linux/mm/percpu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/percpu.c - percpu memory allocator
   4 *
   5 * Copyright (C) 2009           SUSE Linux Products GmbH
   6 * Copyright (C) 2009           Tejun Heo <tj@kernel.org>
   7 *
   8 * Copyright (C) 2017           Facebook Inc.
   9 * Copyright (C) 2017           Dennis Zhou <dennis@kernel.org>
  10 *
  11 * The percpu allocator handles both static and dynamic areas.  Percpu
  12 * areas are allocated in chunks which are divided into units.  There is
  13 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
  14 * based on NUMA properties of the machine.
  15 *
  16 *  c0                           c1                         c2
  17 *  -------------------          -------------------        ------------
  18 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  19 *  -------------------  ......  -------------------  ....  ------------
  20 *
  21 * Allocation is done by offsets into a unit's address space.  Ie., an
  22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
  23 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
  24 * and even sparse.  Access is handled by configuring percpu base
  25 * registers according to the cpu to unit mappings and offsetting the
  26 * base address using pcpu_unit_size.
  27 *
  28 * There is special consideration for the first chunk which must handle
  29 * the static percpu variables in the kernel image as allocation services
  30 * are not online yet.  In short, the first chunk is structured like so:
  31 *
  32 *                  <Static | [Reserved] | Dynamic>
  33 *
  34 * The static data is copied from the original section managed by the
  35 * linker.  The reserved section, if non-zero, primarily manages static
  36 * percpu variables from kernel modules.  Finally, the dynamic section
  37 * takes care of normal allocations.
  38 *
  39 * The allocator organizes chunks into lists according to free size and
  40 * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
  41 * flag should be passed.  All memcg-aware allocations are sharing one set
  42 * of chunks and all unaccounted allocations and allocations performed
  43 * by processes belonging to the root memory cgroup are using the second set.
  44 *
  45 * The allocator tries to allocate from the fullest chunk first. Each chunk
  46 * is managed by a bitmap with metadata blocks.  The allocation map is updated
  47 * on every allocation and free to reflect the current state while the boundary
  48 * map is only updated on allocation.  Each metadata block contains
  49 * information to help mitigate the need to iterate over large portions
  50 * of the bitmap.  The reverse mapping from page to chunk is stored in
  51 * the page's index.  Lastly, units are lazily backed and grow in unison.
  52 *
  53 * There is a unique conversion that goes on here between bytes and bits.
  54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
  55 * tracks the number of pages it is responsible for in nr_pages.  Helper
  56 * functions are used to convert from between the bytes, bits, and blocks.
  57 * All hints are managed in bits unless explicitly stated.
  58 *
  59 * To use this allocator, arch code should do the following:
  60 *
  61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  62 *   regular address to percpu pointer and back if they need to be
  63 *   different from the default
  64 *
  65 * - use pcpu_setup_first_chunk() during percpu area initialization to
  66 *   setup the first chunk containing the kernel static percpu area
  67 */
  68
  69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  70
  71#include <linux/bitmap.h>
  72#include <linux/cpumask.h>
  73#include <linux/memblock.h>
  74#include <linux/err.h>
  75#include <linux/lcm.h>
  76#include <linux/list.h>
  77#include <linux/log2.h>
  78#include <linux/mm.h>
  79#include <linux/module.h>
  80#include <linux/mutex.h>
  81#include <linux/percpu.h>
  82#include <linux/pfn.h>
  83#include <linux/slab.h>
  84#include <linux/spinlock.h>
  85#include <linux/vmalloc.h>
  86#include <linux/workqueue.h>
  87#include <linux/kmemleak.h>
  88#include <linux/sched.h>
  89#include <linux/sched/mm.h>
  90#include <linux/memcontrol.h>
  91
  92#include <asm/cacheflush.h>
  93#include <asm/sections.h>
  94#include <asm/tlbflush.h>
  95#include <asm/io.h>
  96
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/percpu.h>
  99
 100#include "percpu-internal.h"
 101
 102/*
 103 * The slots are sorted by the size of the biggest continuous free area.
 104 * 1-31 bytes share the same slot.
 105 */
 106#define PCPU_SLOT_BASE_SHIFT            5
 107/* chunks in slots below this are subject to being sidelined on failed alloc */
 108#define PCPU_SLOT_FAIL_THRESHOLD        3
 109
 110#define PCPU_EMPTY_POP_PAGES_LOW        2
 111#define PCPU_EMPTY_POP_PAGES_HIGH       4
 112
 113#ifdef CONFIG_SMP
 114/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
 115#ifndef __addr_to_pcpu_ptr
 116#define __addr_to_pcpu_ptr(addr)                                        \
 117        (void __percpu *)((unsigned long)(addr) -                       \
 118                          (unsigned long)pcpu_base_addr +               \
 119                          (unsigned long)__per_cpu_start)
 120#endif
 121#ifndef __pcpu_ptr_to_addr
 122#define __pcpu_ptr_to_addr(ptr)                                         \
 123        (void __force *)((unsigned long)(ptr) +                         \
 124                         (unsigned long)pcpu_base_addr -                \
 125                         (unsigned long)__per_cpu_start)
 126#endif
 127#else   /* CONFIG_SMP */
 128/* on UP, it's always identity mapped */
 129#define __addr_to_pcpu_ptr(addr)        (void __percpu *)(addr)
 130#define __pcpu_ptr_to_addr(ptr)         (void __force *)(ptr)
 131#endif  /* CONFIG_SMP */
 132
 133static int pcpu_unit_pages __ro_after_init;
 134static int pcpu_unit_size __ro_after_init;
 135static int pcpu_nr_units __ro_after_init;
 136static int pcpu_atom_size __ro_after_init;
 137int pcpu_nr_slots __ro_after_init;
 138static int pcpu_free_slot __ro_after_init;
 139int pcpu_sidelined_slot __ro_after_init;
 140int pcpu_to_depopulate_slot __ro_after_init;
 141static size_t pcpu_chunk_struct_size __ro_after_init;
 142
 143/* cpus with the lowest and highest unit addresses */
 144static unsigned int pcpu_low_unit_cpu __ro_after_init;
 145static unsigned int pcpu_high_unit_cpu __ro_after_init;
 146
 147/* the address of the first chunk which starts with the kernel static area */
 148void *pcpu_base_addr __ro_after_init;
 149
 150static const int *pcpu_unit_map __ro_after_init;                /* cpu -> unit */
 151const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
 152
 153/* group information, used for vm allocation */
 154static int pcpu_nr_groups __ro_after_init;
 155static const unsigned long *pcpu_group_offsets __ro_after_init;
 156static const size_t *pcpu_group_sizes __ro_after_init;
 157
 158/*
 159 * The first chunk which always exists.  Note that unlike other
 160 * chunks, this one can be allocated and mapped in several different
 161 * ways and thus often doesn't live in the vmalloc area.
 162 */
 163struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
 164
 165/*
 166 * Optional reserved chunk.  This chunk reserves part of the first
 167 * chunk and serves it for reserved allocations.  When the reserved
 168 * region doesn't exist, the following variable is NULL.
 169 */
 170struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
 171
 172DEFINE_SPINLOCK(pcpu_lock);     /* all internal data structures */
 173static DEFINE_MUTEX(pcpu_alloc_mutex);  /* chunk create/destroy, [de]pop, map ext */
 174
 175struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
 176
 177/* chunks which need their map areas extended, protected by pcpu_lock */
 178static LIST_HEAD(pcpu_map_extend_chunks);
 179
 180/*
 181 * The number of empty populated pages, protected by pcpu_lock.
 182 * The reserved chunk doesn't contribute to the count.
 183 */
 184int pcpu_nr_empty_pop_pages;
 185
 186/*
 187 * The number of populated pages in use by the allocator, protected by
 188 * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
 189 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
 190 * and increments/decrements this count by 1).
 191 */
 192static unsigned long pcpu_nr_populated;
 193
 194/*
 195 * Balance work is used to populate or destroy chunks asynchronously.  We
 196 * try to keep the number of populated free pages between
 197 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 198 * empty chunk.
 199 */
 200static void pcpu_balance_workfn(struct work_struct *work);
 201static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 202static bool pcpu_async_enabled __read_mostly;
 203static bool pcpu_atomic_alloc_failed;
 204
 205static void pcpu_schedule_balance_work(void)
 206{
 207        if (pcpu_async_enabled)
 208                schedule_work(&pcpu_balance_work);
 209}
 210
 211/**
 212 * pcpu_addr_in_chunk - check if the address is served from this chunk
 213 * @chunk: chunk of interest
 214 * @addr: percpu address
 215 *
 216 * RETURNS:
 217 * True if the address is served from this chunk.
 218 */
 219static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
 220{
 221        void *start_addr, *end_addr;
 222
 223        if (!chunk)
 224                return false;
 225
 226        start_addr = chunk->base_addr + chunk->start_offset;
 227        end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
 228                   chunk->end_offset;
 229
 230        return addr >= start_addr && addr < end_addr;
 231}
 232
 233static int __pcpu_size_to_slot(int size)
 234{
 235        int highbit = fls(size);        /* size is in bytes */
 236        return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 237}
 238
 239static int pcpu_size_to_slot(int size)
 240{
 241        if (size == pcpu_unit_size)
 242                return pcpu_free_slot;
 243        return __pcpu_size_to_slot(size);
 244}
 245
 246static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 247{
 248        const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 249
 250        if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
 251            chunk_md->contig_hint == 0)
 252                return 0;
 253
 254        return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
 255}
 256
 257/* set the pointer to a chunk in a page struct */
 258static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 259{
 260        page->index = (unsigned long)pcpu;
 261}
 262
 263/* obtain pointer to a chunk from a page struct */
 264static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 265{
 266        return (struct pcpu_chunk *)page->index;
 267}
 268
 269static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 270{
 271        return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 272}
 273
 274static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
 275{
 276        return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
 277}
 278
 279static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 280                                     unsigned int cpu, int page_idx)
 281{
 282        return (unsigned long)chunk->base_addr +
 283               pcpu_unit_page_offset(cpu, page_idx);
 284}
 285
 286/*
 287 * The following are helper functions to help access bitmaps and convert
 288 * between bitmap offsets to address offsets.
 289 */
 290static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
 291{
 292        return chunk->alloc_map +
 293               (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
 294}
 295
 296static unsigned long pcpu_off_to_block_index(int off)
 297{
 298        return off / PCPU_BITMAP_BLOCK_BITS;
 299}
 300
 301static unsigned long pcpu_off_to_block_off(int off)
 302{
 303        return off & (PCPU_BITMAP_BLOCK_BITS - 1);
 304}
 305
 306static unsigned long pcpu_block_off_to_off(int index, int off)
 307{
 308        return index * PCPU_BITMAP_BLOCK_BITS + off;
 309}
 310
 311/**
 312 * pcpu_check_block_hint - check against the contig hint
 313 * @block: block of interest
 314 * @bits: size of allocation
 315 * @align: alignment of area (max PAGE_SIZE)
 316 *
 317 * Check to see if the allocation can fit in the block's contig hint.
 318 * Note, a chunk uses the same hints as a block so this can also check against
 319 * the chunk's contig hint.
 320 */
 321static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
 322                                  size_t align)
 323{
 324        int bit_off = ALIGN(block->contig_hint_start, align) -
 325                block->contig_hint_start;
 326
 327        return bit_off + bits <= block->contig_hint;
 328}
 329
 330/*
 331 * pcpu_next_hint - determine which hint to use
 332 * @block: block of interest
 333 * @alloc_bits: size of allocation
 334 *
 335 * This determines if we should scan based on the scan_hint or first_free.
 336 * In general, we want to scan from first_free to fulfill allocations by
 337 * first fit.  However, if we know a scan_hint at position scan_hint_start
 338 * cannot fulfill an allocation, we can begin scanning from there knowing
 339 * the contig_hint will be our fallback.
 340 */
 341static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
 342{
 343        /*
 344         * The three conditions below determine if we can skip past the
 345         * scan_hint.  First, does the scan hint exist.  Second, is the
 346         * contig_hint after the scan_hint (possibly not true iff
 347         * contig_hint == scan_hint).  Third, is the allocation request
 348         * larger than the scan_hint.
 349         */
 350        if (block->scan_hint &&
 351            block->contig_hint_start > block->scan_hint_start &&
 352            alloc_bits > block->scan_hint)
 353                return block->scan_hint_start + block->scan_hint;
 354
 355        return block->first_free;
 356}
 357
 358/**
 359 * pcpu_next_md_free_region - finds the next hint free area
 360 * @chunk: chunk of interest
 361 * @bit_off: chunk offset
 362 * @bits: size of free area
 363 *
 364 * Helper function for pcpu_for_each_md_free_region.  It checks
 365 * block->contig_hint and performs aggregation across blocks to find the
 366 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 367 * loop.
 368 */
 369static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
 370                                     int *bits)
 371{
 372        int i = pcpu_off_to_block_index(*bit_off);
 373        int block_off = pcpu_off_to_block_off(*bit_off);
 374        struct pcpu_block_md *block;
 375
 376        *bits = 0;
 377        for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 378             block++, i++) {
 379                /* handles contig area across blocks */
 380                if (*bits) {
 381                        *bits += block->left_free;
 382                        if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 383                                continue;
 384                        return;
 385                }
 386
 387                /*
 388                 * This checks three things.  First is there a contig_hint to
 389                 * check.  Second, have we checked this hint before by
 390                 * comparing the block_off.  Third, is this the same as the
 391                 * right contig hint.  In the last case, it spills over into
 392                 * the next block and should be handled by the contig area
 393                 * across blocks code.
