linux/mm/internal.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* internal.h: mm/ internal definitions
   3 *
   4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7#ifndef __MM_INTERNAL_H
   8#define __MM_INTERNAL_H
   9
  10#include <linux/fs.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/tracepoint-defs.h>
  14
  15/*
  16 * The set of flags that only affect watermark checking and reclaim
  17 * behaviour. This is used by the MM to obey the caller constraints
  18 * about IO, FS and watermark checking while ignoring placement
  19 * hints such as HIGHMEM usage.
  20 */
  21#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
  22                        __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
  23                        __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
  24                        __GFP_ATOMIC)
  25
  26/* The GFP flags allowed during early boot */
  27#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
  28
  29/* Control allocation cpuset and node placement constraints */
  30#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
  31
  32/* Do not use these with a slab allocator */
  33#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
  34
  35void page_writeback_init(void);
  36
  37vm_fault_t do_swap_page(struct vm_fault *vmf);
  38
  39void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  40                unsigned long floor, unsigned long ceiling);
  41
  42static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
  43{
  44        return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
  45}
  46
  47void unmap_page_range(struct mmu_gather *tlb,
  48                             struct vm_area_struct *vma,
  49                             unsigned long addr, unsigned long end,
  50                             struct zap_details *details);
  51
  52void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read,
  53                unsigned long lookahead_size);
  54void force_page_cache_ra(struct readahead_control *, unsigned long nr);
  55static inline void force_page_cache_readahead(struct address_space *mapping,
  56                struct file *file, pgoff_t index, unsigned long nr_to_read)
  57{
  58        DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
  59        force_page_cache_ra(&ractl, nr_to_read);
  60}
  61
  62unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
  63                pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
  64
  65/**
  66 * page_evictable - test whether a page is evictable
  67 * @page: the page to test
  68 *
  69 * Test whether page is evictable--i.e., should be placed on active/inactive
  70 * lists vs unevictable list.
  71 *
  72 * Reasons page might not be evictable:
  73 * (1) page's mapping marked unevictable
  74 * (2) page is part of an mlocked VMA
  75 *
  76 */
  77static inline bool page_evictable(struct page *page)
  78{
  79        bool ret;
  80
  81        /* Prevent address_space of inode and swap cache from being freed */
  82        rcu_read_lock();
  83        ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
  84        rcu_read_unlock();
  85        return ret;
  86}
  87
  88/*
  89 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
  90 * a count of one.
  91 */
  92static inline void set_page_refcounted(struct page *page)
  93{
  94        VM_BUG_ON_PAGE(PageTail(page), page);
  95        VM_BUG_ON_PAGE(page_ref_count(page), page);
  96        set_page_count(page, 1);
  97}
  98
  99extern unsigned long highest_memmap_pfn;
 100
 101/*
 102 * Maximum number of reclaim retries without progress before the OOM
 103 * killer is consider the only way forward.
 104 */
 105#define MAX_RECLAIM_RETRIES 16
 106
 107/*
 108 * in mm/vmscan.c:
 109 */
 110extern int isolate_lru_page(struct page *page);
 111extern void putback_lru_page(struct page *page);
 112
 113/*
 114 * in mm/rmap.c:
 115 */
 116extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 117
 118/*
 119 * in mm/memcontrol.c:
 120 */
 121extern bool cgroup_memory_nokmem;
 122
 123/*
 124 * in mm/page_alloc.c
 125 */
 126
 127/*
 128 * Structure for holding the mostly immutable allocation parameters passed
 129 * between functions involved in allocations, including the alloc_pages*
 130 * family of functions.
 131 *
 132 * nodemask, migratetype and highest_zoneidx are initialized only once in
 133 * __alloc_pages() and then never change.
 134 *
 135 * zonelist, preferred_zone and highest_zoneidx are set first in
 136 * __alloc_pages() for the fast path, and might be later changed
 137 * in __alloc_pages_slowpath(). All other functions pass the whole structure
 138 * by a const pointer.
 139 */
 140struct alloc_context {
 141        struct zonelist *zonelist;
 142        nodemask_t *nodemask;
 143        struct zoneref *preferred_zoneref;
 144        int migratetype;
 145
 146        /*
 147         * highest_zoneidx represents highest usable zone index of
 148         * the allocation request. Due to the nature of the zone,
 149         * memory on lower zone than the highest_zoneidx will be
 150         * protected by lowmem_reserve[highest_zoneidx].
 151         *
 152         * highest_zoneidx is also used by reclaim/compaction to limit
 153         * the target zone since higher zone than this index cannot be
 154         * usable for this allocation request.
