linux/mm/slub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLUB: A slab allocator that limits cache line use instead of queuing
   4 * objects in per cpu and per node lists.
   5 *
   6 * The allocator synchronizes using per slab locks or atomic operations
   7 * and only uses a centralized lock to manage a pool of partial slabs.
   8 *
   9 * (C) 2007 SGI, Christoph Lameter
  10 * (C) 2011 Linux Foundation, Christoph Lameter
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/swap.h> /* struct reclaim_state */
  15#include <linux/module.h>
  16#include <linux/bit_spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/swab.h>
  19#include <linux/bitops.h>
  20#include <linux/slab.h>
  21#include "slab.h"
  22#include <linux/proc_fs.h>
  23#include <linux/seq_file.h>
  24#include <linux/kasan.h>
  25#include <linux/cpu.h>
  26#include <linux/cpuset.h>
  27#include <linux/mempolicy.h>
  28#include <linux/ctype.h>
  29#include <linux/debugobjects.h>
  30#include <linux/kallsyms.h>
  31#include <linux/kfence.h>
  32#include <linux/memory.h>
  33#include <linux/math64.h>
  34#include <linux/fault-inject.h>
  35#include <linux/stacktrace.h>
  36#include <linux/prefetch.h>
  37#include <linux/memcontrol.h>
  38#include <linux/random.h>
  39#include <kunit/test.h>
  40
  41#include <linux/debugfs.h>
  42#include <trace/events/kmem.h>
  43
  44#include "internal.h"
  45
  46/*
  47 * Lock order:
  48 *   1. slab_mutex (Global Mutex)
  49 *   2. node->list_lock (Spinlock)
  50 *   3. kmem_cache->cpu_slab->lock (Local lock)
  51 *   4. slab_lock(page) (Only on some arches or for debugging)
  52 *   5. object_map_lock (Only for debugging)
  53 *
  54 *   slab_mutex
  55 *
  56 *   The role of the slab_mutex is to protect the list of all the slabs
  57 *   and to synchronize major metadata changes to slab cache structures.
  58 *   Also synchronizes memory hotplug callbacks.
  59 *
  60 *   slab_lock
  61 *
  62 *   The slab_lock is a wrapper around the page lock, thus it is a bit
  63 *   spinlock.
  64 *
  65 *   The slab_lock is only used for debugging and on arches that do not
  66 *   have the ability to do a cmpxchg_double. It only protects:
  67 *      A. page->freelist       -> List of object free in a page
  68 *      B. page->inuse          -> Number of objects in use
  69 *      C. page->objects        -> Number of objects in page
  70 *      D. page->frozen         -> frozen state
  71 *
  72 *   Frozen slabs
  73 *
  74 *   If a slab is frozen then it is exempt from list management. It is not
  75 *   on any list except per cpu partial list. The processor that froze the
  76 *   slab is the one who can perform list operations on the page. Other
  77 *   processors may put objects onto the freelist but the processor that
  78 *   froze the slab is the only one that can retrieve the objects from the
  79 *   page's freelist.
  80 *
  81 *   list_lock
  82 *
  83 *   The list_lock protects the partial and full list on each node and
  84 *   the partial slab counter. If taken then no new slabs may be added or
  85 *   removed from the lists nor make the number of partial slabs be modified.
  86 *   (Note that the total number of slabs is an atomic value that may be
  87 *   modified without taking the list lock).
  88 *
  89 *   The list_lock is a centralized lock and thus we avoid taking it as
  90 *   much as possible. As long as SLUB does not have to handle partial
  91 *   slabs, operations can continue without any centralized lock. F.e.
  92 *   allocating a long series of objects that fill up slabs does not require
  93 *   the list lock.
  94 *
  95 *   cpu_slab->lock local lock
  96 *
  97 *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
  98 *   except the stat counters. This is a percpu structure manipulated only by
  99 *   the local cpu, so the lock protects against being preempted or interrupted
 100 *   by an irq. Fast path operations rely on lockless operations instead.