 394                 */
 395                *bits = block->contig_hint;
 396                if (*bits && block->contig_hint_start >= block_off &&
 397                    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
 398                        *bit_off = pcpu_block_off_to_off(i,
 399                                        block->contig_hint_start);
 400                        return;
 401                }
 402                /* reset to satisfy the second predicate above */
 403                block_off = 0;
 404
 405                *bits = block->right_free;
 406                *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
 407        }
 408}
 409
 410/**
 411 * pcpu_next_fit_region - finds fit areas for a given allocation request
 412 * @chunk: chunk of interest
 413 * @alloc_bits: size of allocation
 414 * @align: alignment of area (max PAGE_SIZE)
 415 * @bit_off: chunk offset
 416 * @bits: size of free area
 417 *
 418 * Finds the next free region that is viable for use with a given size and
 419 * alignment.  This only returns if there is a valid area to be used for this
 420 * allocation.  block->first_free is returned if the allocation request fits
 421 * within the block to see if the request can be fulfilled prior to the contig
 422 * hint.
 423 */
 424static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
 425                                 int align, int *bit_off, int *bits)
 426{
 427        int i = pcpu_off_to_block_index(*bit_off);
 428        int block_off = pcpu_off_to_block_off(*bit_off);
 429        struct pcpu_block_md *block;
 430
 431        *bits = 0;
 432        for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 433             block++, i++) {
 434                /* handles contig area across blocks */
 435                if (*bits) {
 436                        *bits += block->left_free;
 437                        if (*bits >= alloc_bits)
 438                                return;
 439                        if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 440                                continue;
 441                }
 442
 443                /* check block->contig_hint */
 444                *bits = ALIGN(block->contig_hint_start, align) -
 445                        block->contig_hint_start;
 446                /*
 447                 * This uses the block offset to determine if this has been
 448                 * checked in the prior iteration.
 449                 */
 450                if (block->contig_hint &&
 451                    block->contig_hint_start >= block_off &&
 452                    block->contig_hint >= *bits + alloc_bits) {
 453                        int start = pcpu_next_hint(block, alloc_bits);
 454
 455                        *bits += alloc_bits + block->contig_hint_start -
 456                                 start;
 457                        *bit_off = pcpu_block_off_to_off(i, start);
 458                        return;
 459                }
 460                /* reset to satisfy the second predicate above */
 461                block_off = 0;
 462
 463                *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
 464                                 align);
 465                *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
 466                *bit_off = pcpu_block_off_to_off(i, *bit_off);
 467                if (*bits >= alloc_bits)
 468                        return;
 469        }
 470
 471        /* no valid offsets were found - fail condition */
 472        *bit_off = pcpu_chunk_map_bits(chunk);
 473}
 474
 475/*
 476 * Metadata free area iterators.  These perform aggregation of free areas
 477 * based on the metadata blocks and return the offset @bit_off and size in
 478 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 479 * a fit is found for the allocation request.
 480 */
 481#define pcpu_for_each_md_free_region(chunk, bit_off, bits)              \
 482        for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));    \
 483             (bit_off) < pcpu_chunk_map_bits((chunk));                  \
 484             (bit_off) += (bits) + 1,                                   \
 485             pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
 486
 487#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
 488        for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 489                                  &(bits));                                   \
 490             (bit_off) < pcpu_chunk_map_bits((chunk));                        \
 491             (bit_off) += (bits),                                             \
 492             pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 493                                  &(bits)))
 494
 495/**
 496 * pcpu_mem_zalloc - allocate memory
 497 * @size: bytes to allocate
 498 * @gfp: allocation flags
 499 *
 500 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 501 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 502 * This is to facilitate passing through whitelisted flags.  The
 503 * returned memory is always zeroed.
 504 *
 505 * RETURNS:
 506 * Pointer to the allocated area on success, NULL on failure.
 507 */
 508static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
 509{
 510        if (WARN_ON_ONCE(!slab_is_available()))
 511                return NULL;
 512
 513        if (size <= PAGE_SIZE)
 514                return kzalloc(size, gfp);
 515        else
 516                return __vmalloc(size, gfp | __GFP_ZERO);
 517}
 518
 519/**
 520 * pcpu_mem_free - free memory
 521 * @ptr: memory to free
 522 *
 523 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 524 */
 525static void pcpu_mem_free(void *ptr)
 526{
 527        kvfree(ptr);
 528}
 529
 530static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
 531                              bool move_front)
 532{
 533        if (chunk != pcpu_reserved_chunk) {
 534                if (move_front)
 535                        list_move(&chunk->list, &pcpu_chunk_lists[slot]);
 536                else
 537                        list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
 538        }
 539}
 540
 541static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
 542{
 543        __pcpu_chunk_move(chunk, slot, true);
 544}
 545
 546/**
 547 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 548 * @chunk: chunk of interest
 549 * @oslot: the previous slot it was on
 550 *
 551 * This function is called after an allocation or free changed @chunk.
 552 * New slot according to the changed state is determined and @chunk is
 553 * moved to the slot.  Note that the reserved chunk is never put on
 554 * chunk slots.
 555 *
 556 * CONTEXT:
 557 * pcpu_lock.
 558 */
 559static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 560{
 561        int nslot = pcpu_chunk_slot(chunk);
 562
 563        /* leave isolated chunks in-place */
 564        if (chunk->isolated)
 565                return;
 566
 567        if (oslot != nslot)
 568                __pcpu_chunk_move(chunk, nslot, oslot < nslot);
 569}
 570
 571static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
 572{
 573        lockdep_assert_held(&pcpu_lock);
 574
 575        if (!chunk->isolated) {
 576                chunk->isolated = true;
 577                pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
 578        }
 579        list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
 580}
 581
 582static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
 583{
 584        lockdep_assert_held(&pcpu_lock);
 585
 586        if (chunk->isolated) {
 587                chunk->isolated = false;
 588                pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
 589                pcpu_chunk_relocate(chunk, -1);
 590        }
 591}
 592
 593/*
 594 * pcpu_update_empty_pages - update empty page counters
 595 * @chunk: chunk of interest
 596 * @nr: nr of empty pages
 597 *
 598 * This is used to keep track of the empty pages now based on the premise
 599 * a md_block covers a page.  The hint update functions recognize if a block
 600 * is made full or broken to calculate deltas for keeping track of free pages.
 601 */
 602static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
 603{
 604        chunk->nr_empty_pop_pages += nr;
 605        if (chunk != pcpu_reserved_chunk && !chunk->isolated)
 606                pcpu_nr_empty_pop_pages += nr;
 607}
 608
 609/*
 610 * pcpu_region_overlap - determines if two regions overlap
 611 * @a: start of first region, inclusive
 612 * @b: end of first region, exclusive
 613 * @x: start of second region, inclusive
 614 * @y: end of second region, exclusive
 615 *
 616 * This is used to determine if the hint region [a, b) overlaps with the
 617 * allocated region [x, y).
 618 */
 619static inline bool pcpu_region_overlap(int a, int b, int x, int y)
 620{
 621        return (a < y) && (x < b);
 622}
 623
 624/**
 625 * pcpu_block_update - updates a block given a free area
 626 * @block: block of interest
 627 * @start: start offset in block
 628 * @end: end offset in block
 629 *
 630 * Updates a block given a known free area.  The region [start, end) is
 631 * expected to be the entirety of the free area within a block.  Chooses
 632 * the best starting offset if the contig hints are equal.
 633 */
 634static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
 635{
 636        int contig = end - start;
 637
 638        block->first_free = min(block->first_free, start);
 639        if (start == 0)
 640                block->left_free = contig;
 641
 642        if (end == block->nr_bits)
 643                block->right_free = contig;
 644
 645        if (contig > block->contig_hint) {
 646                /* promote the old contig_hint to be the new scan_hint */
 647                if (start > block->contig_hint_start) {
 648                        if (block->contig_hint > block->scan_hint) {
 649                                block->scan_hint_start =
 650                                        block->contig_hint_start;
 651                                block->scan_hint = block->contig_hint;
 652                        } else if (start < block->scan_hint_start) {
 653                                /*
 654                                 * The old contig_hint == scan_hint.  But, the
 655                                 * new contig is larger so hold the invariant
 656                                 * scan_hint_start < contig_hint_start.
 657                                 */
 658                                block->scan_hint = 0;
 659                        }
 660                } else {
 661                        block->scan_hint = 0;
 662                }
 663                block->contig_hint_start = start;
 664                block->contig_hint = contig;
 665        } else if (contig == block->contig_hint) {
 666                if (block->contig_hint_start &&
 667                    (!start ||
 668                     __ffs(start) > __ffs(block->contig_hint_start))) {
 669                        /* start has a better alignment so use it */
 670                        block->contig_hint_start = start;
 671                        if (start < block->scan_hint_start &&
 672                            block->contig_hint > block->scan_hint)
 673                                block->scan_hint = 0;
 674                } else if (start > block->scan_hint_start ||
 675                           block->contig_hint > block->scan_hint) {
 676                        /*
 677                         * Knowing contig == contig_hint, update the scan_hint
 678                         * if it is farther than or larger than the current
 679                         * scan_hint.
 680                         */
 681                        block->scan_hint_start = start;
 682                        block->scan_hint = contig;
 683                }
 684        } else {
 685                /*
 686                 * The region is smaller than the contig_hint.  So only update
 687                 * the scan_hint if it is larger than or equal and farther than
 688                 * the current scan_hint.
 689                 */
 690                if ((start < block->contig_hint_start &&
 691                     (contig > block->scan_hint ||
 692                      (contig == block->scan_hint &&
 693                       start > block->scan_hint_start)))) {
 694                        block->scan_hint_start = start;
 695                        block->scan_hint = contig;
 696                }
 697        }
 698}
 699
 700/*
 701 * pcpu_block_update_scan - update a block given a free area from a scan
 702 * @chunk: chunk of interest
 703 * @bit_off: chunk offset
 704 * @bits: size of free area
 705 *
 706 * Finding the final allocation spot first goes through pcpu_find_block_fit()
 707 * to find a block that can hold the allocation and then pcpu_alloc_area()
 708 * where a scan is used.  When allocations require specific alignments,
 709 * we can inadvertently create holes which will not be seen in the alloc
 710 * or free paths.
 711 *
 712 * This takes a given free area hole and updates a block as it may change the
 713 * scan_hint.  We need to scan backwards to ensure we don't miss free bits
 714 * from alignment.
 715 */
 716static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
 717                                   int bits)
 718{
 719        int s_off = pcpu_off_to_block_off(bit_off);
 720        int e_off = s_off + bits;
 721        int s_index, l_bit;
 722        struct pcpu_block_md *block;
 723
 724        if (e_off > PCPU_BITMAP_BLOCK_BITS)
 725                return;
 726
 727        s_index = pcpu_off_to_block_index(bit_off);
 728        block = chunk->md_blocks + s_index;
 729
 730        /* scan backwards in case of alignment skipping free bits */
 731        l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
 732        s_off = (s_off == l_bit) ? 0 : l_bit + 1;
 733
 734        pcpu_block_update(block, s_off, e_off);
 735}
 736
 737/**
 738 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 739 * @chunk: chunk of interest
 740 * @full_scan: if we should scan from the beginning
 741 *
 742 * Iterates over the metadata blocks to find the largest contig area.
 743 * A full scan can be avoided on the allocation path as this is triggered
 744 * if we broke the contig_hint.  In doing so, the scan_hint will be before
 745 * the contig_hint or after if the scan_hint == contig_hint.  This cannot
 746 * be prevented on freeing as we want to find the largest area possibly
 747 * spanning blocks.
 748 */
 749static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
 750{
 751        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 752        int bit_off, bits;
 753
 754        /* promote scan_hint to contig_hint */
 755        if (!full_scan && chunk_md->scan_hint) {
 756                bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
 757                chunk_md->contig_hint_start = chunk_md->scan_hint_start;
 758                chunk_md->contig_hint = chunk_md->scan_hint;
 759                chunk_md->scan_hint = 0;
 760        } else {
 761                bit_off = chunk_md->first_free;
 762                chunk_md->contig_hint = 0;
 763        }
 764
 765        bits = 0;
 766        pcpu_for_each_md_free_region(chunk, bit_off, bits)
 767                pcpu_block_update(chunk_md, bit_off, bit_off + bits);
 768}
 769
 770/**
 771 * pcpu_block_refresh_hint
 772 * @chunk: chunk of interest
 773 * @index: index of the metadata block
 774 *
 775 * Scans over the block beginning at first_free and updates the block
 776 * metadata accordingly.
 777 */
 778static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
 779{
 780        struct pcpu_block_md *block = chunk->md_blocks + index;
 781        unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
 782        unsigned int rs, re, start;     /* region start, region end */
 783
 784        /* promote scan_hint to contig_hint */
 785        if (block->scan_hint) {
 786                start = block->scan_hint_start + block->scan_hint;
 787                block->contig_hint_start = block->scan_hint_start;
 788                block->contig_hint = block->scan_hint;
 789                block->scan_hint = 0;
 790        } else {
 791                start = block->first_free;
 792                block->contig_hint = 0;
 793        }
 794
 795        block->right_free = 0;
 796
 797        /* iterate over free areas and update the contig hints */
 798        bitmap_for_each_clear_region(alloc_map, rs, re, start,
 799                                     PCPU_BITMAP_BLOCK_BITS)
 800                pcpu_block_update(block, rs, re);
 801}
 802
 803/**
 804 * pcpu_block_update_hint_alloc - update hint on allocation path
 805 * @chunk: chunk of interest
 806 * @bit_off: chunk offset
 807 * @bits: size of request
 808 *
 809 * Updates metadata for the allocation path.  The metadata only has to be
 810 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 811 * scans are required if the block's contig hint is broken.
 812 */
 813static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
 814                                         int bits)
 815{
 816        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 817        int nr_empty_pages = 0;
 818        struct pcpu_block_md *s_block, *e_block, *block;
 819        int s_index, e_index;   /* block indexes of the freed allocation */
 820        int s_off, e_off;       /* block offsets of the freed allocation */
 821
 822        /*
 823         * Calculate per block offsets.
 824         * The calculation uses an inclusive range, but the resulting offsets
 825         * are [start, end).  e_index always points to the last block in the
 826         * range.
 827         */
 828        s_index = pcpu_off_to_block_index(bit_off);
 829        e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 830        s_off = pcpu_off_to_block_off(bit_off);
 831        e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 832
 833        s_block = chunk->md_blocks + s_index;
 834        e_block = chunk->md_blocks + e_index;
 835
 836        /*
 837         * Update s_block.