 155         */
 156        enum zone_type highest_zoneidx;
 157        bool spread_dirty_pages;
 158};
 159
 160/*
 161 * Locate the struct page for both the matching buddy in our
 162 * pair (buddy1) and the combined O(n+1) page they form (page).
 163 *
 164 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 165 * the following equation:
 166 *     B2 = B1 ^ (1 << O)
 167 * For example, if the starting buddy (buddy2) is #8 its order
 168 * 1 buddy is #10:
 169 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 170 *
 171 * 2) Any buddy B will have an order O+1 parent P which
 172 * satisfies the following equation:
 173 *     P = B & ~(1 << O)
 174 *
 175 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 176 */
 177static inline unsigned long
 178__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
 179{
 180        return page_pfn ^ (1 << order);
 181}
 182
 183extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
 184                                unsigned long end_pfn, struct zone *zone);
 185
 186static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
 187                                unsigned long end_pfn, struct zone *zone)
 188{
 189        if (zone->contiguous)
 190                return pfn_to_page(start_pfn);
 191
 192        return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
 193}
 194
 195extern int __isolate_free_page(struct page *page, unsigned int order);
 196extern void __putback_isolated_page(struct page *page, unsigned int order,
 197                                    int mt);
 198extern void memblock_free_pages(struct page *page, unsigned long pfn,
 199                                        unsigned int order);
 200extern void __free_pages_core(struct page *page, unsigned int order);
 201extern void prep_compound_page(struct page *page, unsigned int order);
 202extern void post_alloc_hook(struct page *page, unsigned int order,
 203                                        gfp_t gfp_flags);
 204extern int user_min_free_kbytes;
 205
 206extern void free_unref_page(struct page *page, unsigned int order);
 207extern void free_unref_page_list(struct list_head *list);
 208
 209extern void zone_pcp_update(struct zone *zone, int cpu_online);
 210extern void zone_pcp_reset(struct zone *zone);
 211extern void zone_pcp_disable(struct zone *zone);
 212extern void zone_pcp_enable(struct zone *zone);
 213
 214extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
 215                          phys_addr_t min_addr,
 216                          int nid, bool exact_nid);
 217
 218#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 219
 220/*
 221 * in mm/compaction.c
 222 */
 223/*
 224 * compact_control is used to track pages being migrated and the free pages
 225 * they are being migrated to during memory compaction. The free_pfn starts
 226 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 227 * are moved to the end of a zone during a compaction run and the run
 228 * completes when free_pfn <= migrate_pfn
 229 */
 230struct compact_control {
 231        struct list_head freepages;     /* List of free pages to migrate to */
 232        struct list_head migratepages;  /* List of pages being migrated */
 233        unsigned int nr_freepages;      /* Number of isolated free pages */
 234        unsigned int nr_migratepages;   /* Number of pages to migrate */
 235        unsigned long free_pfn;         /* isolate_freepages search base */
 236        /*
 237         * Acts as an in/out parameter to page isolation for migration.
 238         * isolate_migratepages uses it as a search base.
 239         * isolate_migratepages_block will update the value to the next pfn
 240         * after the last isolated one.
 241         */
 242        unsigned long migrate_pfn;
 243        unsigned long fast_start_pfn;   /* a pfn to start linear scan from */
 244        struct zone *zone;
 245        unsigned long total_migrate_scanned;
 246        unsigned long total_free_scanned;
 247        unsigned short fast_search_fail;/* failures to use free list searches */
 248        short search_order;             /* order to start a fast search at */
 249        const gfp_t gfp_mask;           /* gfp mask of a direct compactor */
 250        int order;                      /* order a direct compactor needs */
 251        int migratetype;                /* migratetype of direct compactor */
 252        const unsigned int alloc_flags; /* alloc flags of a direct compactor */
 253        const int highest_zoneidx;      /* zone index of a direct compactor */
 254        enum migrate_mode mode;         /* Async or sync migration mode */
 255        bool ignore_skip_hint;          /* Scan blocks even if marked skip */
 256        bool no_set_skip_hint;          /* Don't mark blocks for skipping */
 257        bool ignore_block_suitable;     /* Scan blocks considered unsuitable */
 258        bool direct_compaction;         /* False from kcompactd or /proc/... */
 259        bool proactive_compaction;      /* kcompactd proactive compaction */
 260        bool whole_zone;                /* Whole zone should/has been scanned */
 261        bool contended;                 /* Signal lock or sched contention */
 262        bool rescan;                    /* Rescanning the same pageblock */
 263        bool alloc_contig;              /* alloc_contig_range allocation */
 264};
 265
 266/*
 267 * Used in direct compaction when a page should be taken from the freelists
 268 * immediately when one is created during the free path.
