit_get_loginuid(tsk));
 417        case AUDIT_COMPARE_UID_TO_EUID:
 418                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 419        case AUDIT_COMPARE_UID_TO_SUID:
 420                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 421        case AUDIT_COMPARE_UID_TO_FSUID:
 422                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 423        /* auid comparisons */
 424        case AUDIT_COMPARE_AUID_TO_EUID:
 425                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 426                                            cred->euid);
 427        case AUDIT_COMPARE_AUID_TO_SUID:
 428                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 429                                            cred->suid);
 430        case AUDIT_COMPARE_AUID_TO_FSUID:
 431                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 432                                            cred->fsuid);
 433        /* euid comparisons */
 434        case AUDIT_COMPARE_EUID_TO_SUID:
 435                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 436        case AUDIT_COMPARE_EUID_TO_FSUID:
 437                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 438        /* suid comparisons */
 439        case AUDIT_COMPARE_SUID_TO_FSUID:
 440                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 441        /* gid comparisons */
 442        case AUDIT_COMPARE_GID_TO_EGID:
 443                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 444        case AUDIT_COMPARE_GID_TO_SGID:
 445                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 446        case AUDIT_COMPARE_GID_TO_FSGID:
 447                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 448        /* egid comparisons */
 449        case AUDIT_COMPARE_EGID_TO_SGID:
 450                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 451        case AUDIT_COMPARE_EGID_TO_FSGID:
 452                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 453        /* sgid comparison */
 454        case AUDIT_COMPARE_SGID_TO_FSGID:
 455                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 456        default:
 457                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 458                return 0;
 459        }
 460        return 0;
 461}
 462
 463/* Determine if any context name data matches a rule's watch data */
 464/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 465 * otherwise.
 466 *
 467 * If task_creation is true, this is an explicit indication that we are
 468 * filtering a task rule at task creation time.  This and tsk == current are
 469 * the only situations where tsk->cred may be accessed without an rcu read lock.
 470 */
 471static int audit_filter_rules(struct task_struct *tsk,
 472                              struct audit_krule *rule,
 473                              struct audit_context *ctx,
 474                              struct audit_names *name,
 475                              enum audit_state *state,
 476                              bool task_creation)
 477{
 478        const struct cred *cred;
 479        int i, need_sid = 1;
 480        u32 sid;
 481        unsigned int sessionid;
 482
 483        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 484
 485        for (i = 0; i < rule->field_count; i++) {
 486                struct audit_field *f = &rule->fields[i];
 487                struct audit_names *n;
 488                int result = 0;
 489                pid_t pid;
 490
 491                switch (f->type) {
 492                case AUDIT_PID:
 493                        pid = task_tgid_nr(tsk);
 494                        result = audit_comparator(pid, f->op, f->val);
 495                        break;
 496                case AUDIT_PPID:
 497                        if (ctx) {
 498                                if (!ctx->ppid)
 499                                        ctx->ppid = task_ppid_nr(tsk);
 500                                result = audit_comparator(ctx->ppid, f->op, f->val);
 501                        }
 502                        break;
 503                case AUDIT_EXE:
 504                        result = audit_exe_compare(tsk, rule->exe);
 505                        if (f->op == Audit_not_equal)
 506                                result = !result;
 507                        break;
 508                case AUDIT_UID:
 509                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 510                        break;
 511                case AUDIT_EUID:
 512                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 513                        break;
 514                case AUDIT_SUID:
 515                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 516                        break;
 517                case AUDIT_FSUID:
 518                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 519                        break;
 520                case AUDIT_GID:
 521                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 522                        if (f->op == Audit_equal) {
 523                                if (!result)
 524                                        result = groups_search(cred->group_info, f->gid);
 525                        } else if (f->op == Audit_not_equal) {
 526                                if (result)
 527                                        result = !groups_search(cred->group_info, f->gid);
 528                        }
 529                        break;
 530                case AUDIT_EGID:
 531                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 532                        if (f->op == Audit_equal) {
 533                                if (!result)
 534                                        result = groups_search(cred->group_info, f->gid);
 535                        } else if (f->op == Audit_not_equal) {
 536                                if (result)
 537                                        result = !groups_search(cred->group_info, f->gid);
 538                        }
 539                        break;
 540                case AUDIT_SGID:
 541                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 542                        break;
 543                case AUDIT_FSGID:
 544                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 545                        break;
 546                case AUDIT_SESSIONID:
 547                        sessionid = audit_get_sessionid(tsk);
 548                        result = audit_comparator(sessionid, f->op, f->val);
 549                        break;
 550                case AUDIT_PERS:
 551                        result = audit_comparator(tsk->personality, f->op, f->val);
 552                        break;
 553                case AUDIT_ARCH:
 554                        if (ctx)
 555                                result = audit_comparator(ctx->arch, f->op, f->val);
 556                        break;
 557
 558                case AUDIT_EXIT:
 559                        if (ctx && ctx->return_valid != AUDITSC_INVALID)
 560                                result = audit_comparator(ctx->return_code, f->op, f->val);
 561                        break;
 562                case AUDIT_SUCCESS:
 563                        if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 564                                if (f->val)
 565                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 566                                else
 567                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 568                        }
 569                        break;
 570                case AUDIT_DEVMAJOR:
 571                        if (name) {
 572                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 573                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 574                                        ++result;
 575                        } else if (ctx) {
 576                                list_for_each_entry(n, &ctx->names_list, list) {
 577                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 578                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 579                                                ++result;
 580                                                break;
 581                                        }
 582                                }
 583                        }
 584                        break;
 585                case AUDIT_DEVMINOR:
 586                        if (name) {
 587                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 588                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 589                                        ++result;
 590                        } else if (ctx) {
 591                                list_for_each_entry(n, &ctx->names_list, list) {
 592                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 593                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 594                                                ++result;
 595                                                break;
 596                                        }
 597                                }
 598                        }
 599                        break;
 600                case AUDIT_INODE:
 601                        if (name)
 602                                result = audit_comparator(name->ino, f->op, f->val);
 603                        else if (ctx) {
 604                                list_for_each_entry(n, &ctx->names_list, list) {
 605                                        if (audit_comparator(n->ino, f->op, f->val)) {
 606                                                ++result;
 607                                                break;
 608                                        }
 609                                }
 610                        }
 611                        break;
 612                case AUDIT_OBJ_UID:
 613                        if (name) {
 614                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 615                        } else if (ctx) {
 616                                list_for_each_entry(n, &ctx->names_list, list) {
 617                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 618                                                ++result;
 619                                                break;
 620                                        }
 621                                }
 622                        }
 623                        break;
 624                case AUDIT_OBJ_GID:
 625                        if (name) {
 626                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 627                        } else if (ctx) {
 628                                list_for_each_entry(n, &ctx->names_list, list) {
 629                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 630                                                ++result;
 631                                                break;
 632                                        }
 633                                }
 634                        }
 635                        break;
 636                case AUDIT_WATCH:
 637                        if (name) {
 638                                result = audit_watch_compare(rule->watch,
 639                                                             name->ino,
 640                                                             name->dev);
 641                                if (f->op == Audit_not_equal)
 642                                        result = !result;
 643                        }
 644                        break;
 645                case AUDIT_DIR:
 646                        if (ctx) {
 647                                result = match_tree_refs(ctx, rule->tree);
 648                                if (f->op == Audit_not_equal)
 649                                        result = !result;
 650                        }
 651                        break;
 652                case AUDIT_LOGINUID:
 653                        result = audit_uid_comparator(audit_get_loginuid(tsk),
 654                                                      f->op, f->uid);
 655                        break;
 656                case AUDIT_LOGINUID_SET:
 657                        result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 658                        break;
 659                case AUDIT_SADDR_FAM:
 660                        if (ctx && ctx->sockaddr)
 661                                result = audit_comparator(ctx->sockaddr->ss_family,
 662                                                          f->op, f->val);
 663                        break;
 664                case AUDIT_SUBJ_USER:
 665                case AUDIT_SUBJ_ROLE:
 666                case AUDIT_SUBJ_TYPE:
 667                case AUDIT_SUBJ_SEN:
 668                case AUDIT_SUBJ_CLR:
 669                        /* NOTE: this may return negative values indicating
 670                           a temporary error.  We simply treat this as a
 671                           match for now to avoid losing information that
 672                           may be wanted.   An error message will also be
 673                           logged upon error */
 674                        if (f->lsm_rule) {
 675                                if (need_sid) {
 676                                        security_task_getsecid_subj(tsk, &sid);
 677                                        need_sid = 0;
 678                                }
 679                                result = security_audit_rule_match(sid, f->type,
 680                                                                   f->op,
 681                                                                   f->lsm_rule);
 682                        }
 683                        break;
 684                case AUDIT_OBJ_USER:
 685                case AUDIT_OBJ_ROLE:
 686                case AUDIT_OBJ_TYPE:
 687                case AUDIT_OBJ_LEV_LOW:
 688                case AUDIT_OBJ_LEV_HIGH:
 689                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 690                           also applies here */
 691                        if (f->lsm_rule) {
 692                                /* Find files that match */
 693                                if (name) {
 694                                        result = security_audit_rule_match(
 695                                                                name->osid,
 696                                                                f->type,
 697                                                                f->op,
 698                                                                f->lsm_rule);
 699                                } else if (ctx) {
 700                                        list_for_each_entry(n, &ctx->names_list, list) {
 701                                                if (security_audit_rule_match(
 702                                                                n->osid,
 703                                                                f->type,
 704                                                                f->op,
 705                                                                f->lsm_rule)) {
 706                                                        ++result;
 707                                                        break;
 708                                                }
 709                                        }
 710                                }
 711                                /* Find ipc objects that match */
 712                                if (!ctx || ctx->type != AUDIT_IPC)
 713                                        break;
 714                                if (security_audit_rule_match(ctx->ipc.osid,
 715                                                              f->type, f->op,
 716                                                              f->lsm_rule))
 717                                        ++result;
 718                        }
 719                        break;
 720                case AUDIT_ARG0:
 721                case AUDIT_ARG1:
 722                case AUDIT_ARG2:
 723                case AUDIT_ARG3:
 724                        if (ctx)
 725                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 726                        break;
 727                case AUDIT_FILTERKEY:
 728                        /* ignore this field for filtering */
 729                        result = 1;
 730                        break;
 731                case AUDIT_PERM:
 732                        result = audit_match_perm(ctx, f->val);
 733                        if (f->op == Audit_not_equal)
 734                                result = !result;
 735                        break;
 736                case AUDIT_FILETYPE:
 737                        result = audit_match_filetype(ctx, f->val);
 738                        if (f->op == Audit_not_equal)
 739                                result = !result;
 740                        break;
 741                case AUDIT_FIELD_COMPARE:
 742                        result = audit_field_compare(tsk, cred, f, ctx, name);
 743                        break;
 744                }
 745                if (!result)
 746                        return 0;
 747        }
 748
 749        if (ctx) {
 750                if (rule->prio <= ctx->prio)
 751                        return 0;
 752                if (rule->filterkey) {
 753                        kfree(ctx->filterkey);
 754                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 755                }
 756                ctx->prio = rule->prio;
 757        }
 758        switch (rule->action) {
 759        case AUDIT_NEVER:
 760                *state = AUDIT_STATE_DISABLED;
 761                break;
 762        case AUDIT_ALWAYS:
 763                *state = AUDIT_STATE_RECORD;
 764                break;
 765        }
 766        return 1;
 767}
 768
 769/* At process creation time, we can determine if system-call auditing is
 770 * completely disabled for this task.  Since we only have the task
 771 * structure at this point, we can only check uid and gid.