 101 *   On PREEMPT_RT, the local lock does not actually disable irqs (and thus
 102 *   prevent the lockless operations), so fastpath operations also need to take
 103 *   the lock and are no longer lockless.
 104 *
 105 *   lockless fastpaths
 106 *
 107 *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
 108 *   are fully lockless when satisfied from the percpu slab (and when
 109 *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
 110 *   They also don't disable preemption or migration or irqs. They rely on
 111 *   the transaction id (tid) field to detect being preempted or moved to
 112 *   another cpu.
 113 *
 114 *   irq, preemption, migration considerations
 115 *
 116 *   Interrupts are disabled as part of list_lock or local_lock operations, or
 117 *   around the slab_lock operation, in order to make the slab allocator safe
 118 *   to use in the context of an irq.
 119 *
 120 *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
 121 *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
 122 *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
 123 *   doesn't have to be revalidated in each section protected by the local lock.
 124 *
 125 * SLUB assigns one slab for allocation to each processor.
 126 * Allocations only occur from these slabs called cpu slabs.
 127 *
 128 * Slabs with free elements are kept on a partial list and during regular
 129 * operations no list for full slabs is used. If an object in a full slab is
 130 * freed then the slab will show up again on the partial lists.
 131 * We track full slabs for debugging purposes though because otherwise we
 132 * cannot scan all objects.
 133 *
 134 * Slabs are freed when they become empty. Teardown and setup is
 135 * minimal so we rely on the page allocators per cpu caches for
 136 * fast frees and allocs.
 137 *
 138 * page->frozen         The slab is frozen and exempt from list processing.
 139 *                      This means that the slab is dedicated to a purpose
 140 *                      such as satisfying allocations for a specific
 141 *                      processor. Objects may be freed in the slab while
 142 *                      it is frozen but slab_free will then skip the usual
 143 *                      list operations. It is up to the processor holding
 144 *                      the slab to integrate the slab into the slab lists
 145 *                      when the slab is no longer needed.
 146 *
 147 *                      One use of this flag is to mark slabs that are
 148 *                      used for allocations. Then such a slab becomes a cpu
 149 *                      slab. The cpu slab may be equipped with an additional
 150 *                      freelist that allows lockless access to
 151 *                      free objects in addition to the regular freelist
 152 *                      that requires the slab lock.
 153 *
 154 * SLAB_DEBUG_FLAGS     Slab requires special handling due to debug
 155 *                      options set. This moves slab handling out of
 156 *                      the fast path and disables lockless freelists.
 157 */
 158
 159/*
 160 * We could simply use migrate_disable()/enable() but as long as it's a
 161 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
 162 */
 163#ifndef CONFIG_PREEMPT_RT
 164#define slub_get_cpu_ptr(var)   get_cpu_ptr(var)
 165#define slub_put_cpu_ptr(var)   put_cpu_ptr(var)
 166#else
 167#define slub_get_cpu_ptr(var)           \
 168({                                      \
 169        migrate_disable();              \
 170        this_cpu_ptr(var);              \
 171})
 172#define slub_put_cpu_ptr(var)           \
 173do {                                    \
 174        (void)(var);                    \
 175        migrate_enable();               \
 176} while (0)
 177#endif
 178
 179#ifdef CONFIG_SLUB_DEBUG
 180#ifdef CONFIG_SLUB_DEBUG_ON
 181DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
 182#else
 183DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
 184#endif
 185#endif          /* CONFIG_SLUB_DEBUG */
 186
 187static inline bool kmem_cache_debug(struct kmem_cache *s)
 188{
 189        return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
 190}
 191
 192void *fixup_red_left(struct kmem_cache *s, void *p)
 193{
 194        if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
 195                p += s->red_left_pad;
 196
 197        return p;
 198}
 199
 200static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 201{
 202#ifdef CONFIG_SLUB_CPU_PARTIAL
 203        return !kmem_cache_debug(s);
 204#else
 205        return false;
 206#endif
 207}
 208
 209/*
 210 * Issues still to be resolved:
 211 *
 212 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 213 *
 214 * - Variable sizing of the per node arrays
 215 */
 216
 217/* Enable to log cmpxchg failures */
 218#undef SLUB_DEBUG_CMPXCHG
 219
 220/*
 221 * Minimum number of partial slabs. These will be left on the partial
 222 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 223 */
 224#define MIN_PARTIAL 5
 225
 226/*
 227 * Maximum number of desirable partial slabs.