 838         * block->first_free must be updated if the allocation takes its place.
 839         * If the allocation breaks the contig_hint, a scan is required to
 840         * restore this hint.
 841         */
 842        if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 843                nr_empty_pages++;
 844
 845        if (s_off == s_block->first_free)
 846                s_block->first_free = find_next_zero_bit(
 847                                        pcpu_index_alloc_map(chunk, s_index),
 848                                        PCPU_BITMAP_BLOCK_BITS,
 849                                        s_off + bits);
 850
 851        if (pcpu_region_overlap(s_block->scan_hint_start,
 852                                s_block->scan_hint_start + s_block->scan_hint,
 853                                s_off,
 854                                s_off + bits))
 855                s_block->scan_hint = 0;
 856
 857        if (pcpu_region_overlap(s_block->contig_hint_start,
 858                                s_block->contig_hint_start +
 859                                s_block->contig_hint,
 860                                s_off,
 861                                s_off + bits)) {
 862                /* block contig hint is broken - scan to fix it */
 863                if (!s_off)
 864                        s_block->left_free = 0;
 865                pcpu_block_refresh_hint(chunk, s_index);
 866        } else {
 867                /* update left and right contig manually */
 868                s_block->left_free = min(s_block->left_free, s_off);
 869                if (s_index == e_index)
 870                        s_block->right_free = min_t(int, s_block->right_free,
 871                                        PCPU_BITMAP_BLOCK_BITS - e_off);
 872                else
 873                        s_block->right_free = 0;
 874        }
 875
 876        /*
 877         * Update e_block.
 878         */
 879        if (s_index != e_index) {
 880                if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 881                        nr_empty_pages++;
 882
 883                /*
 884                 * When the allocation is across blocks, the end is along
 885                 * the left part of the e_block.
 886                 */
 887                e_block->first_free = find_next_zero_bit(
 888                                pcpu_index_alloc_map(chunk, e_index),
 889                                PCPU_BITMAP_BLOCK_BITS, e_off);
 890
 891                if (e_off == PCPU_BITMAP_BLOCK_BITS) {
 892                        /* reset the block */
 893                        e_block++;
 894                } else {
 895                        if (e_off > e_block->scan_hint_start)
 896                                e_block->scan_hint = 0;
 897
 898                        e_block->left_free = 0;
 899                        if (e_off > e_block->contig_hint_start) {
 900                                /* contig hint is broken - scan to fix it */
 901                                pcpu_block_refresh_hint(chunk, e_index);
 902                        } else {
 903                                e_block->right_free =
 904                                        min_t(int, e_block->right_free,
 905                                              PCPU_BITMAP_BLOCK_BITS - e_off);
 906                        }
 907                }
 908
 909                /* update in-between md_blocks */
 910                nr_empty_pages += (e_index - s_index - 1);
 911                for (block = s_block + 1; block < e_block; block++) {
 912                        block->scan_hint = 0;
 913                        block->contig_hint = 0;
 914                        block->left_free = 0;
 915                        block->right_free = 0;
 916                }
 917        }
 918
 919        if (nr_empty_pages)
 920                pcpu_update_empty_pages(chunk, -nr_empty_pages);
 921
 922        if (pcpu_region_overlap(chunk_md->scan_hint_start,
 923                                chunk_md->scan_hint_start +
 924                                chunk_md->scan_hint,
 925                                bit_off,
 926                                bit_off + bits))
 927                chunk_md->scan_hint = 0;
 928
 929        /*
 930         * The only time a full chunk scan is required is if the chunk
 931         * contig hint is broken.  Otherwise, it means a smaller space
 932         * was used and therefore the chunk contig hint is still correct.
 933         */
 934        if (pcpu_region_overlap(chunk_md->contig_hint_start,
 935                                chunk_md->contig_hint_start +
 936                                chunk_md->contig_hint,
 937                                bit_off,
 938                                bit_off + bits))
 939                pcpu_chunk_refresh_hint(chunk, false);
 940}
 941
 942/**
 943 * pcpu_block_update_hint_free - updates the block hints on the free path
 944 * @chunk: chunk of interest
 945 * @bit_off: chunk offset
 946 * @bits: size of request
 947 *
 948 * Updates metadata for the allocation path.  This avoids a blind block
 949 * refresh by making use of the block contig hints.  If this fails, it scans
 950 * forward and backward to determine the extent of the free area.  This is
 951 * capped at the boundary of blocks.
 952 *
 953 * A chunk update is triggered if a page becomes free, a block becomes free,
 954 * or the free spans across blocks.  This tradeoff is to minimize iterating
 955 * over the block metadata to update chunk_md->contig_hint.
 956 * chunk_md->contig_hint may be off by up to a page, but it will never be more
 957 * than the available space.  If the contig hint is contained in one block, it
 958 * will be accurate.
 959 */
 960static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
 961                                        int bits)
 962{
 963        int nr_empty_pages = 0;
 964        struct pcpu_block_md *s_block, *e_block, *block;
 965        int s_index, e_index;   /* block indexes of the freed allocation */
 966        int s_off, e_off;       /* block offsets of the freed allocation */
 967        int start, end;         /* start and end of the whole free area */
 968
 969        /*
 970         * Calculate per block offsets.
 971         * The calculation uses an inclusive range, but the resulting offsets
 972         * are [start, end).  e_index always points to the last block in the
 973         * range.
 974         */
 975        s_index = pcpu_off_to_block_index(bit_off);
 976        e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 977        s_off = pcpu_off_to_block_off(bit_off);
 978        e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 979
 980        s_block = chunk->md_blocks + s_index;
 981        e_block = chunk->md_blocks + e_index;
 982
 983        /*
 984         * Check if the freed area aligns with the block->contig_hint.
 985         * If it does, then the scan to find the beginning/end of the
 986         * larger free area can be avoided.
 987         *
 988         * start and end refer to beginning and end of the free area
 989         * within each their respective blocks.  This is not necessarily
 990         * the entire free area as it may span blocks past the beginning
 991         * or end of the block.
 992         */
 993        start = s_off;
 994        if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
 995                start = s_block->contig_hint_start;
 996        } else {
 997                /*
 998                 * Scan backwards to find the extent of the free area.
 999                 * find_last_bit returns the starting bit, so if the start bit
1000                 * is returned, that means there was no last bit and the
1001                 * remainder of the chunk is free.
1002                 */
1003                int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1004                                          start);
1005                start = (start == l_bit) ? 0 : l_bit + 1;
1006        }
1007
1008        end = e_off;
1009        if (e_off == e_block->contig_hint_start)
1010                end = e_block->contig_hint_start + e_block->contig_hint;
1011        else
1012                end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1013                                    PCPU_BITMAP_BLOCK_BITS, end);
1014
1015        /* update s_block */
1016        e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
1017        if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1018                nr_empty_pages++;
1019        pcpu_block_update(s_block, start, e_off);
1020
1021        /* freeing in the same block */
1022        if (s_index != e_index) {
1023                /* update e_block */
1024                if (end == PCPU_BITMAP_BLOCK_BITS)
1025                        nr_empty_pages++;
1026                pcpu_block_update(e_block, 0, end);
1027
1028                /* reset md_blocks in the middle */
1029                nr_empty_pages += (e_index - s_index - 1);
1030                for (block = s_block + 1; block < e_block; block++) {
1031                        block->first_free = 0;
1032                        block->scan_hint = 0;
1033                        block->contig_hint_start = 0;
1034                        block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1035                        block->left_free = PCPU_BITMAP_BLOCK_BITS;
1036                        block->right_free = PCPU_BITMAP_BLOCK_BITS;
1037                }
1038        }
1039
1040        if (nr_empty_pages)
1041                pcpu_update_empty_pages(chunk, nr_empty_pages);
1042
1043        /*
1044         * Refresh chunk metadata when the free makes a block free or spans
1045         * across blocks.  The contig_hint may be off by up to a page, but if
1046         * the contig_hint is contained in a block, it will be accurate with
1047         * the else condition below.
1048         */
1049        if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1050                pcpu_chunk_refresh_hint(chunk, true);
1051        else
1052                pcpu_block_update(&chunk->chunk_md,
1053                                  pcpu_block_off_to_off(s_index, start),
1054                                  end);
1055}
1056
1057/**
1058 * pcpu_is_populated - determines if the region is populated
1059 * @chunk: chunk of interest
1060 * @bit_off: chunk offset
1061 * @bits: size of area
1062 * @next_off: return value for the next offset to start searching
1063 *
1064 * For atomic allocations, check if the backing pages are populated.
1065 *
1066 * RETURNS:
1067 * Bool if the backing pages are populated.
1068 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1069 */
1070static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1071                              int *next_off)
1072{
1073        unsigned int page_start, page_end, rs, re;
1074
1075        page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1076        page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1077
1078        rs = page_start;
1079        bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1080        if (rs >= page_end)
1081                return true;
1082
1083        *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1084        return false;
1085}
1086
1087/**
1088 * pcpu_find_block_fit - finds the block index to start searching
1089 * @chunk: chunk of interest
1090 * @alloc_bits: size of request in allocation units
1091 * @align: alignment of area (max PAGE_SIZE bytes)
1092 * @pop_only: use populated regions only
1093 *
1094 * Given a chunk and an allocation spec, find the offset to begin searching
1095 * for a free region.  This iterates over the bitmap metadata blocks to
1096 * find an offset that will be guaranteed to fit the requirements.  It is
1097 * not quite first fit as if the allocation does not fit in the contig hint
1098 * of a block or chunk, it is skipped.  This errs on the side of caution
1099 * to prevent excess iteration.  Poor alignment can cause the allocator to
1100 * skip over blocks and chunks that have valid free areas.
1101 *
1102 * RETURNS:
1103 * The offset in the bitmap to begin searching.
1104 * -1 if no offset is found.
1105 */
1106static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1107                               size_t align, bool pop_only)
1108{
1109        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1110        int bit_off, bits, next_off;
1111
1112        /*
1113         * This is an optimization to prevent scanning by assuming if the
1114         * allocation cannot fit in the global hint, there is memory pressure
1115         * and creating a new chunk would happen soon.
1116         */
1117        if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
1118                return -1;
1119
1120        bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1121        bits = 0;
1122        pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1123                if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1124                                                   &next_off))
1125                        break;
1126
1127                bit_off = next_off;
1128                bits = 0;
1129        }
1130
1131        if (bit_off == pcpu_chunk_map_bits(chunk))
1132                return -1;
1133
1134        return bit_off;
1135}
1136
1137/*
1138 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1139 * @map: the address to base the search on
1140 * @size: the bitmap size in bits
1141 * @start: the bitnumber to start searching at
1142 * @nr: the number of zeroed bits we're looking for
1143 * @align_mask: alignment mask for zero area
1144 * @largest_off: offset of the largest area skipped
1145 * @largest_bits: size of the largest area skipped
1146 *
1147 * The @align_mask should be one less than a power of 2.
1148 *
1149 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1150 * the largest area that was skipped.  This is imperfect, but in general is
1151 * good enough.  The largest remembered region is the largest failed region
1152 * seen.  This does not include anything we possibly skipped due to alignment.
1153 * pcpu_block_update_scan() does scan backwards to try and recover what was
1154 * lost to alignment.  While this can cause scanning to miss earlier possible
1155 * free areas, smaller allocations will eventually fill those holes.
1156 */
1157static unsigned long pcpu_find_zero_area(unsigned long *map,
1158                                         unsigned long size,
1159                                         unsigned long start,
1160                                         unsigned long nr,
1161                                         unsigned long align_mask,
1162                                         unsigned long *largest_off,
1163                                         unsigned long *largest_bits)
1164{
1165        unsigned long index, end, i, area_off, area_bits;
1166again:
1167        index = find_next_zero_bit(map, size, start);
1168
1169        /* Align allocation */
1170        index = __ALIGN_MASK(index, align_mask);
1171        area_off = index;
1172
1173        end = index + nr;
1174        if (end > size)
1175                return end;
1176        i = find_next_bit(map, end, index);
1177        if (i < end) {
1178                area_bits = i - area_off;
1179                /* remember largest unused area with best alignment */
1180                if (area_bits > *largest_bits ||
1181                    (area_bits == *largest_bits && *largest_off &&
1182                     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1183                        *largest_off = area_off;
1184                        *largest_bits = area_bits;
1185                }
1186
1187                start = i + 1;
1188                goto again;
1189        }
1190        return index;
1191}
1192
1193/**
1194 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1195 * @chunk: chunk of interest
1196 * @alloc_bits: size of request in allocation units
1197 * @align: alignment of area (max PAGE_SIZE)
1198 * @start: bit_off to start searching
1199 *
1200 * This function takes in a @start offset to begin searching to fit an
1201 * allocation of @alloc_bits with alignment @align.  It needs to scan
1202 * the allocation map because if it fits within the block's contig hint,
1203 * @start will be block->first_free. This is an attempt to fill the
1204 * allocation prior to breaking the contig hint.  The allocation and
1205 * boundary maps are updated accordingly if it confirms a valid
1206 * free area.
1207 *
1208 * RETURNS:
1209 * Allocated addr offset in @chunk on success.
1210 * -1 if no matching area is found.
1211 */
1212static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1213                           size_t align, int start)
1214{
1215        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1216        size_t align_mask = (align) ? (align - 1) : 0;
1217        unsigned long area_off = 0, area_bits = 0;
1218        int bit_off, end, oslot;
1219
1220        lockdep_assert_held(&pcpu_lock);
1221
1222        oslot = pcpu_chunk_slot(chunk);
1223
1224        /*
1225         * Search to find a fit.