 772 */
 773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 774{
 775        struct audit_entry *e;
 776        enum audit_state   state;
 777
 778        rcu_read_lock();
 779        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 780                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 781                                       &state, true)) {
 782                        if (state == AUDIT_STATE_RECORD)
 783                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 784                        rcu_read_unlock();
 785                        return state;
 786                }
 787        }
 788        rcu_read_unlock();
 789        return AUDIT_STATE_BUILD;
 790}
 791
 792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 793{
 794        int word, bit;
 795
 796        if (val > 0xffffffff)
 797                return false;
 798
 799        word = AUDIT_WORD(val);
 800        if (word >= AUDIT_BITMASK_SIZE)
 801                return false;
 802
 803        bit = AUDIT_BIT(val);
 804
 805        return rule->mask[word] & bit;
 806}
 807
 808/* At syscall exit time, this filter is called if the audit_state is
 809 * not low enough that auditing cannot take place, but is also not
 810 * high enough that we already know we have to write an audit record
 811 * (i.e., the state is AUDIT_STATE_BUILD).
 812 */
 813static void audit_filter_syscall(struct task_struct *tsk,
 814                                 struct audit_context *ctx)
 815{
 816        struct audit_entry *e;
 817        enum audit_state state;
 818
 819        if (auditd_test_task(tsk))
 820                return;
 821
 822        rcu_read_lock();
 823        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
 824                if (audit_in_mask(&e->rule, ctx->major) &&
 825                    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 826                                       &state, false)) {
 827                        rcu_read_unlock();
 828                        ctx->current_state = state;
 829                        return;
 830                }
 831        }
 832        rcu_read_unlock();
 833        return;
 834}
 835
 836/*
 837 * Given an audit_name check the inode hash table to see if they match.
 838 * Called holding the rcu read lock to protect the use of audit_inode_hash
 839 */
 840static int audit_filter_inode_name(struct task_struct *tsk,
 841                                   struct audit_names *n,
 842                                   struct audit_context *ctx) {
 843        int h = audit_hash_ino((u32)n->ino);
 844        struct list_head *list = &audit_inode_hash[h];
 845        struct audit_entry *e;
 846        enum audit_state state;
 847
 848        list_for_each_entry_rcu(e, list, list) {
 849                if (audit_in_mask(&e->rule, ctx->major) &&
 850                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 851                        ctx->current_state = state;
 852                        return 1;
 853                }
 854        }
 855        return 0;
 856}
 857
 858/* At syscall exit time, this filter is called if any audit_names have been
 859 * collected during syscall processing.  We only check rules in sublists at hash
 860 * buckets applicable to the inode numbers in audit_names.
 861 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 862 */
 863void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 864{
 865        struct audit_names *n;
 866
 867        if (auditd_test_task(tsk))
 868                return;
 869
 870        rcu_read_lock();
 871
 872        list_for_each_entry(n, &ctx->names_list, list) {
 873                if (audit_filter_inode_name(tsk, n, ctx))
 874                        break;
 875        }
 876        rcu_read_unlock();
 877}
 878
 879static inline void audit_proctitle_free(struct audit_context *context)
 880{
 881        kfree(context->proctitle.value);
 882        context->proctitle.value = NULL;
 883        context->proctitle.len = 0;
 884}
 885
 886static inline void audit_free_module(struct audit_context *context)
 887{
 888        if (context->type == AUDIT_KERN_MODULE) {
 889                kfree(context->module.name);
 890                context->module.name = NULL;
 891        }
 892}
 893static inline void audit_free_names(struct audit_context *context)
 894{
 895        struct audit_names *n, *next;
 896
 897        list_for_each_entry_safe(n, next, &context->names_list, list) {
 898                list_del(&n->list);
 899                if (n->name)
 900                        putname(n->name);
 901                if (n->should_free)
 902                        kfree(n);
 903        }
 904        context->name_count = 0;
 905        path_put(&context->pwd);
 906        context->pwd.dentry = NULL;
 907        context->pwd.mnt = NULL;
 908}
 909
 910static inline void audit_free_aux(struct audit_context *context)
 911{
 912        struct audit_aux_data *aux;
 913
 914        while ((aux = context->aux)) {
 915                context->aux = aux->next;
 916                kfree(aux);
 917        }
 918        while ((aux = context->aux_pids)) {
 919                context->aux_pids = aux->next;
 920                kfree(aux);
 921        }
 922}
 923
 924static inline struct audit_context *audit_alloc_context(enum audit_state state)
 925{
 926        struct audit_context *context;
 927
 928        context = kzalloc(sizeof(*context), GFP_KERNEL);
 929        if (!context)
 930                return NULL;
 931        context->state = state;
 932        context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
 933        INIT_LIST_HEAD(&context->killed_trees);
 934        INIT_LIST_HEAD(&context->names_list);
 935        context->fds[0] = -1;
 936        context->return_valid = AUDITSC_INVALID;
 937        return context;
 938}
 939
 940/**
 941 * audit_alloc - allocate an audit context block for a task
 942 * @tsk: task
 943 *
 944 * Filter on the task information and allocate a per-task audit context
 945 * if necessary.  Doing so turns on system call auditing for the
 946 * specified task.  This is called from copy_process, so no lock is
 947 * needed.