 269 */
 270struct capture_control {
 271        struct compact_control *cc;
 272        struct page *page;
 273};
 274
 275unsigned long
 276isolate_freepages_range(struct compact_control *cc,
 277                        unsigned long start_pfn, unsigned long end_pfn);
 278int
 279isolate_migratepages_range(struct compact_control *cc,
 280                           unsigned long low_pfn, unsigned long end_pfn);
 281#endif
 282int find_suitable_fallback(struct free_area *area, unsigned int order,
 283                        int migratetype, bool only_stealable, bool *can_steal);
 284
 285/*
 286 * This function returns the order of a free page in the buddy system. In
 287 * general, page_zone(page)->lock must be held by the caller to prevent the
 288 * page from being allocated in parallel and returning garbage as the order.
 289 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
 290 * page cannot be allocated or merged in parallel. Alternatively, it must
 291 * handle invalid values gracefully, and use buddy_order_unsafe() below.
 292 */
 293static inline unsigned int buddy_order(struct page *page)
 294{
 295        /* PageBuddy() must be checked by the caller */
 296        return page_private(page);
 297}
 298
 299/*
 300 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
 301 * PageBuddy() should be checked first by the caller to minimize race window,
 302 * and invalid values must be handled gracefully.
 303 *
 304 * READ_ONCE is used so that if the caller assigns the result into a local
 305 * variable and e.g. tests it for valid range before using, the compiler cannot
 306 * decide to remove the variable and inline the page_private(page) multiple
 307 * times, potentially observing different values in the tests and the actual
 308 * use of the result.
 309 */
 310#define buddy_order_unsafe(page)        READ_ONCE(page_private(page))
 311
 312/*
 313 * These three helpers classifies VMAs for virtual memory accounting.
 314 */
 315
 316/*
 317 * Executable code area - executable, not writable, not stack
 318 */
 319static inline bool is_exec_mapping(vm_flags_t flags)
 320{
 321        return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
 322}
 323
 324/*
 325 * Stack area - automatically grows in one direction
 326 *
 327 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
 328 * do_mmap() forbids all other combinations.
 329 */
 330static inline bool is_stack_mapping(vm_flags_t flags)
 331{
 332        return (flags & VM_STACK) == VM_STACK;
 333}
 334
 335/*
 336 * Data area - private, writable, not stack
 337 */
 338static inline bool is_data_mapping(vm_flags_t flags)
 339{
 340        return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
 341}
 342
 343/* mm/util.c */
 344void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 345                struct vm_area_struct *prev);
 346void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
 347
 348#ifdef CONFIG_MMU
 349extern long populate_vma_page_range(struct vm_area_struct *vma,
 350                unsigned long start, unsigned long end, int *locked);
 351extern long faultin_vma_page_range(struct vm_area_struct *vma,
 352                                   unsigned long start, unsigned long end,
 353                                   bool write, int *locked);
 354extern void munlock_vma_pages_range(struct vm_area_struct *vma,
 355                        unsigned long start, unsigned long end);
 356static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
 357{
 358        munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
 359}
 360
 361/*
 362 * must be called with vma's mmap_lock held for read or write, and page locked.
 363 */
 364extern void mlock_vma_page(struct page *page);
 365extern unsigned int munlock_vma_page(struct page *page);
 366
 367extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
 368                              unsigned long len);
 369
 370/*
 371 * Clear the page's PageMlocked().  This can be useful in a situation where
 372 * we want to unconditionally remove a page from the pagecache -- e.g.,
 373 * on truncation or freeing.
 374 *
 375 * It is legal to call this function for any page, mlocked or not.
 376 * If called for a page that is still mapped by mlocked vmas, all we do
 377 * is revert to lazy LRU behaviour -- semantics are not broken.
 378 */
 379extern void clear_page_mlock(struct page *page);
 380
 381extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
 382
 383/*
 384 * At what user virtual address is page expected in vma?
 385 * Returns -EFAULT if all of the page is outside the range of vma.
 386 * If page is a compound head, the entire compound page is considered.