1226         */
1227        end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1228                    pcpu_chunk_map_bits(chunk));
1229        bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1230                                      align_mask, &area_off, &area_bits);
1231        if (bit_off >= end)
1232                return -1;
1233
1234        if (area_bits)
1235                pcpu_block_update_scan(chunk, area_off, area_bits);
1236
1237        /* update alloc map */
1238        bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1239
1240        /* update boundary map */
1241        set_bit(bit_off, chunk->bound_map);
1242        bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1243        set_bit(bit_off + alloc_bits, chunk->bound_map);
1244
1245        chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1246
1247        /* update first free bit */
1248        if (bit_off == chunk_md->first_free)
1249                chunk_md->first_free = find_next_zero_bit(
1250                                        chunk->alloc_map,
1251                                        pcpu_chunk_map_bits(chunk),
1252                                        bit_off + alloc_bits);
1253
1254        pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1255
1256        pcpu_chunk_relocate(chunk, oslot);
1257
1258        return bit_off * PCPU_MIN_ALLOC_SIZE;
1259}
1260
1261/**
1262 * pcpu_free_area - frees the corresponding offset
1263 * @chunk: chunk of interest
1264 * @off: addr offset into chunk
1265 *
1266 * This function determines the size of an allocation to free using
1267 * the boundary bitmap and clears the allocation map.
1268 *
1269 * RETURNS:
1270 * Number of freed bytes.
1271 */
1272static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1273{
1274        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1275        int bit_off, bits, end, oslot, freed;
1276
1277        lockdep_assert_held(&pcpu_lock);
1278        pcpu_stats_area_dealloc(chunk);
1279
1280        oslot = pcpu_chunk_slot(chunk);
1281
1282        bit_off = off / PCPU_MIN_ALLOC_SIZE;
1283
1284        /* find end index */
1285        end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1286                            bit_off + 1);
1287        bits = end - bit_off;
1288        bitmap_clear(chunk->alloc_map, bit_off, bits);
1289
1290        freed = bits * PCPU_MIN_ALLOC_SIZE;
1291
1292        /* update metadata */
1293        chunk->free_bytes += freed;
1294
1295        /* update first free bit */
1296        chunk_md->first_free = min(chunk_md->first_free, bit_off);
1297
1298        pcpu_block_update_hint_free(chunk, bit_off, bits);
1299
1300        pcpu_chunk_relocate(chunk, oslot);
1301
1302        return freed;
1303}
1304
1305static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1306{
1307        block->scan_hint = 0;
1308        block->contig_hint = nr_bits;
1309        block->left_free = nr_bits;
1310        block->right_free = nr_bits;
1311        block->first_free = 0;
1312        block->nr_bits = nr_bits;
1313}
1314
1315static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1316{
1317        struct pcpu_block_md *md_block;
1318
1319        /* init the chunk's block */
1320        pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1321
1322        for (md_block = chunk->md_blocks;
1323             md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1324             md_block++)
1325                pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1326}
1327
1328/**
1329 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1330 * @tmp_addr: the start of the region served
1331 * @map_size: size of the region served
1332 *
1333 * This is responsible for creating the chunks that serve the first chunk.  The
1334 * base_addr is page aligned down of @tmp_addr while the region end is page
1335 * aligned up.  Offsets are kept track of to determine the region served. All
1336 * this is done to appease the bitmap allocator in avoiding partial blocks.
1337 *
1338 * RETURNS:
1339 * Chunk serving the region at @tmp_addr of @map_size.
1340 */
1341static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1342                                                         int map_size)
1343{
1344        struct pcpu_chunk *chunk;
1345        unsigned long aligned_addr, lcm_align;
1346        int start_offset, offset_bits, region_size, region_bits;
1347        size_t alloc_size;
1348
1349        /* region calculations */
1350        aligned_addr = tmp_addr & PAGE_MASK;
1351
1352        start_offset = tmp_addr - aligned_addr;
1353
1354        /*
1355         * Align the end of the region with the LCM of PAGE_SIZE and
1356         * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1357         * the other.
1358         */
1359        lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1360        region_size = ALIGN(start_offset + map_size, lcm_align);
1361
1362        /* allocate chunk */
1363        alloc_size = struct_size(chunk, populated,
1364                                 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1365        chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1366        if (!chunk)
1367                panic("%s: Failed to allocate %zu bytes\n", __func__,
1368                      alloc_size);
1369
1370        INIT_LIST_HEAD(&chunk->list);
1371
1372        chunk->base_addr = (void *)aligned_addr;
1373        chunk->start_offset = start_offset;
1374        chunk->end_offset = region_size - chunk->start_offset - map_size;
1375
1376        chunk->nr_pages = region_size >> PAGE_SHIFT;
1377        region_bits = pcpu_chunk_map_bits(chunk);
1378
1379        alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1380        chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1381        if (!chunk->alloc_map)
1382                panic("%s: Failed to allocate %zu bytes\n", __func__,
1383                      alloc_size);
1384
1385        alloc_size =
1386                BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1387        chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1388        if (!chunk->bound_map)
1389                panic("%s: Failed to allocate %zu bytes\n", __func__,
1390                      alloc_size);
1391
1392        alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1393        chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1394        if (!chunk->md_blocks)
1395                panic("%s: Failed to allocate %zu bytes\n", __func__,
1396                      alloc_size);
1397
1398#ifdef CONFIG_MEMCG_KMEM
1399        /* first chunk is free to use */
1400        chunk->obj_cgroups = NULL;
1401#endif
1402        pcpu_init_md_blocks(chunk);
1403
1404        /* manage populated page bitmap */
1405        chunk->immutable = true;
1406        bitmap_fill(chunk->populated, chunk->nr_pages);
1407        chunk->nr_populated = chunk->nr_pages;
1408        chunk->nr_empty_pop_pages = chunk->nr_pages;
1409
1410        chunk->free_bytes = map_size;
1411
1412        if (chunk->start_offset) {
1413                /* hide the beginning of the bitmap */
1414                offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1415                bitmap_set(chunk->alloc_map, 0, offset_bits);
1416                set_bit(0, chunk->bound_map);
1417                set_bit(offset_bits, chunk->bound_map);
1418
1419                chunk->chunk_md.first_free = offset_bits;
1420
1421                pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1422        }
1423
1424        if (chunk->end_offset) {
1425                /* hide the end of the bitmap */
1426                offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1427                bitmap_set(chunk->alloc_map,
1428                           pcpu_chunk_map_bits(chunk) - offset_bits,
1429                           offset_bits);
1430                set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1431                        chunk->bound_map);
1432                set_bit(region_bits, chunk->bound_map);
1433
1434                pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1435                                             - offset_bits, offset_bits);
1436        }
1437
1438        return chunk;
1439}
1440
1441static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1442{
1443        struct pcpu_chunk *chunk;
1444        int region_bits;
1445
1446        chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1447        if (!chunk)
1448                return NULL;
1449
1450        INIT_LIST_HEAD(&chunk->list);
1451        chunk->nr_pages = pcpu_unit_pages;
1452        region_bits = pcpu_chunk_map_bits(chunk);
1453
1454        chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1455                                           sizeof(chunk->alloc_map[0]), gfp);
1456        if (!chunk->alloc_map)
1457                goto alloc_map_fail;
1458
1459        chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1460                                           sizeof(chunk->bound_map[0]), gfp);
1461        if (!chunk->bound_map)
1462                goto bound_map_fail;
1463
1464        chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1465                                           sizeof(chunk->md_blocks[0]), gfp);
1466        if (!chunk->md_blocks)
1467                goto md_blocks_fail;
1468
1469#ifdef CONFIG_MEMCG_KMEM
1470        if (!mem_cgroup_kmem_disabled()) {
1471                chunk->obj_cgroups =
1472                        pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1473                                        sizeof(struct obj_cgroup *), gfp);
1474                if (!chunk->obj_cgroups)
1475                        goto objcg_fail;
1476        }
1477#endif
1478
1479        pcpu_init_md_blocks(chunk);
1480
1481        /* init metadata */
1482        chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1483
1484        return chunk;
1485
1486#ifdef CONFIG_MEMCG_KMEM
1487objcg_fail:
1488        pcpu_mem_free(chunk->md_blocks);
1489#endif
1490md_blocks_fail:
1491        pcpu_mem_free(chunk->bound_map);
1492bound_map_fail:
1493        pcpu_mem_free(chunk->alloc_map);
1494alloc_map_fail:
1495        pcpu_mem_free(chunk);
1496
1497        return NULL;
1498}
1499
1500static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1501{
1502        if (!chunk)
1503                return;
1504#ifdef CONFIG_MEMCG_KMEM
1505        pcpu_mem_free(chunk->obj_cgroups);
1506#endif
1507        pcpu_mem_free(chunk->md_blocks);
1508        pcpu_mem_free(chunk->bound_map);
1509        pcpu_mem_free(chunk->alloc_map);
1510        pcpu_mem_free(chunk);
1511}
1512
1513/**
1514 * pcpu_chunk_populated - post-population bookkeeping
1515 * @chunk: pcpu_chunk which got populated
1516 * @page_start: the start page
1517 * @page_end: the end page
1518 *
1519 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1520 * the bookkeeping information accordingly.  Must be called after each
1521 * successful population.
1522 */
1523static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1524                                 int page_end)
1525{
1526        int nr = page_end - page_start;
1527
1528        lockdep_assert_held(&pcpu_lock);
1529
1530        bitmap_set(chunk->populated, page_start, nr);
1531        chunk->nr_populated += nr;
1532        pcpu_nr_populated += nr;
1533
1534        pcpu_update_empty_pages(chunk, nr);
1535}
1536
1537/**
1538 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1539 * @chunk: pcpu_chunk which got depopulated
1540 * @page_start: the start page
1541 * @page_end: the end page
1542 *
1543 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1544 * Update the bookkeeping information accordingly.  Must be called after
1545 * each successful depopulation.
1546 */
1547static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1548                                   int page_start, int page_end)
1549{
1550        int nr = page_end - page_start;
1551
1552        lockdep_assert_held(&pcpu_lock);
1553
1554        bitmap_clear(chunk->populated, page_start, nr);
1555        chunk->nr_populated -= nr;
1556        pcpu_nr_populated -= nr;
1557
1558        pcpu_update_empty_pages(chunk, -nr);
1559}
1560
1561/*
1562 * Chunk management implementation.
1563 *
1564 * To allow different implementations, chunk alloc/free and
1565 * [de]population are implemented in a separate file which is pulled
1566 * into this file and compiled together.  The following functions
1567 * should be implemented.
1568 *
1569 * pcpu_populate_chunk          - populate the specified range of a chunk
1570 * pcpu_depopulate_chunk        - depopulate the specified range of a chunk
1571 * pcpu_post_unmap_tlb_flush    - flush tlb for the specified range of a chunk
1572 * pcpu_create_chunk            - create a new chunk
1573 * pcpu_destroy_chunk           - destroy a chunk, always preceded by full depop
1574 * pcpu_addr_to_page            - translate address to physical address
1575 * pcpu_verify_alloc_info       - check alloc_info is acceptable during init
1576 */
1577static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1578                               int page_start, int page_end, gfp_t gfp);
1579static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1580                                  int page_start, int page_end);
1581static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1582                                      int page_start, int page_end);
1583static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1584static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1585static struct page *pcpu_addr_to_page(void *addr);
1586static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1587
1588#ifdef CONFIG_NEED_PER_CPU_KM
1589#include "percpu-km.c"
1590#else
1591#include "percpu-vm.c"
1592#endif
1593
1594/**
1595 * pcpu_chunk_addr_search - determine chunk containing specified address
1596 * @addr: address for which the chunk needs to be determined.
1597 *
1598 * This is an internal function that handles all but static allocations.
1599 * Static percpu address values should never be passed into the allocator.
1600 *
1601 * RETURNS:
1602 * The address of the found chunk.
1603 */
1604static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1605{
1606        /* is it in the dynamic region (first chunk)? */
1607        if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1608                return pcpu_first_chunk;
1609
1610        /* is it in the reserved region? */
1611        if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1612                return pcpu_reserved_chunk;
1613
1614        /*
1615         * The address is relative to unit0 which might be unused and
1616         * thus unmapped.  Offset the address to the unit space of the
1617         * current processor before looking it up in the vmalloc
1618         * space.  Note that any possible cpu id can be used here, so
1619         * there's no need to worry about preemption or cpu hotplug.
1620         */
1621        addr += pcpu_unit_offsets[raw_smp_processor_id()];
1622        return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1623}
1624
1625#ifdef CONFIG_MEMCG_KMEM
1626static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1627                                      struct obj_cgroup **objcgp)
1628{
1629        struct obj_cgroup *objcg;
1630
1631        if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
1632                return true;
1633
1634        objcg = get_obj_cgroup_from_current();
1635        if (!objcg)
1636                return true;
1637
1638        if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
1639                obj_cgroup_put(objcg);
1640                return false;
1641        }
1642
1643        *objcgp = objcg;
1644        return true;
1645}
1646
1647static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1648                                       struct pcpu_chunk *chunk, int off,
1649                                       size_t size)
1650{
1651        if (!objcg)
1652                return;
1653
1654        if (likely(chunk && chunk->obj_cgroups)) {
1655                chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1656
1657                rcu_read_lock();
1658                mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1659                                size * num_possible_cpus());
1660                rcu_read_unlock();
1661        } else {
1662                obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1663                obj_cgroup_put(objcg);
1664        }
1665}
1666
1667static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1668{
1669        struct obj_cgroup *objcg;
1670
1671        if (unlikely(!chunk->obj_cgroups))
1672                return;
1673
1674        objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1675        if (!objcg)
1676                return;
1677        chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1678
1679        obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1680
1681        rcu_read_lock();
1682        mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1683                        -(size * num_possible_cpus()));
1684        rcu_read_unlock();
1685
1686        obj_cgroup_put(objcg);
1687}
1688
1689#else /* CONFIG_MEMCG_KMEM */
1690static bool
1691pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1692{
1693        return true;
1694}
1695
1696static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1697                                       struct pcpu_chunk *chunk, int off,
1698                                       size_t size)
1699{
1700}
1701
1702static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1703{
1704}
1705#endif /* CONFIG_MEMCG_KMEM */
1706
1707/**
1708 * pcpu_alloc - the percpu allocator
1709 * @size: size of area to allocate in bytes
1710 * @align: alignment of area (max PAGE_SIZE)
1711 * @reserved: allocate from the reserved chunk if available
1712 * @gfp: allocation flags
1713 *
1714 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1715 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1716 * then no warning will be triggered on invalid or failed allocation
1717 * requests.