 948 */
 949int audit_alloc(struct task_struct *tsk)
 950{
 951        struct audit_context *context;
 952        enum audit_state     state;
 953        char *key = NULL;
 954
 955        if (likely(!audit_ever_enabled))
 956                return 0; /* Return if not auditing. */
 957
 958        state = audit_filter_task(tsk, &key);
 959        if (state == AUDIT_STATE_DISABLED) {
 960                clear_task_syscall_work(tsk, SYSCALL_AUDIT);
 961                return 0;
 962        }
 963
 964        if (!(context = audit_alloc_context(state))) {
 965                kfree(key);
 966                audit_log_lost("out of memory in audit_alloc");
 967                return -ENOMEM;
 968        }
 969        context->filterkey = key;
 970
 971        audit_set_context(tsk, context);
 972        set_task_syscall_work(tsk, SYSCALL_AUDIT);
 973        return 0;
 974}
 975
 976static inline void audit_free_context(struct audit_context *context)
 977{
 978        audit_free_module(context);
 979        audit_free_names(context);
 980        unroll_tree_refs(context, NULL, 0);
 981        free_tree_refs(context);
 982        audit_free_aux(context);
 983        kfree(context->filterkey);
 984        kfree(context->sockaddr);
 985        audit_proctitle_free(context);
 986        kfree(context);
 987}
 988
 989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 990                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
 991                                 u32 sid, char *comm)
 992{
 993        struct audit_buffer *ab;
 994        char *ctx = NULL;
 995        u32 len;
 996        int rc = 0;
 997
 998        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 999        if (!ab)
1000                return rc;
1001
1002        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1003                         from_kuid(&init_user_ns, auid),
1004                         from_kuid(&init_user_ns, uid), sessionid);
1005        if (sid) {
1006                if (security_secid_to_secctx(sid, &ctx, &len)) {
1007                        audit_log_format(ab, " obj=(none)");
1008                        rc = 1;
1009                } else {
1010                        audit_log_format(ab, " obj=%s", ctx);
1011                        security_release_secctx(ctx, len);
1012                }
1013        }
1014        audit_log_format(ab, " ocomm=");
1015        audit_log_untrustedstring(ab, comm);
1016        audit_log_end(ab);
1017
1018        return rc;
1019}
1020
1021static void audit_log_execve_info(struct audit_context *context,
1022                                  struct audit_buffer **ab)
1023{
1024        long len_max;
1025        long len_rem;
1026        long len_full;
1027        long len_buf;
1028        long len_abuf = 0;
1029        long len_tmp;
1030        bool require_data;
1031        bool encode;
1032        unsigned int iter;
1033        unsigned int arg;
1034        char *buf_head;
1035        char *buf;
1036        const char __user *p = (const char __user *)current->mm->arg_start;
1037
1038        /* NOTE: this buffer needs to be large enough to hold all the non-arg
1039         *       data we put in the audit record for this argument (see the
1040         *       code below) ... at this point in time 96 is plenty */
1041        char abuf[96];
1042
1043        /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1044         *       current value of 7500 is not as important as the fact that it
1045         *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1046         *       room if we go over a little bit in the logging below */
1047        WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1048        len_max = MAX_EXECVE_AUDIT_LEN;
1049
1050        /* scratch buffer to hold the userspace args */
1051        buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1052        if (!buf_head) {
1053                audit_panic("out of memory for argv string");
1054                return;
1055        }
1056        buf = buf_head;
1057
1058        audit_log_format(*ab, "argc=%d", context->execve.argc);
1059
1060        len_rem = len_max;
1061        len_buf = 0;
1062        len_full = 0;
1063        require_data = true;
1064        encode = false;
1065        iter = 0;
1066        arg = 0;
1067        do {
1068                /* NOTE: we don't ever want to trust this value for anything
1069                 *       serious, but the audit record format insists we
1070                 *       provide an argument length for really long arguments,
1071                 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1072                 *       to use strncpy_from_user() to obtain this value for
1073                 *       recording in the log, although we don't use it
1074                 *       anywhere here to avoid a double-fetch problem */
1075                if (len_full == 0)
1076                        len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1077
1078                /* read more data from userspace */
1079                if (require_data) {
1080                        /* can we make more room in the buffer? */
1081                        if (buf != buf_head) {
1082                                memmove(buf_head, buf, len_buf);
1083                                buf = buf_head;
1084                        }
1085
1086                        /* fetch as much as we can of the argument */
1087                        len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1088                                                    len_max - len_buf);
1089                        if (len_tmp == -EFAULT) {
1090                                /* unable to copy from userspace */
1091                                send_sig(SIGKILL, current, 0);
1092                                goto out;
1093                        } else if (len_tmp == (len_max - len_buf)) {
1094                                /* buffer is not large enough */
1095                                require_data = true;
1096                                /* NOTE: if we are going to span multiple
1097                                 *       buffers force the encoding so we stand
1098                                 *       a chance at a sane len_full value and
1099                                 *       consistent record encoding */
1100                                encode = true;
1101                                len_full = len_full * 2;
1102                                p += len_tmp;
1103                        } else {
1104                                require_data = false;
1105                                if (!encode)
1106                                        encode = audit_string_contains_control(
1107                                                                buf, len_tmp);
1108                                /* try to use a trusted value for len_full */
1109                                if (len_full < len_max)
1110                                        len_full = (encode ?
1111                                                    len_tmp * 2 : len_tmp);
1112                                p += len_tmp + 1;
1113                        }
1114                        len_buf += len_tmp;
1115                        buf_head[len_buf] = '\0';
1116
1117                        /* length of the buffer in the audit record? */
1118                        len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1119                }
1120
1121                /* write as much as we can to the audit log */
1122                if (len_buf >= 0) {
1123                        /* NOTE: some magic numbers here - basically if we
1124                         *       can't fit a reasonable amount of data into the
1125                         *       existing audit buffer, flush it and start with
1126                         *       a new buffer */
1127                        if ((sizeof(abuf) + 8) > len_rem) {
1128                                len_rem = len_max;
1129                                audit_log_end(*ab);
1130                                *ab = audit_log_start(context,
1131                                                      GFP_KERNEL, AUDIT_EXECVE);
1132                                if (!*ab)
1133                                        goto out;
1134                        }
1135
1136                        /* create the non-arg portion of the arg record */
1137                        len_tmp = 0;
1138                        if (require_data || (iter > 0) ||
1139                            ((len_abuf + sizeof(abuf)) > len_rem)) {
1140                                if (iter == 0) {
1141                                        len_tmp += snprintf(&abuf[len_tmp],
1142                                                        sizeof(abuf) - len_tmp,
1143                                                        " a%d_len=%lu",
1144                                                        arg, len_full);
1145                                }
1146                                len_tmp += snprintf(&abuf[len_tmp],
1147                                                    sizeof(abuf) - len_tmp,
1148                                                    " a%d[%d]=", arg, iter++);
1149                        } else
1150                                len_tmp += snprintf(&abuf[len_tmp],
1151                                                    sizeof(abuf) - len_tmp,
1152                                                    " a%d=", arg);
1153                        WARN_ON(len_tmp >= sizeof(abuf));
1154                        abuf[sizeof(abuf) - 1] = '\0';
1155
1156                        /* log the arg in the audit record */
1157                        audit_log_format(*ab, "%s", abuf);
1158                        len_rem -= len_tmp;
1159                        len_tmp = len_buf;
1160                        if (encode) {
1161                                if (len_abuf > len_rem)
1162                                        len_tmp = len_rem / 2; /* encoding */
1163                                audit_log_n_hex(*ab, buf, len_tmp);
1164                                len_rem -= len_tmp * 2;
1165                                len_abuf -= len_tmp * 2;
1166                        } else {
1167                                if (len_abuf > len_rem)
1168                                        len_tmp = len_rem - 2; /* quotes */
1169                                audit_log_n_string(*ab, buf, len_tmp);
1170                                len_rem -= len_tmp + 2;
1171                                /* don't subtract the "2" because we still need
1172                                 * to add quotes to the remaining string */
1173                                len_abuf -= len_tmp;
1174                        }
1175                        len_buf -= len_tmp;
1176                        buf += len_tmp;
1177                }
1178
1179                /* ready to move to the next argument? */
1180                if ((len_buf == 0) && !require_data) {
1181                        arg++;
1182                        iter = 0;
1183                        len_full = 0;
1184                        require_data = true;
1185                        encode = false;
1186                }
1187        } while (arg < context->execve.argc);
1188
1189        /* NOTE: the caller handles the final audit_log_end() call */
1190
1191out:
1192        kfree(buf_head);
1193}
1194
1195static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1196                          kernel_cap_t *cap)
1197{
1198        int i;
1199
1200        if (cap_isclear(*cap)) {
1201                audit_log_format(ab, " %s=0", prefix);
1202                return;
1203        }
1204        audit_log_format(ab, " %s=", prefix);
1205        CAP_FOR_EACH_U32(i)
1206                audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1207}
1208
1209static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1210{
1211        if (name->fcap_ver == -1) {
1212                audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1213                return;
1214        }
1215        audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1216        audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1217        audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1218                         name->fcap.fE, name->fcap_ver,
1219                         from_kuid(&init_user_ns, name->fcap.rootid));
1220}
1221
1222static void show_special(struct audit_context *context, int *call_panic)
1223{
1224        struct audit_buffer *ab;
1225        int i;
1226
1227        ab = audit_log_start(context, GFP_KERNEL, context->type);
1228        if (!ab)
1229                return;
1230
1231        switch (context->type) {
1232        case AUDIT_SOCKETCALL: {
1233                int nargs = context->socketcall.nargs;
1234
1235                audit_log_format(ab, "nargs=%d", nargs);
1236                for (i = 0; i < nargs; i++)
1237                        audit_log_format(ab, " a%d=%lx", i,
1238                                context->socketcall.args[i]);
1239                break; }
1240        case AUDIT_IPC: {
1241                u32 osid = context->ipc.osid;
1242
1243                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1244                                 from_kuid(&init_user_ns, context->ipc.uid),
1245                                 from_kgid(&init_user_ns, context->ipc.gid),
1246                                 context->ipc.mode);
1247                if (osid) {
1248                        char *ctx = NULL;
1249                        u32 len;
1250
1251                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1252                                audit_log_format(ab, " osid=%u", osid);
1253                                *call_panic = 1;
1254                        } else {
1255                                audit_log_format(ab, " obj=%s", ctx);
1256                                security_release_secctx(ctx, len);
1257                        }
1258                }
1259                if (context->ipc.has_perm) {
1260                        audit_log_end(ab);
1261                        ab = audit_log_start(context, GFP_KERNEL,
1262                                             AUDIT_IPC_SET_PERM);
1263                        if (unlikely(!ab))
1264                                return;
1265                        audit_log_format(ab,
1266                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1267                                context->ipc.qbytes,
1268                                context->ipc.perm_uid,
1269                                context->ipc.perm_gid,
1270                                context->ipc.perm_mode);
1271                }
1272                break; }
1273        case AUDIT_MQ_OPEN:
1274                audit_log_format(ab,
1275                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1276                        "mq_msgsize=%ld mq_curmsgs=%ld",
1277                        context->mq_open.oflag, context->mq_open.mode,
1278                        context->mq_open.attr.mq_flags,
1279                        context->mq_open.attr.mq_maxmsg,
1280                        context->mq_open.attr.mq_msgsize,