 228 * The existence of more partial slabs makes kmem_cache_shrink
 229 * sort the partial list by the number of objects in use.
 230 */
 231#define MAX_PARTIAL 10
 232
 233#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 234                                SLAB_POISON | SLAB_STORE_USER)
 235
 236/*
 237 * These debug flags cannot use CMPXCHG because there might be consistency
 238 * issues when checking or reading debug information
 239 */
 240#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 241                                SLAB_TRACE)
 242
 243
 244/*
 245 * Debugging flags that require metadata to be stored in the slab.  These get
 246 * disabled when slub_debug=O is used and a cache's min order increases with
 247 * metadata.
 248 */
 249#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 250
 251#define OO_SHIFT        16
 252#define OO_MASK         ((1 << OO_SHIFT) - 1)
 253#define MAX_OBJS_PER_PAGE       32767 /* since page.objects is u15 */
 254
 255/* Internal SLUB flags */
 256/* Poison object */
 257#define __OBJECT_POISON         ((slab_flags_t __force)0x80000000U)
 258/* Use cmpxchg_double */
 259#define __CMPXCHG_DOUBLE        ((slab_flags_t __force)0x40000000U)
 260
 261/*
 262 * Tracking user of a slab.
 263 */
 264#define TRACK_ADDRS_COUNT 16
 265struct track {
 266        unsigned long addr;     /* Called from address */
 267#ifdef CONFIG_STACKTRACE
 268        unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
 269#endif
 270        int cpu;                /* Was running on cpu */
 271        int pid;                /* Pid context */
 272        unsigned long when;     /* When did the operation occur */
 273};
 274
 275enum track_item { TRACK_ALLOC, TRACK_FREE };
 276
 277#ifdef CONFIG_SYSFS
 278static int sysfs_slab_add(struct kmem_cache *);
 279static int sysfs_slab_alias(struct kmem_cache *, const char *);
 280#else
 281static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 282static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 283                                                        { return 0; }
 284#endif
 285
 286#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
 287static void debugfs_slab_add(struct kmem_cache *);
 288#else
 289static inline void debugfs_slab_add(struct kmem_cache *s) { }
 290#endif
 291
 292static inline void stat(const struct kmem_cache *s, enum stat_item si)
 293{
 294#ifdef CONFIG_SLUB_STATS
 295        /*
 296         * The rmw is racy on a preemptible kernel but this is acceptable, so
 297         * avoid this_cpu_add()'s irq-disable overhead.
 298         */
 299        raw_cpu_inc(s->cpu_slab->stat[si]);
 300#endif
 301}
 302
 303/*
 304 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
 305 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
 306 * differ during memory hotplug/hotremove operations.
 307 * Protected by slab_mutex.
 308 */
 309static nodemask_t slab_nodes;
 310
 311/********************************************************************
 312 *                      Core slab cache functions
 313 *******************************************************************/
 314
 315/*
 316 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 317 * with an XOR of the address where the pointer is held and a per-cache
 318 * random number.
 319 */
 320static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
 321                                 unsigned long ptr_addr)
 322{
 323#ifdef CONFIG_SLAB_FREELIST_HARDENED
 324        /*
 325         * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
 326         * Normally, this doesn't cause any issues, as both set_freepointer()
 327         * and get_freepointer() are called with a pointer with the same tag.
 328         * However, there are some issues with CONFIG_SLUB_DEBUG code. For
 329         * example, when __free_slub() iterates over objects in a cache, it
 330         * passes untagged pointers to check_object(). check_object() in turns
 331         * calls get_freepointer() with an untagged pointer, which causes the
 332         * freepointer to be restored incorrectly.