1718 *
1719 * RETURNS:
1720 * Percpu pointer to the allocated area on success, NULL on failure.
1721 */
1722static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1723                                 gfp_t gfp)
1724{
1725        gfp_t pcpu_gfp;
1726        bool is_atomic;
1727        bool do_warn;
1728        struct obj_cgroup *objcg = NULL;
1729        static int warn_limit = 10;
1730        struct pcpu_chunk *chunk, *next;
1731        const char *err;
1732        int slot, off, cpu, ret;
1733        unsigned long flags;
1734        void __percpu *ptr;
1735        size_t bits, bit_align;
1736
1737        gfp = current_gfp_context(gfp);
1738        /* whitelisted flags that can be passed to the backing allocators */
1739        pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1740        is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1741        do_warn = !(gfp & __GFP_NOWARN);
1742
1743        /*
1744         * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1745         * therefore alignment must be a minimum of that many bytes.
1746         * An allocation may have internal fragmentation from rounding up
1747         * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1748         */
1749        if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1750                align = PCPU_MIN_ALLOC_SIZE;
1751
1752        size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1753        bits = size >> PCPU_MIN_ALLOC_SHIFT;
1754        bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1755
1756        if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1757                     !is_power_of_2(align))) {
1758                WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1759                     size, align);
1760                return NULL;
1761        }
1762
1763        if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
1764                return NULL;
1765
1766        if (!is_atomic) {
1767                /*
1768                 * pcpu_balance_workfn() allocates memory under this mutex,
1769                 * and it may wait for memory reclaim. Allow current task
1770                 * to become OOM victim, in case of memory pressure.
1771                 */
1772                if (gfp & __GFP_NOFAIL) {
1773                        mutex_lock(&pcpu_alloc_mutex);
1774                } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1775                        pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1776                        return NULL;
1777                }
1778        }
1779
1780        spin_lock_irqsave(&pcpu_lock, flags);
1781
1782        /* serve reserved allocations from the reserved chunk if available */
1783        if (reserved && pcpu_reserved_chunk) {
1784                chunk = pcpu_reserved_chunk;
1785
1786                off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1787                if (off < 0) {
1788                        err = "alloc from reserved chunk failed";
1789                        goto fail_unlock;
1790                }
1791
1792                off = pcpu_alloc_area(chunk, bits, bit_align, off);
1793                if (off >= 0)
1794                        goto area_found;
1795
1796                err = "alloc from reserved chunk failed";
1797                goto fail_unlock;
1798        }
1799
1800restart:
1801        /* search through normal chunks */
1802        for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
1803                list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1804                                         list) {
1805                        off = pcpu_find_block_fit(chunk, bits, bit_align,
1806                                                  is_atomic);
1807                        if (off < 0) {
1808                                if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1809                                        pcpu_chunk_move(chunk, 0);
1810                                continue;
1811                        }
1812
1813                        off = pcpu_alloc_area(chunk, bits, bit_align, off);
1814                        if (off >= 0) {
1815                                pcpu_reintegrate_chunk(chunk);
1816                                goto area_found;
1817                        }
1818                }
1819        }
1820
1821        spin_unlock_irqrestore(&pcpu_lock, flags);
1822
1823        /*
1824         * No space left.  Create a new chunk.  We don't want multiple
1825         * tasks to create chunks simultaneously.  Serialize and create iff
1826         * there's still no empty chunk after grabbing the mutex.
1827         */
1828        if (is_atomic) {
1829                err = "atomic alloc failed, no space left";
1830                goto fail;
1831        }
1832
1833        if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1834                chunk = pcpu_create_chunk(pcpu_gfp);
1835                if (!chunk) {
1836                        err = "failed to allocate new chunk";
1837                        goto fail;
1838                }
1839
1840                spin_lock_irqsave(&pcpu_lock, flags);
1841                pcpu_chunk_relocate(chunk, -1);
1842        } else {
1843                spin_lock_irqsave(&pcpu_lock, flags);
1844        }
1845
1846        goto restart;
1847
1848area_found:
1849        pcpu_stats_area_alloc(chunk, size);
1850        spin_unlock_irqrestore(&pcpu_lock, flags);
1851
1852        /* populate if not all pages are already there */
1853        if (!is_atomic) {
1854                unsigned int page_start, page_end, rs, re;
1855
1856                page_start = PFN_DOWN(off);
1857                page_end = PFN_UP(off + size);
1858
1859                bitmap_for_each_clear_region(chunk->populated, rs, re,
1860                                             page_start, page_end) {
1861                        WARN_ON(chunk->immutable);
1862
1863                        ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1864
1865                        spin_lock_irqsave(&pcpu_lock, flags);
1866                        if (ret) {
1867                                pcpu_free_area(chunk, off);
1868                                err = "failed to populate";
1869                                goto fail_unlock;
1870                        }
1871                        pcpu_chunk_populated(chunk, rs, re);
1872                        spin_unlock_irqrestore(&pcpu_lock, flags);
1873                }
1874
1875                mutex_unlock(&pcpu_alloc_mutex);
1876        }
1877
1878        if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1879                pcpu_schedule_balance_work();
1880
1881        /* clear the areas and return address relative to base address */
1882        for_each_possible_cpu(cpu)
1883                memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1884
1885        ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1886        kmemleak_alloc_percpu(ptr, size, gfp);
1887
1888        trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1889                        chunk->base_addr, off, ptr);
1890
1891        pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1892
1893        return ptr;
1894
1895fail_unlock:
1896        spin_unlock_irqrestore(&pcpu_lock, flags);
1897fail:
1898        trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1899
1900        if (!is_atomic && do_warn && warn_limit) {
1901                pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1902                        size, align, is_atomic, err);
1903                dump_stack();
1904                if (!--warn_limit)
1905                        pr_info("limit reached, disable warning\n");
1906        }
1907        if (is_atomic) {
1908                /* see the flag handling in pcpu_balance_workfn() */
1909                pcpu_atomic_alloc_failed = true;
1910                pcpu_schedule_balance_work();
1911        } else {
1912                mutex_unlock(&pcpu_alloc_mutex);
1913        }
1914
1915        pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1916
1917        return NULL;
1918}
1919
1920/**
1921 * __alloc_percpu_gfp - allocate dynamic percpu area
1922 * @size: size of area to allocate in bytes
1923 * @align: alignment of area (max PAGE_SIZE)
1924 * @gfp: allocation flags
1925 *
1926 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1927 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1928 * be called from any context but is a lot more likely to fail. If @gfp
1929 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1930 * allocation requests.
1931 *
1932 * RETURNS:
1933 * Percpu pointer to the allocated area on success, NULL on failure.
1934 */
1935void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1936{
1937        return pcpu_alloc(size, align, false, gfp);
1938}
1939EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1940
1941/**
1942 * __alloc_percpu - allocate dynamic percpu area
1943 * @size: size of area to allocate in bytes
1944 * @align: alignment of area (max PAGE_SIZE)
1945 *
1946 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1947 */
1948void __percpu *__alloc_percpu(size_t size, size_t align)
1949{
1950        return pcpu_alloc(size, align, false, GFP_KERNEL);
1951}
1952EXPORT_SYMBOL_GPL(__alloc_percpu);
1953
1954/**
1955 * __alloc_reserved_percpu - allocate reserved percpu area
1956 * @size: size of area to allocate in bytes
1957 * @align: alignment of area (max PAGE_SIZE)
1958 *
1959 * Allocate zero-filled percpu area of @size bytes aligned at @align
1960 * from reserved percpu area if arch has set it up; otherwise,
1961 * allocation is served from the same dynamic area.  Might sleep.
1962 * Might trigger writeouts.
1963 *
1964 * CONTEXT:
1965 * Does GFP_KERNEL allocation.
1966 *
1967 * RETURNS:
1968 * Percpu pointer to the allocated area on success, NULL on failure.
1969 */
1970void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1971{
1972        return pcpu_alloc(size, align, true, GFP_KERNEL);
1973}
1974
1975/**
1976 * pcpu_balance_free - manage the amount of free chunks
1977 * @empty_only: free chunks only if there are no populated pages
1978 *
1979 * If empty_only is %false, reclaim all fully free chunks regardless of the
1980 * number of populated pages.  Otherwise, only reclaim chunks that have no
1981 * populated pages.
1982 *
1983 * CONTEXT:
1984 * pcpu_lock (can be dropped temporarily)
1985 */
1986static void pcpu_balance_free(bool empty_only)
1987{
1988        LIST_HEAD(to_free);
1989        struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
1990        struct pcpu_chunk *chunk, *next;
1991
1992        lockdep_assert_held(&pcpu_lock);
1993
1994        /*
1995         * There's no reason to keep around multiple unused chunks and VM
1996         * areas can be scarce.  Destroy all free chunks except for one.
1997         */
1998        list_for_each_entry_safe(chunk, next, free_head, list) {
1999                WARN_ON(chunk->immutable);
2000
2001                /* spare the first one */
2002                if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
2003                        continue;
2004
2005                if (!empty_only || chunk->nr_empty_pop_pages == 0)
2006                        list_move(&chunk->list, &to_free);
2007        }
2008
2009        if (list_empty(&to_free))
2010                return;
2011
2012        spin_unlock_irq(&pcpu_lock);
2013        list_for_each_entry_safe(chunk, next, &to_free, list) {
2014                unsigned int rs, re;
2015
2016                bitmap_for_each_set_region(chunk->populated, rs, re, 0,
2017                                           chunk->nr_pages) {
2018                        pcpu_depopulate_chunk(chunk, rs, re);
2019                        spin_lock_irq(&pcpu_lock);
2020                        pcpu_chunk_depopulated(chunk, rs, re);
2021                        spin_unlock_irq(&pcpu_lock);
2022                }
2023                pcpu_destroy_chunk(chunk);
2024                cond_resched();
2025        }
2026        spin_lock_irq(&pcpu_lock);
2027}
2028
2029/**
2030 * pcpu_balance_populated - manage the amount of populated pages
2031 *
2032 * Maintain a certain amount of populated pages to satisfy atomic allocations.
2033 * It is possible that this is called when physical memory is scarce causing
2034 * OOM killer to be triggered.  We should avoid doing so until an actual
2035 * allocation causes the failure as it is possible that requests can be
2036 * serviced from already backed regions.
2037 *
2038 * CONTEXT:
2039 * pcpu_lock (can be dropped temporarily)
2040 */
2041static void pcpu_balance_populated(void)
2042{
2043        /* gfp flags passed to underlying allocators */
2044        const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
2045        struct pcpu_chunk *chunk;
2046        int slot, nr_to_pop, ret;
2047
2048        lockdep_assert_held(&pcpu_lock);
2049
2050        /*
2051         * Ensure there are certain number of free populated pages for
2052         * atomic allocs.  Fill up from the most packed so that atomic
2053         * allocs don't increase fragmentation.  If atomic allocation
2054         * failed previously, always populate the maximum amount.  This
2055         * should prevent atomic allocs larger than PAGE_SIZE from keeping
2056         * failing indefinitely; however, large atomic allocs are not
2057         * something we support properly and can be highly unreliable and
2058         * inefficient.
2059         */
2060retry_pop:
2061        if (pcpu_atomic_alloc_failed) {
2062                nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2063                /* best effort anyway, don't worry about synchronization */
2064                pcpu_atomic_alloc_failed = false;
2065        } else {
2066                nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2067                                  pcpu_nr_empty_pop_pages,
2068                                  0, PCPU_EMPTY_POP_PAGES_HIGH);
2069        }
2070
2071        for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
2072                unsigned int nr_unpop = 0, rs, re;
2073
2074                if (!nr_to_pop)
2075                        break;
2076
2077                list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
2078                        nr_unpop = chunk->nr_pages - chunk->nr_populated;
2079                        if (nr_unpop)
2080                                break;
2081                }
2082
2083                if (!nr_unpop)
2084                        continue;
2085
2086                /* @chunk can't go away while pcpu_alloc_mutex is held */
2087                bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
2088                                             chunk->nr_pages) {
2089                        int nr = min_t(int, re - rs, nr_to_pop);
2090
2091                        spin_unlock_irq(&pcpu_lock);
2092                        ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2093                        cond_resched();
2094                        spin_lock_irq(&pcpu_lock);
2095                        if (!ret) {
2096                                nr_to_pop -= nr;
2097                                pcpu_chunk_populated(chunk, rs, rs + nr);
2098                        } else {
2099                                nr_to_pop = 0;
2100                        }
2101
2102                        if (!nr_to_pop)
2103                                break;
2104                }
2105        }
2106
2107        if (nr_to_pop) {
2108                /* ran out of chunks to populate, create a new one and retry */
2109                spin_unlock_irq(&pcpu_lock);
2110                chunk = pcpu_create_chunk(gfp);
2111                cond_resched();
2112                spin_lock_irq(&pcpu_lock);
2113                if (chunk) {
2114                        pcpu_chunk_relocate(chunk, -1);
2115                        goto retry_pop;
2116                }
2117        }
2118}
2119
2120/**
2121 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2122 *
2123 * Scan over chunks in the depopulate list and try to release unused populated
2124 * pages back to the system.  Depopulated chunks are sidelined to prevent
2125 * repopulating these pages unless required.  Fully free chunks are reintegrated
2126 * and freed accordingly (1 is kept around).  If we drop below the empty
2127 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2128 * Each chunk is scanned in the reverse order to keep populated pages close to
2129 * the beginning of the chunk.