1281                        context->mq_open.attr.mq_curmsgs);
1282                break;
1283        case AUDIT_MQ_SENDRECV:
1284                audit_log_format(ab,
1285                        "mqdes=%d msg_len=%zd msg_prio=%u "
1286                        "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1287                        context->mq_sendrecv.mqdes,
1288                        context->mq_sendrecv.msg_len,
1289                        context->mq_sendrecv.msg_prio,
1290                        (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1291                        context->mq_sendrecv.abs_timeout.tv_nsec);
1292                break;
1293        case AUDIT_MQ_NOTIFY:
1294                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1295                                context->mq_notify.mqdes,
1296                                context->mq_notify.sigev_signo);
1297                break;
1298        case AUDIT_MQ_GETSETATTR: {
1299                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1300
1301                audit_log_format(ab,
1302                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1303                        "mq_curmsgs=%ld ",
1304                        context->mq_getsetattr.mqdes,
1305                        attr->mq_flags, attr->mq_maxmsg,
1306                        attr->mq_msgsize, attr->mq_curmsgs);
1307                break; }
1308        case AUDIT_CAPSET:
1309                audit_log_format(ab, "pid=%d", context->capset.pid);
1310                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1311                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1312                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1313                audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1314                break;
1315        case AUDIT_MMAP:
1316                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1317                                 context->mmap.flags);
1318                break;
1319        case AUDIT_EXECVE:
1320                audit_log_execve_info(context, &ab);
1321                break;
1322        case AUDIT_KERN_MODULE:
1323                audit_log_format(ab, "name=");
1324                if (context->module.name) {
1325                        audit_log_untrustedstring(ab, context->module.name);
1326                } else
1327                        audit_log_format(ab, "(null)");
1328
1329                break;
1330        }
1331        audit_log_end(ab);
1332}
1333
1334static inline int audit_proctitle_rtrim(char *proctitle, int len)
1335{
1336        char *end = proctitle + len - 1;
1337
1338        while (end > proctitle && !isprint(*end))
1339                end--;
1340
1341        /* catch the case where proctitle is only 1 non-print character */
1342        len = end - proctitle + 1;
1343        len -= isprint(proctitle[len-1]) == 0;
1344        return len;
1345}
1346
1347/*
1348 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1349 * @context: audit_context for the task
1350 * @n: audit_names structure with reportable details
1351 * @path: optional path to report instead of audit_names->name
1352 * @record_num: record number to report when handling a list of names
1353 * @call_panic: optional pointer to int that will be updated if secid fails
1354 */
1355static void audit_log_name(struct audit_context *context, struct audit_names *n,
1356                    const struct path *path, int record_num, int *call_panic)
1357{
1358        struct audit_buffer *ab;
1359
1360        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1361        if (!ab)
1362                return;
1363
1364        audit_log_format(ab, "item=%d", record_num);
1365
1366        if (path)
1367                audit_log_d_path(ab, " name=", path);
1368        else if (n->name) {
1369                switch (n->name_len) {
1370                case AUDIT_NAME_FULL:
1371                        /* log the full path */
1372                        audit_log_format(ab, " name=");
1373                        audit_log_untrustedstring(ab, n->name->name);
1374                        break;
1375                case 0:
1376                        /* name was specified as a relative path and the
1377                         * directory component is the cwd
1378                         */
1379                        if (context->pwd.dentry && context->pwd.mnt)
1380                                audit_log_d_path(ab, " name=", &context->pwd);
1381                        else
1382                                audit_log_format(ab, " name=(null)");
1383                        break;
1384                default:
1385                        /* log the name's directory component */
1386                        audit_log_format(ab, " name=");
1387                        audit_log_n_untrustedstring(ab, n->name->name,
1388                                                    n->name_len);
1389                }
1390        } else
1391                audit_log_format(ab, " name=(null)");
1392
1393        if (n->ino != AUDIT_INO_UNSET)
1394                audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1395                                 n->ino,
1396                                 MAJOR(n->dev),
1397                                 MINOR(n->dev),
1398                                 n->mode,
1399                                 from_kuid(&init_user_ns, n->uid),
1400                                 from_kgid(&init_user_ns, n->gid),
1401                                 MAJOR(n->rdev),
1402                                 MINOR(n->rdev));
1403        if (n->osid != 0) {
1404                char *ctx = NULL;
1405                u32 len;
1406
1407                if (security_secid_to_secctx(
1408                        n->osid, &ctx, &len)) {
1409                        audit_log_format(ab, " osid=%u", n->osid);
1410                        if (call_panic)
1411                                *call_panic = 2;
1412                } else {
1413                        audit_log_format(ab, " obj=%s", ctx);
1414                        security_release_secctx(ctx, len);
1415                }
1416        }
1417
1418        /* log the audit_names record type */
1419        switch (n->type) {
1420        case AUDIT_TYPE_NORMAL:
1421                audit_log_format(ab, " nametype=NORMAL");
1422                break;
1423        case AUDIT_TYPE_PARENT:
1424                audit_log_format(ab, " nametype=PARENT");
1425                break;
1426        case AUDIT_TYPE_CHILD_DELETE:
1427                audit_log_format(ab, " nametype=DELETE");
1428                break;
1429        case AUDIT_TYPE_CHILD_CREATE:
1430                audit_log_format(ab, " nametype=CREATE");
1431                break;
1432        default:
1433                audit_log_format(ab, " nametype=UNKNOWN");
1434                break;
1435        }
1436
1437        audit_log_fcaps(ab, n);
1438        audit_log_end(ab);
1439}
1440
1441static void audit_log_proctitle(void)
1442{
1443        int res;
1444        char *buf;
1445        char *msg = "(null)";
1446        int len = strlen(msg);
1447        struct audit_context *context = audit_context();
1448        struct audit_buffer *ab;
1449
1450        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1451        if (!ab)
1452                return; /* audit_panic or being filtered */
1453
1454        audit_log_format(ab, "proctitle=");
1455
1456        /* Not  cached */
1457        if (!context->proctitle.value) {
1458                buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1459                if (!buf)
1460                        goto out;
1461                /* Historically called this from procfs naming */
1462                res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1463                if (res == 0) {
1464                        kfree(buf);
1465                        goto out;
1466                }
1467                res = audit_proctitle_rtrim(buf, res);
1468                if (res == 0) {
1469                        kfree(buf);
1470                        goto out;
1471                }
1472                context->proctitle.value = buf;
1473                context->proctitle.len = res;
1474        }
1475        msg = context->proctitle.value;
1476        len = context->proctitle.len;
1477out:
1478        audit_log_n_untrustedstring(ab, msg, len);
1479        audit_log_end(ab);
1480}
1481
1482static void audit_log_exit(void)
1483{
1484        int i, call_panic = 0;
1485        struct audit_context *context = audit_context();
1486        struct audit_buffer *ab;
1487        struct audit_aux_data *aux;
1488        struct audit_names *n;
1489
1490        context->personality = current->personality;
1491
1492        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1493        if (!ab)
1494                return;         /* audit_panic has been called */
1495        audit_log_format(ab, "arch=%x syscall=%d",
1496                         context->arch, context->major);
1497        if (context->personality != PER_LINUX)
1498                audit_log_format(ab, " per=%lx", context->personality);
1499        if (context->return_valid != AUDITSC_INVALID)
1500                audit_log_format(ab, " success=%s exit=%ld",
1501                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1502                                 context->return_code);
1503
1504        audit_log_format(ab,
1505                         " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1506                         context->argv[0],
1507                         context->argv[1],
1508                         context->argv[2],
1509                         context->argv[3],
1510                         context->name_count);
1511
1512        audit_log_task_info(ab);
1513        audit_log_key(ab, context->filterkey);
1514        audit_log_end(ab);
1515
1516        for (aux = context->aux; aux; aux = aux->next) {
1517
1518                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1519                if (!ab)
1520                        continue; /* audit_panic has been called */
1521
1522                switch (aux->type) {
1523
1524                case AUDIT_BPRM_FCAPS: {
1525                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1526
1527                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1528                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1529                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1530                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1531                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1532                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1533                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1534                        audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1535                        audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1536                        audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1537                        audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1538                        audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1539                        audit_log_format(ab, " frootid=%d",
1540                                         from_kuid(&init_user_ns,
1541                                                   axs->fcap.rootid));
1542                        break; }
1543
1544                }
1545                audit_log_end(ab);
1546        }
1547
1548        if (context->type)
1549                show_special(context, &call_panic);
1550
1551        if (context->fds[0] >= 0) {
1552                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1553                if (ab) {
1554                        audit_log_format(ab, "fd0=%d fd1=%d",
1555                                        context->fds[0], context->fds[1]);
1556                        audit_log_end(ab);
1557                }
1558        }
1559
1560        if (context->sockaddr_len) {
1561                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1562                if (ab) {
1563                        audit_log_format(ab, "saddr=");
1564                        audit_log_n_hex(ab, (void *)context->sockaddr,
1565                                        context->sockaddr_len);
1566                        audit_log_end(ab);
1567                }
1568        }
1569
1570        for (aux = context->aux_pids; aux; aux = aux->next) {
1571                struct audit_aux_data_pids *axs = (void *)aux;
1572
1573                for (i = 0; i < axs->pid_count; i++)
1574                        if (audit_log_pid_context(context, axs->target_pid[i],
1575                                                  axs->target_auid[i],
1576                                                  axs->target_uid[i],
1577                                                  axs->target_sessionid[i],
1578                                                  axs->target_sid[i],
1579                                                  axs->target_comm[i]))
1580                                call_panic = 1;
1581        }
1582
1583        if (context->target_pid &&
1584            audit_log_pid_context(context, context->target_pid,
1585                                  context->target_auid, context->target_uid,
1586                                  context->target_sessionid,
1587                                  context->target_sid, context->target_comm))
1588                        call_panic = 1;
1589
1590        if (context->pwd.dentry && context->pwd.mnt) {
1591                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1592                if (ab) {
1593                        audit_log_d_path(ab, "cwd=", &context->pwd);
1594                        audit_log_end(ab);
1595                }
1596        }
1597
1598        i = 0;
1599        list_for_each_entry(n, &context->names_list, list) {
1600                if (n->hidden)
1601                        continue;
1602                audit_log_name(context, n, NULL, i++, &call_panic);
1603        }
1604
1605        audit_log_proctitle();
1606
1607        /* Send end of event record to help user space know we are finished */
1608        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1609        if (ab)
1610                audit_log_end(ab);
1611        if (call_panic)
1612                audit_panic("error converting sid to string");
1613}
1614
1615/**
1616 * __audit_free - free a per-task audit context
1617 * @tsk: task whose audit context block to free
1618 *
1619 * Called from copy_process and do_exit
1620 */
1621void __audit_free(struct task_struct *tsk)
1622{
1623        struct audit_context *context = tsk->audit_context;
1624
1625        if (!context)
1626                return;
1627
1628        if (!list_empty(&context->killed_trees))
1629                audit_kill_trees(context);
1630
1631        /* We are called either by do_exit() or the fork() error handling code;
1632         * in the former case tsk == current and in the latter tsk is a
1633         * random task_struct that doesn't doesn't have any meaningful data we
1634         * need to log via audit_log_exit().