 333         */
 334        return (void *)((unsigned long)ptr ^ s->random ^
 335                        swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
 336#else
 337        return ptr;
 338#endif
 339}
 340
 341/* Returns the freelist pointer recorded at location ptr_addr. */
 342static inline void *freelist_dereference(const struct kmem_cache *s,
 343                                         void *ptr_addr)
 344{
 345        return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
 346                            (unsigned long)ptr_addr);
 347}
 348
 349static inline void *get_freepointer(struct kmem_cache *s, void *object)
 350{
 351        object = kasan_reset_tag(object);
 352        return freelist_dereference(s, object + s->offset);
 353}
 354
 355static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 356{
 357        prefetch(object + s->offset);
 358}
 359
 360static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 361{
 362        unsigned long freepointer_addr;
 363        void *p;
 364
 365        if (!debug_pagealloc_enabled_static())
 366                return get_freepointer(s, object);
 367
 368        object = kasan_reset_tag(object);
 369        freepointer_addr = (unsigned long)object + s->offset;
 370        copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
 371        return freelist_ptr(s, p, freepointer_addr);
 372}
 373
 374static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 375{
 376        unsigned long freeptr_addr = (unsigned long)object + s->offset;
 377
 378#ifdef CONFIG_SLAB_FREELIST_HARDENED
 379        BUG_ON(object == fp); /* naive detection of double free or corruption */
 380#endif
 381
 382        freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
 383        *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
 384}
 385
 386/* Loop over all objects in a slab */
 387#define for_each_object(__p, __s, __addr, __objects) \
 388        for (__p = fixup_red_left(__s, __addr); \
 389                __p < (__addr) + (__objects) * (__s)->size; \
 390                __p += (__s)->size)
 391
 392static inline unsigned int order_objects(unsigned int order, unsigned int size)
 393{
 394        return ((unsigned int)PAGE_SIZE << order) / size;
 395}
 396
 397static inline struct kmem_cache_order_objects oo_make(unsigned int order,
 398                unsigned int size)
 399{
 400        struct kmem_cache_order_objects x = {
 401                (order << OO_SHIFT) + order_objects(order, size)
 402        };
 403
 404        return x;
 405}
 406
 407static inline unsigned int oo_order(struct kmem_cache_order_objects x)
 408{
 409        return x.x >> OO_SHIFT;
 410}
 411
 412static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
 413{
 414        return x.x & OO_MASK;
 415}
 416
 417/*
 418 * Per slab locking using the pagelock
 419 */
 420static __always_inline void __slab_lock(struct page *page)
 421{
 422        VM_BUG_ON_PAGE(PageTail(page), page);
 423        bit_spin_lock(PG_locked, &page->flags);
 424}
 425
 426static __always_inline void __slab_unlock(struct page *page)
 427{
 428        VM_BUG_ON_PAGE(PageTail(page), page);
 429        __bit_spin_unlock(PG_locked, &page->flags);
 430}
 431
 432static __always_inline void slab_lock(struct page *page, unsigned long *flags)
 433{
 434        if (IS_ENABLED(CONFIG_PREEMPT_RT))
 435                local_irq_save(*flags);
 436        __slab_lock(page);
 437}
 438
 439static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
 440{
 441        __slab_unlock(page);
 442        if (IS_ENABLED(CONFIG_PREEMPT_RT))
 443                local_irq_restore(*flags);
 444}
 445
 446/*
 447 * Interrupts must be disabled (for the fallback code to work right), typically
 448 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
 449 * so we disable interrupts as part of slab_[un]lock().