 387 */
 388static inline unsigned long
 389vma_address(struct page *page, struct vm_area_struct *vma)
 390{
 391        pgoff_t pgoff;
 392        unsigned long address;
 393
 394        VM_BUG_ON_PAGE(PageKsm(page), page);    /* KSM page->index unusable */
 395        pgoff = page_to_pgoff(page);
 396        if (pgoff >= vma->vm_pgoff) {
 397                address = vma->vm_start +
 398                        ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 399                /* Check for address beyond vma (or wrapped through 0?) */
 400                if (address < vma->vm_start || address >= vma->vm_end)
 401                        address = -EFAULT;
 402        } else if (PageHead(page) &&
 403                   pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) {
 404                /* Test above avoids possibility of wrap to 0 on 32-bit */
 405                address = vma->vm_start;
 406        } else {
 407                address = -EFAULT;
 408        }
 409        return address;
 410}
 411
 412/*
 413 * Then at what user virtual address will none of the page be found in vma?
 414 * Assumes that vma_address() already returned a good starting address.
 415 * If page is a compound head, the entire compound page is considered.
 416 */
 417static inline unsigned long
 418vma_address_end(struct page *page, struct vm_area_struct *vma)
 419{
 420        pgoff_t pgoff;
 421        unsigned long address;
 422
 423        VM_BUG_ON_PAGE(PageKsm(page), page);    /* KSM page->index unusable */
 424        pgoff = page_to_pgoff(page) + compound_nr(page);
 425        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 426        /* Check for address beyond vma (or wrapped through 0?) */
 427        if (address < vma->vm_start || address > vma->vm_end)
 428                address = vma->vm_end;
 429        return address;
 430}
 431
 432static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
 433                                                    struct file *fpin)
 434{
 435        int flags = vmf->flags;
 436
 437        if (fpin)
 438                return fpin;
 439
 440        /*
 441         * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
 442         * anything, so we only pin the file and drop the mmap_lock if only
 443         * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
 444         */
 445        if (fault_flag_allow_retry_first(flags) &&
 446            !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
 447                fpin = get_file(vmf->vma->vm_file);
 448                mmap_read_unlock(vmf->vma->vm_mm);
 449        }
 450        return fpin;
 451}
 452
 453#else /* !CONFIG_MMU */
 454static inline void clear_page_mlock(struct page *page) { }
 455static inline void mlock_vma_page(struct page *page) { }
 456static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
 457{
 458}
 459#endif /* !CONFIG_MMU */
 460
 461/*
 462 * Return the mem_map entry representing the 'offset' subpage within
 463 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
 464 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
 465 */
 466static inline struct page *mem_map_offset(struct page *base, int offset)
 467{
 468        if (unlikely(offset >= MAX_ORDER_NR_PAGES))
 469                return nth_page(base, offset);
 470        return base + offset;
 471}
 472
 473/*
 474 * Iterator over all subpages within the maximally aligned gigantic
 475 * page 'base'.  Handle any discontiguity in the mem_map.
 476 */
 477static inline struct page *mem_map_next(struct page *iter,
 478                                                struct page *base, int offset)
 479{
 480        if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
 481                unsigned long pfn = page_to_pfn(base) + offset;
 482                if (!pfn_valid(pfn))
 483                        return NULL;
 484                return pfn_to_page(pfn);
 485        }
 486        return iter + 1;
 487}
 488
 489/* Memory initialisation debug and verification */
 490enum mminit_level {
 491        MMINIT_WARNING,
 492        MMINIT_VERIFY,
 493        MMINIT_TRACE
 494};
 495
 496#ifdef CONFIG_DEBUG_MEMORY_INIT
 497
 498extern int mminit_loglevel;
 499
 500#define mminit_dprintk(level, prefix, fmt, arg...) \
 501do { \
 502        if (level < mminit_loglevel) { \
 503                if (level <= MMINIT_WARNING) \
 504                        pr_warn("mminit::" prefix " " fmt, ##arg);      \
 505                else \
 506                        printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
 507        } \
 508} while (0)
 509
 510extern void mminit_verify_pageflags_layout(void);
 511extern void mminit_verify_zonelist(void);
 512#else
 513
 514static inline void mminit_dprintk(enum mminit_level level,
 515                                const char *prefix, const char *fmt, ...)