1635         */
1636        if (tsk == current && !context->dummy && context->in_syscall) {
1637                context->return_valid = AUDITSC_INVALID;
1638                context->return_code = 0;
1639
1640                audit_filter_syscall(tsk, context);
1641                audit_filter_inodes(tsk, context);
1642                if (context->current_state == AUDIT_STATE_RECORD)
1643                        audit_log_exit();
1644        }
1645
1646        audit_set_context(tsk, NULL);
1647        audit_free_context(context);
1648}
1649
1650/**
1651 * __audit_syscall_entry - fill in an audit record at syscall entry
1652 * @major: major syscall type (function)
1653 * @a1: additional syscall register 1
1654 * @a2: additional syscall register 2
1655 * @a3: additional syscall register 3
1656 * @a4: additional syscall register 4
1657 *
1658 * Fill in audit context at syscall entry.  This only happens if the
1659 * audit context was created when the task was created and the state or
1660 * filters demand the audit context be built.  If the state from the
1661 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1662 * then the record will be written at syscall exit time (otherwise, it
1663 * will only be written if another part of the kernel requests that it
1664 * be written).
1665 */
1666void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1667                           unsigned long a3, unsigned long a4)
1668{
1669        struct audit_context *context = audit_context();
1670        enum audit_state     state;
1671
1672        if (!audit_enabled || !context)
1673                return;
1674
1675        BUG_ON(context->in_syscall || context->name_count);
1676
1677        state = context->state;
1678        if (state == AUDIT_STATE_DISABLED)
1679                return;
1680
1681        context->dummy = !audit_n_rules;
1682        if (!context->dummy && state == AUDIT_STATE_BUILD) {
1683                context->prio = 0;
1684                if (auditd_test_task(current))
1685                        return;
1686        }
1687
1688        context->arch       = syscall_get_arch(current);
1689        context->major      = major;
1690        context->argv[0]    = a1;
1691        context->argv[1]    = a2;
1692        context->argv[2]    = a3;
1693        context->argv[3]    = a4;
1694        context->serial     = 0;
1695        context->in_syscall = 1;
1696        context->current_state  = state;
1697        context->ppid       = 0;
1698        ktime_get_coarse_real_ts64(&context->ctime);
1699}
1700
1701/**
1702 * __audit_syscall_exit - deallocate audit context after a system call
1703 * @success: success value of the syscall
1704 * @return_code: return value of the syscall
1705 *
1706 * Tear down after system call.  If the audit context has been marked as
1707 * auditable (either because of the AUDIT_STATE_RECORD state from
1708 * filtering, or because some other part of the kernel wrote an audit
1709 * message), then write out the syscall information.  In call cases,
1710 * free the names stored from getname().
1711 */
1712void __audit_syscall_exit(int success, long return_code)
1713{
1714        struct audit_context *context;
1715
1716        context = audit_context();
1717        if (!context)
1718                return;
1719
1720        if (!list_empty(&context->killed_trees))
1721                audit_kill_trees(context);
1722
1723        if (!context->dummy && context->in_syscall) {
1724                if (success)
1725                        context->return_valid = AUDITSC_SUCCESS;
1726                else
1727                        context->return_valid = AUDITSC_FAILURE;
1728
1729                /*
1730                 * we need to fix up the return code in the audit logs if the
1731                 * actual return codes are later going to be fixed up by the
1732                 * arch specific signal handlers
1733                 *
1734                 * This is actually a test for:
1735                 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1736                 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1737                 *
1738                 * but is faster than a bunch of ||
1739                 */
1740                if (unlikely(return_code <= -ERESTARTSYS) &&
1741                    (return_code >= -ERESTART_RESTARTBLOCK) &&
1742                    (return_code != -ENOIOCTLCMD))
1743                        context->return_code = -EINTR;
1744                else
1745                        context->return_code  = return_code;
1746
1747                audit_filter_syscall(current, context);
1748                audit_filter_inodes(current, context);
1749                if (context->current_state == AUDIT_STATE_RECORD)
1750                        audit_log_exit();
1751        }
1752
1753        context->in_syscall = 0;
1754        context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1755
1756        audit_free_module(context);
1757        audit_free_names(context);
1758        unroll_tree_refs(context, NULL, 0);
1759        audit_free_aux(context);
1760        context->aux = NULL;
1761        context->aux_pids = NULL;
1762        context->target_pid = 0;
1763        context->target_sid = 0;
1764        context->sockaddr_len = 0;
1765        context->type = 0;
1766        context->fds[0] = -1;
1767        if (context->state != AUDIT_STATE_RECORD) {
1768                kfree(context->filterkey);
1769                context->filterkey = NULL;
1770        }
1771}
1772
1773static inline void handle_one(const struct inode *inode)
1774{
1775        struct audit_context *context;
1776        struct audit_tree_refs *p;
1777        struct audit_chunk *chunk;
1778        int count;
1779
1780        if (likely(!inode->i_fsnotify_marks))
1781                return;
1782        context = audit_context();
1783        p = context->trees;
1784        count = context->tree_count;
1785        rcu_read_lock();
1786        chunk = audit_tree_lookup(inode);
1787        rcu_read_unlock();
1788        if (!chunk)
1789                return;
1790        if (likely(put_tree_ref(context, chunk)))
1791                return;
1792        if (unlikely(!grow_tree_refs(context))) {
1793                pr_warn("out of memory, audit has lost a tree reference\n");
1794                audit_set_auditable(context);
1795                audit_put_chunk(chunk);
1796                unroll_tree_refs(context, p, count);
1797                return;
1798        }
1799        put_tree_ref(context, chunk);
1800}
1801
1802static void handle_path(const struct dentry *dentry)
1803{
1804        struct audit_context *context;
1805        struct audit_tree_refs *p;
1806        const struct dentry *d, *parent;
1807        struct audit_chunk *drop;
1808        unsigned long seq;
1809        int count;
1810
1811        context = audit_context();
1812        p = context->trees;
1813        count = context->tree_count;
1814retry:
1815        drop = NULL;
1816        d = dentry;
1817        rcu_read_lock();
1818        seq = read_seqbegin(&rename_lock);
1819        for(;;) {
1820                struct inode *inode = d_backing_inode(d);
1821
1822                if (inode && unlikely(inode->i_fsnotify_marks)) {
1823                        struct audit_chunk *chunk;
1824
1825                        chunk = audit_tree_lookup(inode);
1826                        if (chunk) {
1827                                if (unlikely(!put_tree_ref(context, chunk))) {
1828                                        drop = chunk;
1829                                        break;
1830                                }
1831                        }
1832                }
1833                parent = d->d_parent;
1834                if (parent == d)
1835                        break;
1836                d = parent;
1837        }
1838        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1839                rcu_read_unlock();
1840                if (!drop) {
1841                        /* just a race with rename */
1842                        unroll_tree_refs(context, p, count);
1843                        goto retry;
1844                }
1845                audit_put_chunk(drop);
1846                if (grow_tree_refs(context)) {
1847                        /* OK, got more space */
1848                        unroll_tree_refs(context, p, count);
1849                        goto retry;
1850                }
1851                /* too bad */
1852                pr_warn("out of memory, audit has lost a tree reference\n");
1853                unroll_tree_refs(context, p, count);
1854                audit_set_auditable(context);
1855                return;
1856        }
1857        rcu_read_unlock();
1858}
1859
1860static struct audit_names *audit_alloc_name(struct audit_context *context,
1861                                                unsigned char type)
1862{
1863        struct audit_names *aname;
1864
1865        if (context->name_count < AUDIT_NAMES) {
1866                aname = &context->preallocated_names[context->name_count];
1867                memset(aname, 0, sizeof(*aname));
1868        } else {
1869                aname = kzalloc(sizeof(*aname), GFP_NOFS);
1870                if (!aname)
1871                        return NULL;
1872                aname->should_free = true;
1873        }
1874
1875        aname->ino = AUDIT_INO_UNSET;
1876        aname->type = type;
1877        list_add_tail(&aname->list, &context->names_list);
1878
1879        context->name_count++;
1880        if (!context->pwd.dentry)
1881                get_fs_pwd(current->fs, &context->pwd);
1882        return aname;
1883}
1884
1885/**
1886 * __audit_reusename - fill out filename with info from existing entry
1887 * @uptr: userland ptr to pathname
1888 *
1889 * Search the audit_names list for the current audit context. If there is an
1890 * existing entry with a matching "uptr" then return the filename
1891 * associated with that audit_name. If not, return NULL.