 450 */
 451static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 452                void *freelist_old, unsigned long counters_old,
 453                void *freelist_new, unsigned long counters_new,
 454                const char *n)
 455{
 456        if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 457                lockdep_assert_irqs_disabled();
 458#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 459    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 460        if (s->flags & __CMPXCHG_DOUBLE) {
 461                if (cmpxchg_double(&page->freelist, &page->counters,
 462                                   freelist_old, counters_old,
 463                                   freelist_new, counters_new))
 464                        return true;
 465        } else
 466#endif
 467        {
 468                /* init to 0 to prevent spurious warnings */
 469                unsigned long flags = 0;
 470
 471                slab_lock(page, &flags);
 472                if (page->freelist == freelist_old &&
 473                                        page->counters == counters_old) {
 474                        page->freelist = freelist_new;
 475                        page->counters = counters_new;
 476                        slab_unlock(page, &flags);
 477                        return true;
 478                }
 479                slab_unlock(page, &flags);
 480        }
 481
 482        cpu_relax();
 483        stat(s, CMPXCHG_DOUBLE_FAIL);
 484
 485#ifdef SLUB_DEBUG_CMPXCHG
 486        pr_info("%s %s: cmpxchg double redo ", n, s->name);
 487#endif
 488
 489        return false;
 490}
 491
 492static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 493                void *freelist_old, unsigned long counters_old,
 494                void *freelist_new, unsigned long counters_new,
 495                const char *n)
 496{
 497#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 498    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 499        if (s->flags & __CMPXCHG_DOUBLE) {
 500                if (cmpxchg_double(&page->freelist, &page->counters,
 501                                   freelist_old, counters_old,
 502                                   freelist_new, counters_new))
 503                        return true;
 504        } else
 505#endif
 506        {
 507                unsigned long flags;
 508
 509                local_irq_save(flags);
 510                __slab_lock(page);
 511                if (page->freelist == freelist_old &&
 512                                        page->counters == counters_old) {
 513                        page->freelist = freelist_new;
 514                        page->counters = counters_new;
 515                        __slab_unlock(page);
 516                        local_irq_restore(flags);
 517                        return true;
 518                }
 519                __slab_unlock(page);
 520                local_irq_restore(flags);
 521        }
 522
 523        cpu_relax();
 524        stat(s, CMPXCHG_DOUBLE_FAIL);
 525
 526#ifdef SLUB_DEBUG_CMPXCHG
 527        pr_info("%s %s: cmpxchg double redo ", n, s->name);
 528#endif
 529
 530        return false;
 531}
 532
 533#ifdef CONFIG_SLUB_DEBUG
 534static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
 535static DEFINE_RAW_SPINLOCK(object_map_lock);
 536
 537static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
 538                       struct page *page)
 539{
 540        void *addr = page_address(page);
 541        void *p;
 542
 543        bitmap_zero(obj_map, page->objects);
 544
 545        for (p = page->freelist; p; p = get_freepointer(s, p))
 546                set_bit(__obj_to_index(s, addr, p), obj_map);
 547}
 548
 549#if IS_ENABLED(CONFIG_KUNIT)
 550static bool slab_add_kunit_errors(void)
 551{
 552        struct kunit_resource *resource;
 553
 554        if (likely(!current->kunit_test))
 555                return false;
 556
 557        resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
 558        if (!resource)
 559                return false;
 560
 561        (*(int *)resource->data)++;
 562        kunit_put_resource(resource);
 563        return true;
 564}
 565#else
 566static inline bool slab_add_kunit_errors(void) { return false; }
 567#endif
 568
 569/*
 570 * Determine a map of object in use on a page.
 571 *
 572 * Node listlock must be held to guarantee that the page does
 573 * not vanish from under us.
 574 */
 575static unsigned long *get_map(struct kmem_cache *s, struct page *page)
 576        __acquires(&object_map_lock)
 577{
 578        VM_BUG_ON(!irqs_disabled());
 579
 580        raw_spin_lock(&object_map_lock);
 581
 582        __fill_map(object_map, s, page);
 583
 584        return object_map;
 585}
 586
 587static void put_map(unsigned long *map) __releases(&object_map_lock)
 588{
 589        VM_BUG_ON(map != object_map);
 590        raw_spin_unlock(&object_map_lock);
 591}
 592
 593static inline unsigned int size_from_object(struct kmem_cache *s)
 594{
 595        if (s->flags & SLAB_RED_ZONE)
 596                return s->size - s->red_left_pad;
 597
 598        return s->size;
 599}
 600
 601static inline void *restore_red_left(struct kmem_cache *s, void *p)
 602{
 603        if (s->flags & SLAB_RED_ZONE)
 604                p -= s->red_left_pad;
 605
 606        return p;
 607}
 608
 609/*
 610 * Debug settings:
 611 */
 612#if defined(CONFIG_SLUB_DEBUG_ON)
 613static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
 614#else
 615static slab_flags_t slub_debug;
 616#endif
 617
 618static char *slub_debug_string;
 619static int disable_higher_order_debug;
 620
 621/*
 622 * slub is about to manipulate internal object metadata.  This memory lies
 623 * outside the range of the allocated object, so accessing it would normally
 624 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 625 * to tell kasan that these accesses are OK.