2130 *
2131 * CONTEXT:
2132 * pcpu_lock (can be dropped temporarily)
2133 *
2134 */
2135static void pcpu_reclaim_populated(void)
2136{
2137        struct pcpu_chunk *chunk;
2138        struct pcpu_block_md *block;
2139        int freed_page_start, freed_page_end;
2140        int i, end;
2141        bool reintegrate;
2142
2143        lockdep_assert_held(&pcpu_lock);
2144
2145        /*
2146         * Once a chunk is isolated to the to_depopulate list, the chunk is no
2147         * longer discoverable to allocations whom may populate pages.  The only
2148         * other accessor is the free path which only returns area back to the
2149         * allocator not touching the populated bitmap.
2150         */
2151        while (!list_empty(&pcpu_chunk_lists[pcpu_to_depopulate_slot])) {
2152                chunk = list_first_entry(&pcpu_chunk_lists[pcpu_to_depopulate_slot],
2153                                         struct pcpu_chunk, list);
2154                WARN_ON(chunk->immutable);
2155
2156                /*
2157                 * Scan chunk's pages in the reverse order to keep populated
2158                 * pages close to the beginning of the chunk.
2159                 */
2160                freed_page_start = chunk->nr_pages;
2161                freed_page_end = 0;
2162                reintegrate = false;
2163                for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2164                        /* no more work to do */
2165                        if (chunk->nr_empty_pop_pages == 0)
2166                                break;
2167
2168                        /* reintegrate chunk to prevent atomic alloc failures */
2169                        if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
2170                                reintegrate = true;
2171                                goto end_chunk;
2172                        }
2173
2174                        /*
2175                         * If the page is empty and populated, start or
2176                         * extend the (i, end) range.  If i == 0, decrease
2177                         * i and perform the depopulation to cover the last
2178                         * (first) page in the chunk.
2179                         */
2180                        block = chunk->md_blocks + i;
2181                        if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2182                            test_bit(i, chunk->populated)) {
2183                                if (end == -1)
2184                                        end = i;
2185                                if (i > 0)
2186                                        continue;
2187                                i--;
2188                        }
2189
2190                        /* depopulate if there is an active range */
2191                        if (end == -1)
2192                                continue;
2193
2194                        spin_unlock_irq(&pcpu_lock);
2195                        pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2196                        cond_resched();
2197                        spin_lock_irq(&pcpu_lock);
2198
2199                        pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2200                        freed_page_start = min(freed_page_start, i + 1);
2201                        freed_page_end = max(freed_page_end, end + 1);
2202
2203                        /* reset the range and continue */
2204                        end = -1;
2205                }
2206
2207end_chunk:
2208                /* batch tlb flush per chunk to amortize cost */
2209                if (freed_page_start < freed_page_end) {
2210                        spin_unlock_irq(&pcpu_lock);
2211                        pcpu_post_unmap_tlb_flush(chunk,
2212                                                  freed_page_start,
2213                                                  freed_page_end);
2214                        cond_resched();
2215                        spin_lock_irq(&pcpu_lock);
2216                }
2217
2218                if (reintegrate || chunk->free_bytes == pcpu_unit_size)
2219                        pcpu_reintegrate_chunk(chunk);
2220                else
2221                        list_move_tail(&chunk->list,
2222                                       &pcpu_chunk_lists[pcpu_sidelined_slot]);
2223        }
2224}
2225
2226/**
2227 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2228 * @work: unused
2229 *
2230 * For each chunk type, manage the number of fully free chunks and the number of
2231 * populated pages.  An important thing to consider is when pages are freed and
2232 * how they contribute to the global counts.
2233 */
2234static void pcpu_balance_workfn(struct work_struct *work)
2235{
2236        /*
2237         * pcpu_balance_free() is called twice because the first time we may
2238         * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2239         * to grow other chunks.  This then gives pcpu_reclaim_populated() time
2240         * to move fully free chunks to the active list to be freed if
2241         * appropriate.
2242         */
2243        mutex_lock(&pcpu_alloc_mutex);
2244        spin_lock_irq(&pcpu_lock);
2245
2246        pcpu_balance_free(false);
2247        pcpu_reclaim_populated();
2248        pcpu_balance_populated();
2249        pcpu_balance_free(true);
2250
2251        spin_unlock_irq(&pcpu_lock);
2252        mutex_unlock(&pcpu_alloc_mutex);
2253}
2254
2255/**
2256 * free_percpu - free percpu area
2257 * @ptr: pointer to area to free
2258 *
2259 * Free percpu area @ptr.
2260 *
2261 * CONTEXT:
2262 * Can be called from atomic context.
2263 */
2264void free_percpu(void __percpu *ptr)
2265{
2266        void *addr;
2267        struct pcpu_chunk *chunk;
2268        unsigned long flags;
2269        int size, off;
2270        bool need_balance = false;
2271
2272        if (!ptr)
2273                return;
2274
2275        kmemleak_free_percpu(ptr);
2276
2277        addr = __pcpu_ptr_to_addr(ptr);
2278
2279        spin_lock_irqsave(&pcpu_lock, flags);
2280
2281        chunk = pcpu_chunk_addr_search(addr);
2282        off = addr - chunk->base_addr;
2283
2284        size = pcpu_free_area(chunk, off);
2285
2286        pcpu_memcg_free_hook(chunk, off, size);
2287
2288        /*
2289         * If there are more than one fully free chunks, wake up grim reaper.
2290         * If the chunk is isolated, it may be in the process of being
2291         * reclaimed.  Let reclaim manage cleaning up of that chunk.
2292         */
2293        if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
2294                struct pcpu_chunk *pos;
2295
2296                list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
2297                        if (pos != chunk) {
2298                                need_balance = true;
2299                                break;
2300                        }
2301        } else if (pcpu_should_reclaim_chunk(chunk)) {
2302                pcpu_isolate_chunk(chunk);
2303                need_balance = true;
2304        }
2305
2306        trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2307
2308        spin_unlock_irqrestore(&pcpu_lock, flags);
2309
2310        if (need_balance)
2311                pcpu_schedule_balance_work();
2312}
2313EXPORT_SYMBOL_GPL(free_percpu);
2314
2315bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2316{
2317#ifdef CONFIG_SMP
2318        const size_t static_size = __per_cpu_end - __per_cpu_start;
2319        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2320        unsigned int cpu;
2321
2322        for_each_possible_cpu(cpu) {
2323                void *start = per_cpu_ptr(base, cpu);
2324                void *va = (void *)addr;
2325
2326                if (va >= start && va < start + static_size) {
2327                        if (can_addr) {
2328                                *can_addr = (unsigned long) (va - start);
2329                                *can_addr += (unsigned long)
2330                                        per_cpu_ptr(base, get_boot_cpu_id());
2331                        }
2332                        return true;
2333                }
2334        }
2335#endif
2336        /* on UP, can't distinguish from other static vars, always false */
2337        return false;
2338}
2339
2340/**
2341 * is_kernel_percpu_address - test whether address is from static percpu area
2342 * @addr: address to test
2343 *
2344 * Test whether @addr belongs to in-kernel static percpu area.  Module
2345 * static percpu areas are not considered.  For those, use
2346 * is_module_percpu_address().
2347 *
2348 * RETURNS:
2349 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2350 */
2351bool is_kernel_percpu_address(unsigned long addr)
2352{
2353        return __is_kernel_percpu_address(addr, NULL);
2354}
2355
2356/**
2357 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2358 * @addr: the address to be converted to physical address
2359 *
2360 * Given @addr which is dereferenceable address obtained via one of
2361 * percpu access macros, this function translates it into its physical
2362 * address.  The caller is responsible for ensuring @addr stays valid
2363 * until this function finishes.
2364 *
2365 * percpu allocator has special setup for the first chunk, which currently
2366 * supports either embedding in linear address space or vmalloc mapping,
2367 * and, from the second one, the backing allocator (currently either vm or
2368 * km) provides translation.
2369 *
2370 * The addr can be translated simply without checking if it falls into the
2371 * first chunk. But the current code reflects better how percpu allocator
2372 * actually works, and the verification can discover both bugs in percpu
2373 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2374 * code.
2375 *
2376 * RETURNS:
2377 * The physical address for @addr.
2378 */
2379phys_addr_t per_cpu_ptr_to_phys(void *addr)
2380{
2381        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2382        bool in_first_chunk = false;
2383        unsigned long first_low, first_high;
2384        unsigned int cpu;
2385
2386        /*
2387         * The following test on unit_low/high isn't strictly
2388         * necessary but will speed up lookups of addresses which
2389         * aren't in the first chunk.
2390         *
2391         * The address check is against full chunk sizes.  pcpu_base_addr
2392         * points to the beginning of the first chunk including the
2393         * static region.  Assumes good intent as the first chunk may
2394         * not be full (ie. < pcpu_unit_pages in size).
2395         */
2396        first_low = (unsigned long)pcpu_base_addr +
2397                    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2398        first_high = (unsigned long)pcpu_base_addr +
2399                     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2400        if ((unsigned long)addr >= first_low &&
2401            (unsigned long)addr < first_high) {
2402                for_each_possible_cpu(cpu) {
2403                        void *start = per_cpu_ptr(base, cpu);
2404
2405                        if (addr >= start && addr < start + pcpu_unit_size) {
2406                                in_first_chunk = true;
2407                                break;
2408                        }
2409                }
2410        }
2411
2412        if (in_first_chunk) {
2413                if (!is_vmalloc_addr(addr))
2414                        return __pa(addr);
2415                else
2416                        return page_to_phys(vmalloc_to_page(addr)) +
2417                               offset_in_page(addr);
2418        } else
2419                return page_to_phys(pcpu_addr_to_page(addr)) +
2420                       offset_in_page(addr);
2421}
2422
2423/**
2424 * pcpu_alloc_alloc_info - allocate percpu allocation info
2425 * @nr_groups: the number of groups
2426 * @nr_units: the number of units
2427 *
2428 * Allocate ai which is large enough for @nr_groups groups containing
2429 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2430 * cpu_map array which is long enough for @nr_units and filled with
2431 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2432 * pointer of other groups.
2433 *
2434 * RETURNS:
2435 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2436 * failure.
2437 */
2438struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2439                                                      int nr_units)
2440{
2441        struct pcpu_alloc_info *ai;
2442        size_t base_size, ai_size;
2443        void *ptr;
2444        int unit;
2445
2446        base_size = ALIGN(struct_size(ai, groups, nr_groups),
2447                          __alignof__(ai->groups[0].cpu_map[0]));
2448        ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2449
2450        ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2451        if (!ptr)
2452                return NULL;
2453        ai = ptr;
2454        ptr += base_size;
2455
2456        ai->groups[0].cpu_map = ptr;
2457
2458        for (unit = 0; unit < nr_units; unit++)
2459                ai->groups[0].cpu_map[unit] = NR_CPUS;
2460
2461        ai->nr_groups = nr_groups;
2462        ai->__ai_size = PFN_ALIGN(ai_size);
2463
2464        return ai;
2465}
2466
2467/**
2468 * pcpu_free_alloc_info - free percpu allocation info
2469 * @ai: pcpu_alloc_info to free
2470 *
2471 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2472 */
2473void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2474{
2475        memblock_free_early(__pa(ai), ai->__ai_size);
2476}
2477
2478/**
2479 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2480 * @lvl: loglevel
2481 * @ai: allocation info to dump
2482 *
2483 * Print out information about @ai using loglevel @lvl.
2484 */
2485static void pcpu_dump_alloc_info(const char *lvl,
2486                                 const struct pcpu_alloc_info *ai)
2487{
2488        int group_width = 1, cpu_width = 1, width;
2489        char empty_str[] = "--------";
2490        int alloc = 0, alloc_end = 0;
2491        int group, v;
2492        int upa, apl;   /* units per alloc, allocs per line */
2493
2494        v = ai->nr_groups;
2495        while (v /= 10)
2496                group_width++;
2497
2498        v = num_possible_cpus();
2499        while (v /= 10)
2500                cpu_width++;
2501        empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2502
2503        upa = ai->alloc_size / ai->unit_size;
2504        width = upa * (cpu_width + 1) + group_width + 3;
2505        apl = rounddown_pow_of_two(max(60 / width, 1));
2506
2507        printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2508               lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2509               ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2510
2511        for (group = 0; group < ai->nr_groups; group++) {
2512                const struct pcpu_group_info *gi = &ai->groups[group];
2513                int unit = 0, unit_end = 0;
2514
2515                BUG_ON(gi->nr_units % upa);
2516                for (alloc_end += gi->nr_units / upa;
2517                     alloc < alloc_end; alloc++) {
2518                        if (!(alloc % apl)) {
2519                                pr_cont("\n");
2520                                printk("%spcpu-alloc: ", lvl);
2521                        }
2522                        pr_cont("[%0*d] ", group_width, group);
2523
2524                        for (unit_end += upa; unit < unit_end; unit++)
2525                                if (gi->cpu_map[unit] != NR_CPUS)
2526                                        pr_cont("%0*d ",
2527                                                cpu_width, gi->cpu_map[unit]);
2528                                else
2529                                        pr_cont("%s ", empty_str);
2530                }
2531        }
2532        pr_cont("\n");
2533}
2534
2535/**
2536 * pcpu_setup_first_chunk - initialize the first percpu chunk
2537 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2538 * @base_addr: mapped address
2539 *
2540 * Initialize the first percpu chunk which contains the kernel static
2541 * percpu area.  This function is to be called from arch percpu area
2542 * setup path.
2543 *
2544 * @ai contains all information necessary to initialize the first
2545 * chunk and prime the dynamic percpu allocator.
2546 *
2547 * @ai->static_size is the size of static percpu area.
2548 *
2549 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2550 * reserve after the static area in the first chunk.  This reserves
2551 * the first chunk such that it's available only through reserved
2552 * percpu allocation.  This is primarily used to serve module percpu
2553 * static areas on architectures where the addressing model has
2554 * limited offset range for symbol relocations to guarantee module
2555 * percpu symbols fall inside the relocatable range.
2556 *
2557 * @ai->dyn_size determines the number of bytes available for dynamic
2558 * allocation in the first chunk.  The area between @ai->static_size +
2559 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2560 *
2561 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2562 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2563 * @ai->dyn_size.