1892 */
1893struct filename *
1894__audit_reusename(const __user char *uptr)
1895{
1896        struct audit_context *context = audit_context();
1897        struct audit_names *n;
1898
1899        list_for_each_entry(n, &context->names_list, list) {
1900                if (!n->name)
1901                        continue;
1902                if (n->name->uptr == uptr) {
1903                        n->name->refcnt++;
1904                        return n->name;
1905                }
1906        }
1907        return NULL;
1908}
1909
1910/**
1911 * __audit_getname - add a name to the list
1912 * @name: name to add
1913 *
1914 * Add a name to the list of audit names for this context.
1915 * Called from fs/namei.c:getname().
1916 */
1917void __audit_getname(struct filename *name)
1918{
1919        struct audit_context *context = audit_context();
1920        struct audit_names *n;
1921
1922        if (!context->in_syscall)
1923                return;
1924
1925        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1926        if (!n)
1927                return;
1928
1929        n->name = name;
1930        n->name_len = AUDIT_NAME_FULL;
1931        name->aname = n;
1932        name->refcnt++;
1933}
1934
1935static inline int audit_copy_fcaps(struct audit_names *name,
1936                                   const struct dentry *dentry)
1937{
1938        struct cpu_vfs_cap_data caps;
1939        int rc;
1940
1941        if (!dentry)
1942                return 0;
1943
1944        rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
1945        if (rc)
1946                return rc;
1947
1948        name->fcap.permitted = caps.permitted;
1949        name->fcap.inheritable = caps.inheritable;
1950        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1951        name->fcap.rootid = caps.rootid;
1952        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1953                                VFS_CAP_REVISION_SHIFT;
1954
1955        return 0;
1956}
1957
1958/* Copy inode data into an audit_names. */
1959static void audit_copy_inode(struct audit_names *name,
1960                             const struct dentry *dentry,
1961                             struct inode *inode, unsigned int flags)
1962{
1963        name->ino   = inode->i_ino;
1964        name->dev   = inode->i_sb->s_dev;
1965        name->mode  = inode->i_mode;
1966        name->uid   = inode->i_uid;
1967        name->gid   = inode->i_gid;
1968        name->rdev  = inode->i_rdev;
1969        security_inode_getsecid(inode, &name->osid);
1970        if (flags & AUDIT_INODE_NOEVAL) {
1971                name->fcap_ver = -1;
1972                return;
1973        }
1974        audit_copy_fcaps(name, dentry);
1975}
1976
1977/**
1978 * __audit_inode - store the inode and device from a lookup
1979 * @name: name being audited
1980 * @dentry: dentry being audited
1981 * @flags: attributes for this particular entry
1982 */
1983void __audit_inode(struct filename *name, const struct dentry *dentry,
1984                   unsigned int flags)
1985{
1986        struct audit_context *context = audit_context();
1987        struct inode *inode = d_backing_inode(dentry);
1988        struct audit_names *n;
1989        bool parent = flags & AUDIT_INODE_PARENT;
1990        struct audit_entry *e;
1991        struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1992        int i;
1993
1994        if (!context->in_syscall)
1995                return;
1996
1997        rcu_read_lock();
1998        list_for_each_entry_rcu(e, list, list) {
1999                for (i = 0; i < e->rule.field_count; i++) {
2000                        struct audit_field *f = &e->rule.fields[i];
2001
2002                        if (f->type == AUDIT_FSTYPE
2003                            && audit_comparator(inode->i_sb->s_magic,
2004                                                f->op, f->val)
2005                            && e->rule.action == AUDIT_NEVER) {
2006                                rcu_read_unlock();
2007                                return;
2008                        }
2009                }
2010        }
2011        rcu_read_unlock();
2012
2013        if (!name)
2014                goto out_alloc;
2015
2016        /*
2017         * If we have a pointer to an audit_names entry already, then we can
2018         * just use it directly if the type is correct.
2019         */
2020        n = name->aname;
2021        if (n) {
2022                if (parent) {
2023                        if (n->type == AUDIT_TYPE_PARENT ||
2024                            n->type == AUDIT_TYPE_UNKNOWN)
2025                                goto out;
2026                } else {
2027                        if (n->type != AUDIT_TYPE_PARENT)
2028                                goto out;
2029                }
2030        }
2031
2032        list_for_each_entry_reverse(n, &context->names_list, list) {
2033                if (n->ino) {
2034                        /* valid inode number, use that for the comparison */
2035                        if (n->ino != inode->i_ino ||
2036                            n->dev != inode->i_sb->s_dev)
2037                                continue;
2038                } else if (n->name) {
2039                        /* inode number has not been set, check the name */
2040                        if (strcmp(n->name->name, name->name))
2041                                continue;
2042                } else
2043                        /* no inode and no name (?!) ... this is odd ... */
2044                        continue;
2045
2046                /* match the correct record type */
2047                if (parent) {
2048                        if (n->type == AUDIT_TYPE_PARENT ||
2049                            n->type == AUDIT_TYPE_UNKNOWN)
2050                                goto out;
2051                } else {
2052                        if (n->type != AUDIT_TYPE_PARENT)
2053                                goto out;
2054                }
2055        }
2056
2057out_alloc:
2058        /* unable to find an entry with both a matching name and type */
2059        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2060        if (!n)
2061                return;
2062        if (name) {
2063                n->name = name;
2064                name->refcnt++;
2065        }
2066
2067out:
2068        if (parent) {
2069                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2070                n->type = AUDIT_TYPE_PARENT;
2071                if (flags & AUDIT_INODE_HIDDEN)
2072                        n->hidden = true;
2073        } else {
2074                n->name_len = AUDIT_NAME_FULL;
2075                n->type = AUDIT_TYPE_NORMAL;
2076        }
2077        handle_path(dentry);
2078        audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2079}
2080
2081void __audit_file(const struct file *file)
2082{
2083        __audit_inode(NULL, file->f_path.dentry, 0);
2084}
2085
2086/**
2087 * __audit_inode_child - collect inode info for created/removed objects
2088 * @parent: inode of dentry parent
2089 * @dentry: dentry being audited
2090 * @type:   AUDIT_TYPE_* value that we're looking for
2091 *
2092 * For syscalls that create or remove filesystem objects, audit_inode
2093 * can only collect information for the filesystem object's parent.
2094 * This call updates the audit context with the child's information.
2095 * Syscalls that create a new filesystem object must be hooked after
2096 * the object is created.  Syscalls that remove a filesystem object
2097 * must be hooked prior, in order to capture the target inode during
2098 * unsuccessful attempts.