 626 */
 627static inline void metadata_access_enable(void)
 628{
 629        kasan_disable_current();
 630}
 631
 632static inline void metadata_access_disable(void)
 633{
 634        kasan_enable_current();
 635}
 636
 637/*
 638 * Object debugging
 639 */
 640
 641/* Verify that a pointer has an address that is valid within a slab page */
 642static inline int check_valid_pointer(struct kmem_cache *s,
 643                                struct page *page, void *object)
 644{
 645        void *base;
 646
 647        if (!object)
 648                return 1;
 649
 650        base = page_address(page);
 651        object = kasan_reset_tag(object);
 652        object = restore_red_left(s, object);
 653        if (object < base || object >= base + page->objects * s->size ||
 654                (object - base) % s->size) {
 655                return 0;
 656        }
 657
 658        return 1;
 659}
 660
 661static void print_section(char *level, char *text, u8 *addr,
 662                          unsigned int length)
 663{
 664        metadata_access_enable();
 665        print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
 666                        16, 1, kasan_reset_tag((void *)addr), length, 1);
 667        metadata_access_disable();
 668}
 669
 670/*
 671 * See comment in calculate_sizes().
 672 */
 673static inline bool freeptr_outside_object(struct kmem_cache *s)
 674{
 675        return s->offset >= s->inuse;
 676}
 677
 678/*
 679 * Return offset of the end of info block which is inuse + free pointer if
 680 * not overlapping with object.
 681 */
 682static inline unsigned int get_info_end(struct kmem_cache *s)
 683{
 684        if (freeptr_outside_object(s))
 685                return s->inuse + sizeof(void *);
 686        else
 687                return s->inuse;
 688}
 689
 690static struct track *get_track(struct kmem_cache *s, void *object,
 691        enum track_item alloc)
 692{
 693        struct track *p;
 694
 695        p = object + get_info_end(s);
 696
 697        return kasan_reset_tag(p + alloc);
 698}
 699
 700static void set_track(struct kmem_cache *s, void *object,
 701                        enum track_item alloc, unsigned long addr)
 702{
 703        struct track *p = get_track(s, object, alloc);
 704
 705        if (addr) {
 706#ifdef CONFIG_STACKTRACE
 707                unsigned int nr_entries;
 708
 709                metadata_access_enable();
 710                nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
 711                                              TRACK_ADDRS_COUNT, 3);
 712                metadata_access_disable();
 713
 714                if (nr_entries < TRACK_ADDRS_COUNT)
 715                        p->addrs[nr_entries] = 0;
 716#endif
 717                p->addr = addr;
 718                p->cpu = smp_processor_id();
 719                p->pid = current->pid;
 720                p->when = jiffies;
 721        } else {
 722                memset(p, 0, sizeof(struct track));
 723        }
 724}
 725
 726static void init_tracking(struct kmem_cache *s, void *object)
 727{
 728        if (!(s->flags & SLAB_STORE_USER))
 729                return;
 730
 731        set_track(s, object, TRACK_FREE, 0UL);
 732        set_track(s, object, TRACK_ALLOC, 0UL);
 733}
 734
 735static void print_track(const char *s, struct track *t, unsigned long pr_time)
 736{
 737        if (!t->addr)
 738                return;
 739
 740        pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
 741               s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
 742#ifdef CONFIG_STACKTRACE
 743        {
 744                int i;
 745                for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 746                        if (t->addrs[i])
 747                                pr_err("\t%pS\n", (void *)t->addrs[i]);
 748                        else
 749                                break;
 750        }
 751#endif
 752}
 753
 754void print_tracking(struct kmem_cache *s, void *object)