 516{
 517}
 518
 519static inline void mminit_verify_pageflags_layout(void)
 520{
 521}
 522
 523static inline void mminit_verify_zonelist(void)
 524{
 525}
 526#endif /* CONFIG_DEBUG_MEMORY_INIT */
 527
 528/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
 529#if defined(CONFIG_SPARSEMEM)
 530extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
 531                                unsigned long *end_pfn);
 532#else
 533static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
 534                                unsigned long *end_pfn)
 535{
 536}
 537#endif /* CONFIG_SPARSEMEM */
 538
 539#define NODE_RECLAIM_NOSCAN     -2
 540#define NODE_RECLAIM_FULL       -1
 541#define NODE_RECLAIM_SOME       0
 542#define NODE_RECLAIM_SUCCESS    1
 543
 544#ifdef CONFIG_NUMA
 545extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
 546extern int find_next_best_node(int node, nodemask_t *used_node_mask);
 547#else
 548static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
 549                                unsigned int order)
 550{
 551        return NODE_RECLAIM_NOSCAN;
 552}
 553static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
 554{
 555        return NUMA_NO_NODE;
 556}
 557#endif
 558
 559extern int hwpoison_filter(struct page *p);
 560
 561extern u32 hwpoison_filter_dev_major;
 562extern u32 hwpoison_filter_dev_minor;
 563extern u64 hwpoison_filter_flags_mask;
 564extern u64 hwpoison_filter_flags_value;
 565extern u64 hwpoison_filter_memcg;
 566extern u32 hwpoison_filter_enable;
 567
 568extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
 569        unsigned long, unsigned long,
 570        unsigned long, unsigned long);
 571
 572extern void set_pageblock_order(void);
 573unsigned int reclaim_clean_pages_from_list(struct zone *zone,
 574                                            struct list_head *page_list);
 575/* The ALLOC_WMARK bits are used as an index to zone->watermark */
 576#define ALLOC_WMARK_MIN         WMARK_MIN
 577#define ALLOC_WMARK_LOW         WMARK_LOW
 578#define ALLOC_WMARK_HIGH        WMARK_HIGH
 579#define ALLOC_NO_WATERMARKS     0x04 /* don't check watermarks at all */
 580
 581/* Mask to get the watermark bits */
 582#define ALLOC_WMARK_MASK        (ALLOC_NO_WATERMARKS-1)
 583
 584/*
 585 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
 586 * cannot assume a reduced access to memory reserves is sufficient for
 587 * !MMU
 588 */
 589#ifdef CONFIG_MMU
 590#define ALLOC_OOM               0x08
 591#else
 592#define ALLOC_OOM               ALLOC_NO_WATERMARKS
 593#endif
 594
 595#define ALLOC_HARDER             0x10 /* try to alloc harder */
 596#define ALLOC_HIGH               0x20 /* __GFP_HIGH set */
 597#define ALLOC_CPUSET             0x40 /* check for correct cpuset */
 598#define ALLOC_CMA                0x80 /* allow allocations from CMA areas */
 599#ifdef CONFIG_ZONE_DMA32
 600#define ALLOC_NOFRAGMENT        0x100 /* avoid mixing pageblock types */
 601#else
 602#define ALLOC_NOFRAGMENT          0x0
 603#endif
 604#define ALLOC_KSWAPD            0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
 605
 606enum ttu_flags;
 607struct tlbflush_unmap_batch;
 608
 609
 610/*
 611 * only for MM internal work items which do not depend on
 612 * any allocations or locks which might depend on allocations
 613 */
 614extern struct workqueue_struct *mm_percpu_wq;
 615
 616#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 617void try_to_unmap_flush(void);
 618void try_to_unmap_flush_dirty(void);
 619void flush_tlb_batched_pending(struct mm_struct *mm);
 620#else
 621static inline void try_to_unmap_flush(void)
 622{
 623}
 624static inline void try_to_unmap_flush_dirty(void)
 625{
 626}
 627static inline void flush_tlb_batched_pending(struct mm_struct *mm)
 628{
 629}
 630#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 631
 632extern const struct trace_print_flags pageflag_names[];
 633extern const struct trace_print_flags vmaflag_names[];
 634extern const struct trace_print_flags gfpflag_names[];
 635
 636static inline bool is_migrate_highatomic(enum migratetype migratetype)
 637{
 638        return migratetype == MIGRATE_HIGHATOMIC;
 639}
 640
 641static inline bool is_migrate_highatomic_page(struct page *page)
 642{
 643        return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
 644}
 645
 646void setup_zone_pageset(struct zone *zone);
 647
 648struct migration_target_control {
 649        int nid;                /* preferred node id */
 650        nodemask_t *nmask;
 651        gfp_t gfp_mask;
 652};
 653
 654/*
 655 * mm/vmalloc.c
 656 */
 657#ifdef CONFIG_MMU
 658int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 659                pgprot_t prot, struct page **pages, unsigned int page_shift);
 660#else
 661static inline
 662int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 663                pgprot_t prot, struct page **pages, unsigned int page_shift)
 664{
 665        return -EINVAL;
 666}
 667#endif
 668
 669void vunmap_range_noflush(unsigned long start, unsigned long end);
 670
 671int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
 672                      unsigned long addr, int page_nid, int *flags);
 673
 674#endif  /* __MM_INTERNAL_H */
 675