2099 */
2100void __audit_inode_child(struct inode *parent,
2101                         const struct dentry *dentry,
2102                         const unsigned char type)
2103{
2104        struct audit_context *context = audit_context();
2105        struct inode *inode = d_backing_inode(dentry);
2106        const struct qstr *dname = &dentry->d_name;
2107        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2108        struct audit_entry *e;
2109        struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2110        int i;
2111
2112        if (!context->in_syscall)
2113                return;
2114
2115        rcu_read_lock();
2116        list_for_each_entry_rcu(e, list, list) {
2117                for (i = 0; i < e->rule.field_count; i++) {
2118                        struct audit_field *f = &e->rule.fields[i];
2119
2120                        if (f->type == AUDIT_FSTYPE
2121                            && audit_comparator(parent->i_sb->s_magic,
2122                                                f->op, f->val)
2123                            && e->rule.action == AUDIT_NEVER) {
2124                                rcu_read_unlock();
2125                                return;
2126                        }
2127                }
2128        }
2129        rcu_read_unlock();
2130
2131        if (inode)
2132                handle_one(inode);
2133
2134        /* look for a parent entry first */
2135        list_for_each_entry(n, &context->names_list, list) {
2136                if (!n->name ||
2137                    (n->type != AUDIT_TYPE_PARENT &&
2138                     n->type != AUDIT_TYPE_UNKNOWN))
2139                        continue;
2140
2141                if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2142                    !audit_compare_dname_path(dname,
2143                                              n->name->name, n->name_len)) {
2144                        if (n->type == AUDIT_TYPE_UNKNOWN)
2145                                n->type = AUDIT_TYPE_PARENT;
2146                        found_parent = n;
2147                        break;
2148                }
2149        }
2150
2151        /* is there a matching child entry? */
2152        list_for_each_entry(n, &context->names_list, list) {
2153                /* can only match entries that have a name */
2154                if (!n->name ||
2155                    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2156                        continue;
2157
2158                if (!strcmp(dname->name, n->name->name) ||
2159                    !audit_compare_dname_path(dname, n->name->name,
2160                                                found_parent ?
2161                                                found_parent->name_len :
2162                                                AUDIT_NAME_FULL)) {
2163                        if (n->type == AUDIT_TYPE_UNKNOWN)
2164                                n->type = type;
2165                        found_child = n;
2166                        break;
2167                }
2168        }
2169
2170        if (!found_parent) {
2171                /* create a new, "anonymous" parent record */
2172                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2173                if (!n)
2174                        return;
2175                audit_copy_inode(n, NULL, parent, 0);
2176        }
2177
2178        if (!found_child) {
2179                found_child = audit_alloc_name(context, type);
2180                if (!found_child)
2181                        return;
2182
2183                /* Re-use the name belonging to the slot for a matching parent
2184                 * directory. All names for this context are relinquished in
2185                 * audit_free_names() */
2186                if (found_parent) {
2187                        found_child->name = found_parent->name;
2188                        found_child->name_len = AUDIT_NAME_FULL;
2189                        found_child->name->refcnt++;
2190                }
2191        }
2192
2193        if (inode)
2194                audit_copy_inode(found_child, dentry, inode, 0);
2195        else
2196                found_child->ino = AUDIT_INO_UNSET;
2197}
2198EXPORT_SYMBOL_GPL(__audit_inode_child);
2199
2200/**
2201 * auditsc_get_stamp - get local copies of audit_context values
2202 * @ctx: audit_context for the task
2203 * @t: timespec64 to store time recorded in the audit_context
2204 * @serial: serial value that is recorded in the audit_context
2205 *
2206 * Also sets the context as auditable.
2207 */
2208int auditsc_get_stamp(struct audit_context *ctx,
2209                       struct timespec64 *t, unsigned int *serial)
2210{
2211        if (!ctx->in_syscall)
2212                return 0;
2213        if (!ctx->serial)
2214                ctx->serial = audit_serial();
2215        t->tv_sec  = ctx->ctime.tv_sec;
2216        t->tv_nsec = ctx->ctime.tv_nsec;
2217        *serial    = ctx->serial;
2218        if (!ctx->prio) {
2219                ctx->prio = 1;
2220                ctx->current_state = AUDIT_STATE_RECORD;
2221        }
2222        return 1;
2223}
2224
2225/**
2226 * __audit_mq_open - record audit data for a POSIX MQ open
2227 * @oflag: open flag
2228 * @mode: mode bits
2229 * @attr: queue attributes
2230 *
2231 */
2232void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2233{
2234        struct audit_context *context = audit_context();
2235
2236        if (attr)
2237                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2238        else
2239                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2240
2241        context->mq_open.oflag = oflag;
2242        context->mq_open.mode = mode;
2243
2244        context->type = AUDIT_MQ_OPEN;
2245}
2246
2247/**
2248 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2249 * @mqdes: MQ descriptor
2250 * @msg_len: Message length
2251 * @msg_prio: Message priority
2252 * @abs_timeout: Message timeout in absolute time
2253 *
2254 */
2255void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2256                        const struct timespec64 *abs_timeout)
2257{
2258        struct audit_context *context = audit_context();
2259        struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2260
2261        if (abs_timeout)
2262                memcpy(p, abs_timeout, sizeof(*p));
2263        else
2264                memset(p, 0, sizeof(*p));
2265
2266        context->mq_sendrecv.mqdes = mqdes;
2267        context->mq_sendrecv.msg_len = msg_len;
2268        context->mq_sendrecv.msg_prio = msg_prio;
2269
2270        context->type = AUDIT_MQ_SENDRECV;
2271}
2272
2273/**
2274 * __audit_mq_notify - record audit data for a POSIX MQ notify
2275 * @mqdes: MQ descriptor
2276 * @notification: Notification event
2277 *
2278 */
2279
2280void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2281{
2282        struct audit_context *context = audit_context();
2283
2284        if (notification)
2285                context->mq_notify.sigev_signo = notification->sigev_signo;
2286        else
2287                context->mq_notify.sigev_signo = 0;
2288
2289        context->mq_notify.mqdes = mqdes;
2290        context->type = AUDIT_MQ_NOTIFY;
2291}
2292
2293/**
2294 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2295 * @mqdes: MQ descriptor
2296 * @mqstat: MQ flags
2297 *
2298 */
2299void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2300{
2301        struct audit_context *context = audit_context();
2302
2303        context->mq_getsetattr.mqdes = mqdes;
2304        context->mq_getsetattr.mqstat = *mqstat;
2305        context->type = AUDIT_MQ_GETSETATTR;
2306}
2307
2308/**
2309 * __audit_ipc_obj - record audit data for ipc object
2310 * @ipcp: ipc permissions
2311 *
2312 */
2313void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2314{
2315        struct audit_context *context = audit_context();
2316
2317        context->ipc.uid = ipcp->uid;
2318        context->ipc.gid = ipcp->gid;
2319        context->ipc.mode = ipcp->mode;
2320        context->ipc.has_perm = 0;
2321        security_ipc_getsecid(ipcp, &context->ipc.osid);
2322        context->type = AUDIT_IPC;
2323}
2324
2325/**
2326 * __audit_ipc_set_perm - record audit data for new ipc permissions
2327 * @qbytes: msgq bytes
2328 * @uid: msgq user id
2329 * @gid: msgq group id
2330 * @mode: msgq mode (permissions)
2331 *
2332 * Called only after audit_ipc_obj().
2333 */
2334void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2335{
2336        struct audit_context *context = audit_context();
2337
2338        context->ipc.qbytes = qbytes;
2339        context->ipc.perm_uid = uid;
2340        context->ipc.perm_gid = gid;
2341        context->ipc.perm_mode = mode;
2342        context->ipc.has_perm = 1;
2343}
2344
2345void __audit_bprm(struct linux_binprm *bprm)
2346{
2347        struct audit_context *context = audit_context();
2348
2349        context->type = AUDIT_EXECVE;
2350        context->execve.argc = bprm->argc;
2351}
2352
2353
2354/**
2355 * __audit_socketcall - record audit data for sys_socketcall
2356 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2357 * @args: args array
2358 *
2359 */
2360int __audit_socketcall(int nargs, unsigned long *args)
2361{
2362        struct audit_context *context = audit_context();
2363
2364        if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2365                return -EINVAL;
2366        context->type = AUDIT_SOCKETCALL;
2367        context->socketcall.nargs = nargs;
2368        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2369        return 0;
2370}
2371
2372/**
2373 * __audit_fd_pair - record audit data for pipe and socketpair
2374 * @fd1: the first file descriptor
2375 * @fd2: the second file descriptor
2376 *
2377 */
2378void __audit_fd_pair(int fd1, int fd2)
2379{
2380        struct audit_context *context = audit_context();
2381
2382        context->fds[0] = fd1;
2383        context->fds[1] = fd2;
2384}
2385
2386/**
2387 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2388 * @len: data length in user space
2389 * @a: data address in kernel space
2390 *
2391 * Returns 0 for success or NULL context or < 0 on error.
2392 */
2393int __audit_sockaddr(int len, void *a)
2394{
2395        struct audit_context *context = audit_context();
2396
2397        if (!context->sockaddr) {
2398                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2399
2400                if (!p)
2401                        return -ENOMEM;
2402                context->sockaddr = p;
2403        }
2404
2405        context->sockaddr_len = len;
2406        memcpy(context->sockaddr, a, len);
2407        return 0;
2408}
2409
2410void __audit_ptrace(struct task_struct *t)
2411{
2412        struct audit_context *context = audit_context();
2413
2414        context->target_pid = task_tgid_nr(t);
2415        context->target_auid = audit_get_loginuid(t);
2416        context->target_uid = task_uid(t);
2417        context->target_sessionid = audit_get_sessionid(t);
2418        security_task_getsecid_obj(t, &context->target_sid);
2419        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2420}
2421
2422/**
2423 * audit_signal_info_syscall - record signal info for syscalls
2424 * @t: task being signaled
2425 *
2426 * If the audit subsystem is being terminated, record the task (pid)
2427 * and uid that is doing that.