 755{
 756        unsigned long pr_time = jiffies;
 757        if (!(s->flags & SLAB_STORE_USER))
 758                return;
 759
 760        print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
 761        print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
 762}
 763
 764static void print_page_info(struct page *page)
 765{
 766        pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
 767               page, page->objects, page->inuse, page->freelist,
 768               page->flags, &page->flags);
 769
 770}
 771
 772static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 773{
 774        struct va_format vaf;
 775        va_list args;
 776
 777        va_start(args, fmt);
 778        vaf.fmt = fmt;
 779        vaf.va = &args;
 780        pr_err("=============================================================================\n");
 781        pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 782        pr_err("-----------------------------------------------------------------------------\n\n");
 783        va_end(args);
 784}
 785
 786__printf(2, 3)
 787static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 788{
 789        struct va_format vaf;
 790        va_list args;
 791
 792        if (slab_add_kunit_errors())
 793                return;
 794
 795        va_start(args, fmt);
 796        vaf.fmt = fmt;
 797        vaf.va = &args;
 798        pr_err("FIX %s: %pV\n", s->name, &vaf);
 799        va_end(args);
 800}
 801
 802static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
 803                               void **freelist, void *nextfree)
 804{
 805        if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
 806            !check_valid_pointer(s, page, nextfree) && freelist) {
 807                object_err(s, page, *freelist, "Freechain corrupt");
 808                *freelist = NULL;
 809                slab_fix(s, "Isolate corrupted freechain");
 810                return true;
 811        }
 812
 813        return false;
 814}
 815
 816static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 817{
 818        unsigned int off;       /* Offset of last byte */
 819        u8 *addr = page_address(page);
 820
 821        print_tracking(s, p);
 822
 823        print_page_info(page);
 824
 825        pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
 826               p, p - addr, get_freepointer(s, p));
 827
 828        if (s->flags & SLAB_RED_ZONE)
 829                print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
 830                              s->red_left_pad);
 831        else if (p > addr + 16)
 832                print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 833
 834        print_section(KERN_ERR,         "Object   ", p,
 835                      min_t(unsigned int, s->object_size, PAGE_SIZE));
 836        if (s->flags & SLAB_RED_ZONE)
 837                print_section(KERN_ERR, "Redzone  ", p + s->object_size,
 838                        s->inuse - s->object_size);
 839
 840        off = get_info_end(s);
 841
 842        if (s->flags & SLAB_STORE_USER)
 843                off += 2 * sizeof(struct track);
 844
 845        off += kasan_metadata_size(s);
 846
 847        if (off != size_from_object(s))
 848                /* Beginning of the filler is the free pointer */
 849                print_section(KERN_ERR, "Padding  ", p + off,
 850                              size_from_object(s) - off);
 851
 852        dump_stack();
 853}
 854
 855void object_err(struct kmem_cache *s, struct page *page,
 856                        u8 *object, char *reason)
 857{
 858        if (slab_add_kunit_errors())
 859                return;
 860
 861        slab_bug(s, "%s", reason);
 862        print_trailer(s, page, object);
 863        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 864}
 865
 866static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
 867                        const char *fmt, ...)