2564 *
2565 * @ai->atom_size is the allocation atom size and used as alignment
2566 * for vm areas.
2567 *
2568 * @ai->alloc_size is the allocation size and always multiple of
2569 * @ai->atom_size.  This is larger than @ai->atom_size if
2570 * @ai->unit_size is larger than @ai->atom_size.
2571 *
2572 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2573 * percpu areas.  Units which should be colocated are put into the
2574 * same group.  Dynamic VM areas will be allocated according to these
2575 * groupings.  If @ai->nr_groups is zero, a single group containing
2576 * all units is assumed.
2577 *
2578 * The caller should have mapped the first chunk at @base_addr and
2579 * copied static data to each unit.
2580 *
2581 * The first chunk will always contain a static and a dynamic region.
2582 * However, the static region is not managed by any chunk.  If the first
2583 * chunk also contains a reserved region, it is served by two chunks -
2584 * one for the reserved region and one for the dynamic region.  They
2585 * share the same vm, but use offset regions in the area allocation map.
2586 * The chunk serving the dynamic region is circulated in the chunk slots
2587 * and available for dynamic allocation like any other chunk.
2588 */
2589void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2590                                   void *base_addr)
2591{
2592        size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2593        size_t static_size, dyn_size;
2594        struct pcpu_chunk *chunk;
2595        unsigned long *group_offsets;
2596        size_t *group_sizes;
2597        unsigned long *unit_off;
2598        unsigned int cpu;
2599        int *unit_map;
2600        int group, unit, i;
2601        int map_size;
2602        unsigned long tmp_addr;
2603        size_t alloc_size;
2604
2605#define PCPU_SETUP_BUG_ON(cond) do {                                    \
2606        if (unlikely(cond)) {                                           \
2607                pr_emerg("failed to initialize, %s\n", #cond);          \
2608                pr_emerg("cpu_possible_mask=%*pb\n",                    \
2609                         cpumask_pr_args(cpu_possible_mask));           \
2610                pcpu_dump_alloc_info(KERN_EMERG, ai);                   \
2611                BUG();                                                  \
2612        }                                                               \
2613} while (0)
2614
2615        /* sanity checks */
2616        PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2617#ifdef CONFIG_SMP
2618        PCPU_SETUP_BUG_ON(!ai->static_size);
2619        PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2620#endif
2621        PCPU_SETUP_BUG_ON(!base_addr);
2622        PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2623        PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2624        PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2625        PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2626        PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2627        PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2628        PCPU_SETUP_BUG_ON(!ai->dyn_size);
2629        PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2630        PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2631                            IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2632        PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2633
2634        /* process group information and build config tables accordingly */
2635        alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2636        group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2637        if (!group_offsets)
2638                panic("%s: Failed to allocate %zu bytes\n", __func__,
2639                      alloc_size);
2640
2641        alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2642        group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2643        if (!group_sizes)
2644                panic("%s: Failed to allocate %zu bytes\n", __func__,
2645                      alloc_size);
2646
2647        alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2648        unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2649        if (!unit_map)
2650                panic("%s: Failed to allocate %zu bytes\n", __func__,
2651                      alloc_size);
2652
2653        alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2654        unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2655        if (!unit_off)
2656                panic("%s: Failed to allocate %zu bytes\n", __func__,
2657                      alloc_size);
2658
2659        for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2660                unit_map[cpu] = UINT_MAX;
2661
2662        pcpu_low_unit_cpu = NR_CPUS;
2663        pcpu_high_unit_cpu = NR_CPUS;
2664
2665        for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2666                const struct pcpu_group_info *gi = &ai->groups[group];
2667
2668                group_offsets[group] = gi->base_offset;
2669                group_sizes[group] = gi->nr_units * ai->unit_size;
2670
2671                for (i = 0; i < gi->nr_units; i++) {
2672                        cpu = gi->cpu_map[i];
2673                        if (cpu == NR_CPUS)
2674                                continue;
2675
2676                        PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2677                        PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2678                        PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2679
2680                        unit_map[cpu] = unit + i;
2681                        unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2682
2683                        /* determine low/high unit_cpu */
2684                        if (pcpu_low_unit_cpu == NR_CPUS ||
2685                            unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2686                                pcpu_low_unit_cpu = cpu;
2687                        if (pcpu_high_unit_cpu == NR_CPUS ||
2688                            unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2689                                pcpu_high_unit_cpu = cpu;
2690                }
2691        }
2692        pcpu_nr_units = unit;
2693
2694        for_each_possible_cpu(cpu)
2695                PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2696
2697        /* we're done parsing the input, undefine BUG macro and dump config */
2698#undef PCPU_SETUP_BUG_ON
2699        pcpu_dump_alloc_info(KERN_DEBUG, ai);
2700
2701        pcpu_nr_groups = ai->nr_groups;
2702        pcpu_group_offsets = group_offsets;
2703        pcpu_group_sizes = group_sizes;
2704        pcpu_unit_map = unit_map;
2705        pcpu_unit_offsets = unit_off;
2706
2707        /* determine basic parameters */
2708        pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2709        pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2710        pcpu_atom_size = ai->atom_size;
2711        pcpu_chunk_struct_size = struct_size(chunk, populated,
2712                                             BITS_TO_LONGS(pcpu_unit_pages));
2713
2714        pcpu_stats_save_ai(ai);
2715
2716        /*
2717         * Allocate chunk slots.  The slots after the active slots are:
2718         *   sidelined_slot - isolated, depopulated chunks
2719         *   free_slot - fully free chunks
2720         *   to_depopulate_slot - isolated, chunks to depopulate
2721         */
2722        pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2723        pcpu_free_slot = pcpu_sidelined_slot + 1;
2724        pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2725        pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
2726        pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2727                                          sizeof(pcpu_chunk_lists[0]),
2728                                          SMP_CACHE_BYTES);
2729        if (!pcpu_chunk_lists)
2730                panic("%s: Failed to allocate %zu bytes\n", __func__,
2731                      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
2732
2733        for (i = 0; i < pcpu_nr_slots; i++)
2734                INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
2735
2736        /*
2737         * The end of the static region needs to be aligned with the
2738         * minimum allocation size as this offsets the reserved and
2739         * dynamic region.  The first chunk ends page aligned by
2740         * expanding the dynamic region, therefore the dynamic region
2741         * can be shrunk to compensate while still staying above the
2742         * configured sizes.
2743         */
2744        static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2745        dyn_size = ai->dyn_size - (static_size - ai->static_size);
2746
2747        /*
2748         * Initialize first chunk.
2749         * If the reserved_size is non-zero, this initializes the reserved
2750         * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2751         * and the dynamic region is initialized here.  The first chunk,
2752         * pcpu_first_chunk, will always point to the chunk that serves
2753         * the dynamic region.
2754         */
2755        tmp_addr = (unsigned long)base_addr + static_size;
2756        map_size = ai->reserved_size ?: dyn_size;
2757        chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2758
2759        /* init dynamic chunk if necessary */
2760        if (ai->reserved_size) {
2761                pcpu_reserved_chunk = chunk;
2762
2763                tmp_addr = (unsigned long)base_addr + static_size +
2764                           ai->reserved_size;
2765                map_size = dyn_size;
2766                chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2767        }
2768
2769        /* link the first chunk in */
2770        pcpu_first_chunk = chunk;
2771        pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2772        pcpu_chunk_relocate(pcpu_first_chunk, -1);
2773
2774        /* include all regions of the first chunk */
2775        pcpu_nr_populated += PFN_DOWN(size_sum);
2776
2777        pcpu_stats_chunk_alloc();
2778        trace_percpu_create_chunk(base_addr);
2779
2780        /* we're done */
2781        pcpu_base_addr = base_addr;
2782}
2783
2784#ifdef CONFIG_SMP
2785
2786const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2787        [PCPU_FC_AUTO]  = "auto",
2788        [PCPU_FC_EMBED] = "embed",
2789        [PCPU_FC_PAGE]  = "page",
2790};
2791
2792enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2793
2794static int __init percpu_alloc_setup(char *str)
2795{
2796        if (!str)
2797                return -EINVAL;
2798
2799        if (0)
2800                /* nada */;
2801#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2802        else if (!strcmp(str, "embed"))
2803                pcpu_chosen_fc = PCPU_FC_EMBED;
2804#endif
2805#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2806        else if (!strcmp(str, "page"))
2807                pcpu_chosen_fc = PCPU_FC_PAGE;
2808#endif
2809        else
2810                pr_warn("unknown allocator %s specified\n", str);
2811
2812        return 0;
2813}
2814early_param("percpu_alloc", percpu_alloc_setup);
2815
2816/*
2817 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2818 * Build it if needed by the arch config or the generic setup is going
2819 * to be used.
2820 */
2821#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2822        !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2823#define BUILD_EMBED_FIRST_CHUNK
2824#endif
2825
2826/* build pcpu_page_first_chunk() iff needed by the arch config */
2827#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2828#define BUILD_PAGE_FIRST_CHUNK
2829#endif
2830
2831/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2832#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2833/**
2834 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2835 * @reserved_size: the size of reserved percpu area in bytes
2836 * @dyn_size: minimum free size for dynamic allocation in bytes
2837 * @atom_size: allocation atom size
2838 * @cpu_distance_fn: callback to determine distance between cpus, optional
2839 *
2840 * This function determines grouping of units, their mappings to cpus
2841 * and other parameters considering needed percpu size, allocation
2842 * atom size and distances between CPUs.
2843 *
2844 * Groups are always multiples of atom size and CPUs which are of
2845 * LOCAL_DISTANCE both ways are grouped together and share space for
2846 * units in the same group.  The returned configuration is guaranteed
2847 * to have CPUs on different nodes on different groups and >=75% usage
2848 * of allocated virtual address space.
2849 *
2850 * RETURNS:
2851 * On success, pointer to the new allocation_info is returned.  On
2852 * failure, ERR_PTR value is returned.
2853 */
2854static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2855                                size_t reserved_size, size_t dyn_size,
2856                                size_t atom_size,
2857                                pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2858{
2859        static int group_map[NR_CPUS] __initdata;
2860        static int group_cnt[NR_CPUS] __initdata;
2861        static struct cpumask mask __initdata;
2862        const size_t static_size = __per_cpu_end - __per_cpu_start;
2863        int nr_groups = 1, nr_units = 0;
2864        size_t size_sum, min_unit_size, alloc_size;
2865        int upa, max_upa, best_upa;     /* units_per_alloc */
2866        int last_allocs, group, unit;
2867        unsigned int cpu, tcpu;
2868        struct pcpu_alloc_info *ai;
2869        unsigned int *cpu_map;
2870
2871        /* this function may be called multiple times */
2872        memset(group_map, 0, sizeof(group_map));
2873        memset(group_cnt, 0, sizeof(group_cnt));
2874        cpumask_clear(&mask);
2875
2876        /* calculate size_sum and ensure dyn_size is enough for early alloc */
2877        size_sum = PFN_ALIGN(static_size + reserved_size +
2878                            max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2879        dyn_size = size_sum - static_size - reserved_size;
2880
2881        /*
2882         * Determine min_unit_size, alloc_size and max_upa such that
2883         * alloc_size is multiple of atom_size and is the smallest
2884         * which can accommodate 4k aligned segments which are equal to
2885         * or larger than min_unit_size.
2886         */
2887        min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2888
2889        /* determine the maximum # of units that can fit in an allocation */
2890        alloc_size = roundup(min_unit_size, atom_size);
2891        upa = alloc_size / min_unit_size;
2892        while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2893                upa--;
2894        max_upa = upa;
2895
2896        cpumask_copy(&mask, cpu_possible_mask);
2897
2898        /* group cpus according to their proximity */
2899        for (group = 0; !cpumask_empty(&mask); group++) {
2900                /* pop the group's first cpu */
2901                cpu = cpumask_first(&mask);
2902                group_map[cpu] = group;
2903                group_cnt[group]++;
2904                cpumask_clear_cpu(cpu, &mask);
2905
2906                for_each_cpu(tcpu, &mask) {
2907                        if (!cpu_distance_fn ||
2908                            (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2909                             cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2910                                group_map[tcpu] = group;
2911                                group_cnt[group]++;
2912                                cpumask_clear_cpu(tcpu, &mask);
2913                        }
2914                }
2915        }
2916        nr_groups = group;
2917
2918        /*
2919         * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2920         * Expand the unit_size until we use >= 75% of the units allocated.
2921         * Related to atom_size, which could be much larger than the unit_size.
2922         */
2923        last_allocs = INT_MAX;
2924        best_upa = 0;
2925        for (upa = max_upa; upa; upa--) {
2926                int allocs = 0, wasted = 0;
2927
2928                if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2929                        continue;
2930
2931                for (group = 0; group < nr_groups; group++) {
2932                        int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2933                        allocs += this_allocs;
2934                        wasted += this_allocs * upa - group_cnt[group];
2935                }
2936
2937                /*
2938                 * Don't accept if wastage is over 1/3.  The
2939                 * greater-than comparison ensures upa==1 always
2940                 * passes the following check.
2941                 */
2942                if (wasted > num_possible_cpus() / 3)
2943                        continue;
2944
2945                /* and then don't consume more memory */
2946                if (allocs > last_allocs)
2947                        break;
2948                last_allocs = allocs;
2949                best_upa = upa;
2950        }
2951        BUG_ON(!best_upa);
2952        upa = best_upa;
2953
2954        /* allocate and fill alloc_info */
2955        for (group = 0; group < nr_groups; group++)
2956                nr_units += roundup(group_cnt[group], upa);
2957
2958        ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2959        if (!ai)
2960                return ERR_PTR(-ENOMEM);
2961        cpu_map = ai->groups[0].cpu_map;
2962
2963        for (group = 0; group < nr_groups; group++) {
2964                ai->groups[group].cpu_map = cpu_map;
2965                cpu_map += roundup(group_cnt[group], upa);
2966        }
2967
2968        ai->static_size = static_size;
2969        ai->reserved_size = reserved_size;
2970        ai->dyn_size = dyn_size;
2971        ai->unit_size = alloc_size / upa;
2972        ai->atom_size = atom_size;
2973        ai->alloc_size = alloc_size;
2974
2975        for (group = 0, unit = 0; group < nr_groups; group++) {
2976                struct pcpu_group_info *gi = &ai->groups[group];
2977
2978                /*
2979                 * Initialize base_offset as if all groups are located
2980                 * back-to-back.  The caller should update this to
2981                 * reflect actual allocation.