2428 */
2429int audit_signal_info_syscall(struct task_struct *t)
2430{
2431        struct audit_aux_data_pids *axp;
2432        struct audit_context *ctx = audit_context();
2433        kuid_t t_uid = task_uid(t);
2434
2435        if (!audit_signals || audit_dummy_context())
2436                return 0;
2437
2438        /* optimize the common case by putting first signal recipient directly
2439         * in audit_context */
2440        if (!ctx->target_pid) {
2441                ctx->target_pid = task_tgid_nr(t);
2442                ctx->target_auid = audit_get_loginuid(t);
2443                ctx->target_uid = t_uid;
2444                ctx->target_sessionid = audit_get_sessionid(t);
2445                security_task_getsecid_obj(t, &ctx->target_sid);
2446                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2447                return 0;
2448        }
2449
2450        axp = (void *)ctx->aux_pids;
2451        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2452                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2453                if (!axp)
2454                        return -ENOMEM;
2455
2456                axp->d.type = AUDIT_OBJ_PID;
2457                axp->d.next = ctx->aux_pids;
2458                ctx->aux_pids = (void *)axp;
2459        }
2460        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2461
2462        axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2463        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2464        axp->target_uid[axp->pid_count] = t_uid;
2465        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2466        security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2467        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2468        axp->pid_count++;
2469
2470        return 0;
2471}
2472
2473/**
2474 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2475 * @bprm: pointer to the bprm being processed
2476 * @new: the proposed new credentials
2477 * @old: the old credentials
2478 *
2479 * Simply check if the proc already has the caps given by the file and if not
2480 * store the priv escalation info for later auditing at the end of the syscall
2481 *
2482 * -Eric
2483 */
2484int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2485                           const struct cred *new, const struct cred *old)
2486{
2487        struct audit_aux_data_bprm_fcaps *ax;
2488        struct audit_context *context = audit_context();
2489        struct cpu_vfs_cap_data vcaps;
2490
2491        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2492        if (!ax)
2493                return -ENOMEM;
2494
2495        ax->d.type = AUDIT_BPRM_FCAPS;
2496        ax->d.next = context->aux;
2497        context->aux = (void *)ax;
2498
2499        get_vfs_caps_from_disk(&init_user_ns,
2500                               bprm->file->f_path.dentry, &vcaps);
2501
2502        ax->fcap.permitted = vcaps.permitted;
2503        ax->fcap.inheritable = vcaps.inheritable;
2504        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2505        ax->fcap.rootid = vcaps.rootid;
2506        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2507
2508        ax->old_pcap.permitted   = old->cap_permitted;
2509        ax->old_pcap.inheritable = old->cap_inheritable;
2510        ax->old_pcap.effective   = old->cap_effective;
2511        ax->old_pcap.ambient     = old->cap_ambient;
2512
2513        ax->new_pcap.permitted   = new->cap_permitted;
2514        ax->new_pcap.inheritable = new->cap_inheritable;
2515        ax->new_pcap.effective   = new->cap_effective;
2516        ax->new_pcap.ambient     = new->cap_ambient;
2517        return 0;
2518}
2519
2520/**
2521 * __audit_log_capset - store information about the arguments to the capset syscall
2522 * @new: the new credentials
2523 * @old: the old (current) credentials
2524 *
2525 * Record the arguments userspace sent to sys_capset for later printing by the
2526 * audit system if applicable
2527 */
2528void __audit_log_capset(const struct cred *new, const struct cred *old)
2529{
2530        struct audit_context *context = audit_context();
2531
2532        context->capset.pid = task_tgid_nr(current);
2533        context->capset.cap.effective   = new->cap_effective;
2534        context->capset.cap.inheritable = new->cap_effective;
2535        context->capset.cap.permitted   = new->cap_permitted;
2536        context->capset.cap.ambient     = new->cap_ambient;
2537        context->type = AUDIT_CAPSET;
2538}
2539
2540void __audit_mmap_fd(int fd, int flags)
2541{
2542        struct audit_context *context = audit_context();
2543
2544        context->mmap.fd = fd;
2545        context->mmap.flags = flags;
2546        context->type = AUDIT_MMAP;
2547}
2548
2549void __audit_log_kern_module(char *name)
2550{
2551        struct audit_context *context = audit_context();
2552
2553        context->module.name = kstrdup(name, GFP_KERNEL);
2554        if (!context->module.name)
2555                audit_log_lost("out of memory in __audit_log_kern_module");
2556        context->type = AUDIT_KERN_MODULE;
2557}
2558
2559void __audit_fanotify(unsigned int response)
2560{
2561        audit_log(audit_context(), GFP_KERNEL,
2562                AUDIT_FANOTIFY, "resp=%u", response);
2563}
2564
2565void __audit_tk_injoffset(struct timespec64 offset)
2566{
2567        audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2568                  "sec=%lli nsec=%li",
2569                  (long long)offset.tv_sec, offset.tv_nsec);
2570}
2571
2572static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2573                              const char *op, enum audit_ntp_type type)
2574{
2575        const struct audit_ntp_val *val = &ad->vals[type];
2576
2577        if (val->newval == val->oldval)
2578                return;
2579
2580        audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2581                  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2582}
2583
2584void __audit_ntp_log(const struct audit_ntp_data *ad)
2585{
2586        audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2587        audit_log_ntp_val(ad, "freq",   AUDIT_NTP_FREQ);
2588        audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2589        audit_log_ntp_val(ad, "tai",    AUDIT_NTP_TAI);
2590        audit_log_ntp_val(ad, "tick",   AUDIT_NTP_TICK);
2591        audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2592}
2593
2594void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2595                       enum audit_nfcfgop op, gfp_t gfp)
2596{
2597        struct audit_buffer *ab;
2598        char comm[sizeof(current->comm)];
2599
2600        ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2601        if (!ab)
2602                return;
2603        audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2604                         name, af, nentries, audit_nfcfgs[op].s);
2605
2606        audit_log_format(ab, " pid=%u", task_pid_nr(current));
2607        audit_log_task_context(ab); /* subj= */
2608        audit_log_format(ab, " comm=");
2609        audit_log_untrustedstring(ab, get_task_comm(comm, current));
2610        audit_log_end(ab);
2611}
2612EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2613
2614static void audit_log_task(struct audit_buffer *ab)
2615{
2616        kuid_t auid, uid;
2617        kgid_t gid;
2618        unsigned int sessionid;
2619        char comm[sizeof(current->comm)];
2620
2621        auid = audit_get_loginuid(current);
2622        sessionid = audit_get_sessionid(current);
2623        current_uid_gid(&uid, &gid);
2624
2625        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2626                         from_kuid(&init_user_ns, auid),
2627                         from_kuid(&init_user_ns, uid),
2628                         from_kgid(&init_user_ns, gid),
2629                         sessionid);
2630        audit_log_task_context(ab);
2631        audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2632        audit_log_untrustedstring(ab, get_task_comm(comm, current));
2633        audit_log_d_path_exe(ab, current->mm);
2634}
2635
2636/**
2637 * audit_core_dumps - record information about processes that end abnormally
2638 * @signr: signal value
2639 *
2640 * If a process ends with a core dump, something fishy is going on and we
2641 * should record the event for investigation.
2642 */
2643void audit_core_dumps(long signr)
2644{
2645        struct audit_buffer *ab;
2646
2647        if (!audit_enabled)
2648                return;
2649
2650        if (signr == SIGQUIT)   /* don't care for those */
2651                return;
2652
2653        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2654        if (unlikely(!ab))
2655                return;
2656        audit_log_task(ab);
2657        audit_log_format(ab, " sig=%ld res=1", signr);
2658        audit_log_end(ab);
2659}
2660
2661/**
2662 * audit_seccomp - record information about a seccomp action
2663 * @syscall: syscall number
2664 * @signr: signal value
2665 * @code: the seccomp action
2666 *
2667 * Record the information associated with a seccomp action. Event filtering for
2668 * seccomp actions that are not to be logged is done in seccomp_log().
2669 * Therefore, this function forces auditing independent of the audit_enabled
2670 * and dummy context state because seccomp actions should be logged even when
2671 * audit is not in use.
2672 */
2673void audit_seccomp(unsigned long syscall, long signr, int code)
2674{
2675        struct audit_buffer *ab;
2676
2677        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2678        if (unlikely(!ab))
2679                return;
2680        audit_log_task(ab);
2681        audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2682                         signr, syscall_get_arch(current), syscall,
2683                         in_compat_syscall(), KSTK_EIP(current), code);
2684        audit_log_end(ab);
2685}
2686
2687void audit_seccomp_actions_logged(const char *names, const char *old_names,
2688                                  int res)
2689{
2690        struct audit_buffer *ab;
2691
2692        if (!audit_enabled)
2693                return;
2694
2695        ab = audit_log_start(audit_context(), GFP_KERNEL,
2696                             AUDIT_CONFIG_CHANGE);
2697        if (unlikely(!ab))
2698                return;
2699
2700        audit_log_format(ab,
2701                         "op=seccomp-logging actions=%s old-actions=%s res=%d",
2702                         names, old_names, res);
2703        audit_log_end(ab);
2704}
2705
2706struct list_head *audit_killed_trees(void)
2707{
2708        struct audit_context *ctx = audit_context();
2709
2710        if (likely(!ctx || !ctx->in_syscall))
2711                return NULL;
2712        return &ctx->killed_trees;
2713}
2714