2982                 */
2983                gi->base_offset = unit * ai->unit_size;
2984
2985                for_each_possible_cpu(cpu)
2986                        if (group_map[cpu] == group)
2987                                gi->cpu_map[gi->nr_units++] = cpu;
2988                gi->nr_units = roundup(gi->nr_units, upa);
2989                unit += gi->nr_units;
2990        }
2991        BUG_ON(unit != nr_units);
2992
2993        return ai;
2994}
2995#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2996
2997#if defined(BUILD_EMBED_FIRST_CHUNK)
2998/**
2999 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
3000 * @reserved_size: the size of reserved percpu area in bytes
3001 * @dyn_size: minimum free size for dynamic allocation in bytes
3002 * @atom_size: allocation atom size
3003 * @cpu_distance_fn: callback to determine distance between cpus, optional
3004 * @alloc_fn: function to allocate percpu page
3005 * @free_fn: function to free percpu page
3006 *
3007 * This is a helper to ease setting up embedded first percpu chunk and
3008 * can be called where pcpu_setup_first_chunk() is expected.
3009 *
3010 * If this function is used to setup the first chunk, it is allocated
3011 * by calling @alloc_fn and used as-is without being mapped into
3012 * vmalloc area.  Allocations are always whole multiples of @atom_size
3013 * aligned to @atom_size.
3014 *
3015 * This enables the first chunk to piggy back on the linear physical
3016 * mapping which often uses larger page size.  Please note that this
3017 * can result in very sparse cpu->unit mapping on NUMA machines thus
3018 * requiring large vmalloc address space.  Don't use this allocator if
3019 * vmalloc space is not orders of magnitude larger than distances
3020 * between node memory addresses (ie. 32bit NUMA machines).
3021 *
3022 * @dyn_size specifies the minimum dynamic area size.
3023 *
3024 * If the needed size is smaller than the minimum or specified unit
3025 * size, the leftover is returned using @free_fn.
3026 *
3027 * RETURNS:
3028 * 0 on success, -errno on failure.
3029 */
3030int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
3031                                  size_t atom_size,
3032                                  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3033                                  pcpu_fc_alloc_fn_t alloc_fn,
3034                                  pcpu_fc_free_fn_t free_fn)
3035{
3036        void *base = (void *)ULONG_MAX;
3037        void **areas = NULL;
3038        struct pcpu_alloc_info *ai;
3039        size_t size_sum, areas_size;
3040        unsigned long max_distance;
3041        int group, i, highest_group, rc = 0;
3042
3043        ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3044                                   cpu_distance_fn);
3045        if (IS_ERR(ai))
3046                return PTR_ERR(ai);
3047
3048        size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
3049        areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
3050
3051        areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
3052        if (!areas) {
3053                rc = -ENOMEM;
3054                goto out_free;
3055        }
3056
3057        /* allocate, copy and determine base address & max_distance */
3058        highest_group = 0;
3059        for (group = 0; group < ai->nr_groups; group++) {
3060                struct pcpu_group_info *gi = &ai->groups[group];
3061                unsigned int cpu = NR_CPUS;
3062                void *ptr;
3063
3064                for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3065                        cpu = gi->cpu_map[i];
3066                BUG_ON(cpu == NR_CPUS);
3067
3068                /* allocate space for the whole group */
3069                ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
3070                if (!ptr) {
3071                        rc = -ENOMEM;
3072                        goto out_free_areas;
3073                }
3074                /* kmemleak tracks the percpu allocations separately */
3075                kmemleak_free(ptr);
3076                areas[group] = ptr;
3077
3078                base = min(ptr, base);
3079                if (ptr > areas[highest_group])
3080                        highest_group = group;
3081        }
3082        max_distance = areas[highest_group] - base;
3083        max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3084
3085        /* warn if maximum distance is further than 75% of vmalloc space */
3086        if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3087                pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3088                                max_distance, VMALLOC_TOTAL);
3089#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3090                /* and fail if we have fallback */
3091                rc = -EINVAL;
3092                goto out_free_areas;
3093#endif
3094        }
3095
3096        /*
3097         * Copy data and free unused parts.  This should happen after all
3098         * allocations are complete; otherwise, we may end up with
3099         * overlapping groups.
3100         */
3101        for (group = 0; group < ai->nr_groups; group++) {
3102                struct pcpu_group_info *gi = &ai->groups[group];
3103                void *ptr = areas[group];
3104
3105                for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3106                        if (gi->cpu_map[i] == NR_CPUS) {
3107                                /* unused unit, free whole */
3108                                free_fn(ptr, ai->unit_size);
3109                                continue;
3110                        }
3111                        /* copy and return the unused part */
3112                        memcpy(ptr, __per_cpu_load, ai->static_size);
3113                        free_fn(ptr + size_sum, ai->unit_size - size_sum);
3114                }
3115        }
3116
3117        /* base address is now known, determine group base offsets */
3118        for (group = 0; group < ai->nr_groups; group++) {
3119                ai->groups[group].base_offset = areas[group] - base;
3120        }
3121
3122        pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3123                PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
3124                ai->dyn_size, ai->unit_size);
3125
3126        pcpu_setup_first_chunk(ai, base);
3127        goto out_free;
3128
3129out_free_areas:
3130        for (group = 0; group < ai->nr_groups; group++)
3131                if (areas[group])
3132                        free_fn(areas[group],
3133                                ai->groups[group].nr_units * ai->unit_size);
3134out_free:
3135        pcpu_free_alloc_info(ai);
3136        if (areas)
3137                memblock_free_early(__pa(areas), areas_size);
3138        return rc;
3139}
3140#endif /* BUILD_EMBED_FIRST_CHUNK */
3141
3142#ifdef BUILD_PAGE_FIRST_CHUNK
3143/**
3144 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3145 * @reserved_size: the size of reserved percpu area in bytes
3146 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
3147 * @free_fn: function to free percpu page, always called with PAGE_SIZE
3148 * @populate_pte_fn: function to populate pte
3149 *
3150 * This is a helper to ease setting up page-remapped first percpu
3151 * chunk and can be called where pcpu_setup_first_chunk() is expected.
3152 *
3153 * This is the basic allocator.  Static percpu area is allocated
3154 * page-by-page into vmalloc area.
3155 *
3156 * RETURNS:
3157 * 0 on success, -errno on failure.
3158 */
3159int __init pcpu_page_first_chunk(size_t reserved_size,
3160                                 pcpu_fc_alloc_fn_t alloc_fn,
3161                                 pcpu_fc_free_fn_t free_fn,
3162                                 pcpu_fc_populate_pte_fn_t populate_pte_fn)
3163{
3164        static struct vm_struct vm;
3165        struct pcpu_alloc_info *ai;
3166        char psize_str[16];
3167        int unit_pages;
3168        size_t pages_size;
3169        struct page **pages;
3170        int unit, i, j, rc = 0;
3171        int upa;
3172        int nr_g0_units;
3173
3174        snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3175
3176        ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
3177        if (IS_ERR(ai))
3178                return PTR_ERR(ai);
3179        BUG_ON(ai->nr_groups != 1);
3180        upa = ai->alloc_size/ai->unit_size;
3181        nr_g0_units = roundup(num_possible_cpus(), upa);
3182        if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
3183                pcpu_free_alloc_info(ai);
3184                return -EINVAL;
3185        }
3186
3187        unit_pages = ai->unit_size >> PAGE_SHIFT;
3188
3189        /* unaligned allocations can't be freed, round up to page size */
3190        pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3191                               sizeof(pages[0]));
3192        pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3193        if (!pages)
3194                panic("%s: Failed to allocate %zu bytes\n", __func__,
3195                      pages_size);
3196
3197        /* allocate pages */
3198        j = 0;
3199        for (unit = 0; unit < num_possible_cpus(); unit++) {
3200                unsigned int cpu = ai->groups[0].cpu_map[unit];
3201                for (i = 0; i < unit_pages; i++) {
3202                        void *ptr;
3203
3204                        ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
3205                        if (!ptr) {
3206                                pr_warn("failed to allocate %s page for cpu%u\n",
3207                                                psize_str, cpu);
3208                                goto enomem;
3209                        }
3210                        /* kmemleak tracks the percpu allocations separately */
3211                        kmemleak_free(ptr);
3212                        pages[j++] = virt_to_page(ptr);
3213                }
3214        }
3215
3216        /* allocate vm area, map the pages and copy static data */
3217        vm.flags = VM_ALLOC;
3218        vm.size = num_possible_cpus() * ai->unit_size;
3219        vm_area_register_early(&vm, PAGE_SIZE);
3220
3221        for (unit = 0; unit < num_possible_cpus(); unit++) {
3222                unsigned long unit_addr =
3223                        (unsigned long)vm.addr + unit * ai->unit_size;
3224
3225                for (i = 0; i < unit_pages; i++)
3226                        populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
3227
3228                /* pte already populated, the following shouldn't fail */
3229                rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3230                                      unit_pages);
3231                if (rc < 0)
3232                        panic("failed to map percpu area, err=%d\n", rc);
3233
3234                /*
3235                 * FIXME: Archs with virtual cache should flush local
3236                 * cache for the linear mapping here - something
3237                 * equivalent to flush_cache_vmap() on the local cpu.
3238                 * flush_cache_vmap() can't be used as most supporting
3239                 * data structures are not set up yet.
3240                 */
3241
3242                /* copy static data */
3243                memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3244        }
3245
3246        /* we're ready, commit */
3247        pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3248                unit_pages, psize_str, ai->static_size,
3249                ai->reserved_size, ai->dyn_size);
3250
3251        pcpu_setup_first_chunk(ai, vm.addr);
3252        goto out_free_ar;
3253
3254enomem:
3255        while (--j >= 0)
3256                free_fn(page_address(pages[j]), PAGE_SIZE);
3257        rc = -ENOMEM;
3258out_free_ar:
3259        memblock_free_early(__pa(pages), pages_size);
3260        pcpu_free_alloc_info(ai);
3261        return rc;
3262}
3263#endif /* BUILD_PAGE_FIRST_CHUNK */
3264
3265#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
3266/*
3267 * Generic SMP percpu area setup.
3268 *
3269 * The embedding helper is used because its behavior closely resembles
3270 * the original non-dynamic generic percpu area setup.  This is
3271 * important because many archs have addressing restrictions and might
3272 * fail if the percpu area is located far away from the previous
3273 * location.  As an added bonus, in non-NUMA cases, embedding is
3274 * generally a good idea TLB-wise because percpu area can piggy back
3275 * on the physical linear memory mapping which uses large page
3276 * mappings on applicable archs.
3277 */
3278unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3279EXPORT_SYMBOL(__per_cpu_offset);
3280
3281static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
3282                                       size_t align)
3283{
3284        return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
3285}
3286
3287static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
3288{
3289        memblock_free_early(__pa(ptr), size);
3290}
3291
3292void __init setup_per_cpu_areas(void)
3293{
3294        unsigned long delta;
3295        unsigned int cpu;
3296        int rc;
3297
3298        /*
3299         * Always reserve area for module percpu variables.  That's
3300         * what the legacy allocator did.
3301         */
3302        rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
3303                                    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
3304                                    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
3305        if (rc < 0)
3306                panic("Failed to initialize percpu areas.");
3307
3308        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3309        for_each_possible_cpu(cpu)
3310                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3311}
3312#endif  /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3313
3314#else   /* CONFIG_SMP */
3315
3316/*
3317 * UP percpu area setup.
3318 *
3319 * UP always uses km-based percpu allocator with identity mapping.
3320 * Static percpu variables are indistinguishable from the usual static
3321 * variables and don't require any special preparation.
3322 */
3323void __init setup_per_cpu_areas(void)
3324{
3325        const size_t unit_size =
3326                roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3327                                         PERCPU_DYNAMIC_RESERVE));
3328        struct pcpu_alloc_info *ai;
3329        void *fc;
3330
3331        ai = pcpu_alloc_alloc_info(1, 1);
3332        fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3333        if (!ai || !fc)
3334                panic("Failed to allocate memory for percpu areas.");
3335        /* kmemleak tracks the percpu allocations separately */
3336        kmemleak_free(fc);
3337
3338        ai->dyn_size = unit_size;
3339        ai->unit_size = unit_size;
3340        ai->atom_size = unit_size;
3341        ai->alloc_size = unit_size;
3342        ai->groups[0].nr_units = 1;
3343        ai->groups[0].cpu_map[0] = 0;
3344
3345        pcpu_setup_first_chunk(ai, fc);
3346        pcpu_free_alloc_info(ai);
3347}
3348
3349#endif  /* CONFIG_SMP */
3350
3351/*
3352 * pcpu_nr_pages - calculate total number of populated backing pages
3353 *
3354 * This reflects the number of pages populated to back chunks.  Metadata is
3355 * excluded in the number exposed in meminfo as the number of backing pages
3356 * scales with the number of cpus and can quickly outweigh the memory used for
3357 * metadata.  It also keeps this calculation nice and simple.
3358 *
3359 * RETURNS:
3360 * Total number of populated backing pages in use by the allocator.
3361 */
3362unsigned long pcpu_nr_pages(void)
3363{
3364        return pcpu_nr_populated * pcpu_nr_units;
3365}
3366
3367/*
3368 * Percpu allocator is initialized early during boot when neither slab or
3369 * workqueue is available.  Plug async management until everything is up
3370 * and running.
3371 */
3372static int __init percpu_enable_async(void)
3373{
3374        pcpu_async_enabled = true;
3375        return 0;
3376}
3377subsys_initcall(percpu_enable_async);
3378