 868{
 869        va_list args;
 870        char buf[100];
 871
 872        if (slab_add_kunit_errors())
 873                return;
 874
 875        va_start(args, fmt);
 876        vsnprintf(buf, sizeof(buf), fmt, args);
 877        va_end(args);
 878        slab_bug(s, "%s", buf);
 879        print_page_info(page);
 880        dump_stack();
 881        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 882}
 883
 884static void init_object(struct kmem_cache *s, void *object, u8 val)
 885{
 886        u8 *p = kasan_reset_tag(object);
 887
 888        if (s->flags & SLAB_RED_ZONE)
 889                memset(p - s->red_left_pad, val, s->red_left_pad);
 890
 891        if (s->flags & __OBJECT_POISON) {
 892                memset(p, POISON_FREE, s->object_size - 1);
 893                p[s->object_size - 1] = POISON_END;
 894        }
 895
 896        if (s->flags & SLAB_RED_ZONE)
 897                memset(p + s->object_size, val, s->inuse - s->object_size);
 898}
 899
 900static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 901                                                void *from, void *to)
 902{
 903        slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
 904        memset(from, data, to - from);
 905}
 906
 907static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 908                        u8 *object, char *what,
 909                        u8 *start, unsigned int value, unsigned int bytes)
 910{
 911        u8 *fault;
 912        u8 *end;
 913        u8 *addr = page_address(page);
 914
 915        metadata_access_enable();
 916        fault = memchr_inv(kasan_reset_tag(start), value, bytes);
 917        metadata_access_disable();
 918        if (!fault)
 919                return 1;
 920
 921        end = start + bytes;
 922        while (end > fault && end[-1] == value)
 923                end--;
 924
 925        if (slab_add_kunit_errors())
 926                goto skip_bug_print;
 927
 928        slab_bug(s, "%s overwritten", what);
 929        pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
 930                                        fault, end - 1, fault - addr,
 931                                        fault[0], value);
 932        print_trailer(s, page, object);
 933        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 934
 935skip_bug_print:
 936        restore_bytes(s, what, value, fault, end);
 937        return 0;
 938}
 939
 940/*
 941 * Object layout:
 942 *
 943 * object address
 944 *      Bytes of the object to be managed.
 945 *      If the freepointer may overlay the object then the free
 946 *      pointer is at the middle of the object.
 947 *
 948 *      Poisoning uses 0x6b (POISON_FREE) and the last byte is
 949 *      0xa5 (POISON_END)
 950 *
 951 * object + s->object_size
 952 *      Padding to reach word boundary. This is also used for Redzoning.
 953 *      Padding is extended by another word if Redzoning is enabled and
 954 *      object_size == inuse.
 955 *
 956 *      We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 957 *      0xcc (RED_ACTIVE) for objects in use.
 958 *
 959 * object + s->inuse
 960 *      Meta data starts here.
 961 *
 962 *      A. Free pointer (if we cannot overwrite object on free)
 963 *      B. Tracking data for SLAB_STORE_USER
 964 *      C. Padding to reach required alignment boundary or at minimum
 965 *              one word if debugging is on to be able to detect writes
 966 *              before the word boundary.
 967 *
 968 *      Padding is done using 0x5a (POISON_INUSE)
 969 *
 970 * object + s->size
 971 *      Nothing is used beyond s->size.
 972 *
 973 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 974 * ignored. And therefore no slab options that rely on these boundaries
 975 * may be used with merged slabcaches.
 976 */
 977
 978static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 979{
 980        unsigned long off = get_info_end(s);    /* The end of info */
 981
 982        if (s->flags & SLAB_STORE_USER)
 983                /* We also have user information there */
 984                off += 2 * sizeof(struct track);
 985
 986        off += kasan_metadata_size(s);
 987
 988        if (size_from_object(s) == off)
 989                return 1;
 990
 991        return check_bytes_and_report(s, page, p, "Object padding",
 992                        p + off, POISON_INUSE, size_from_object(s) - off);
 993}
 994
 995/* Check the pad bytes at the end of a slab page */
 996static int slab_pad_check(struct kmem_cache *s, struct page *page)
 997{
 998        u8 *start;
 999        u8 *fault;
1000        u8 *end;
1001        u8 *pad;
1002        int length;
1003        int remainder;
1004
1005        if (!(s->flags & SLAB_POISON))
1006                return 1;
1007
1008        start = page_address(page);
1009        length = page_size(page);
1010        end = start + length;
1011        remainder = length % s->size;
1012        if (!remainder)
1013                return 1;
1014
1015        pad = end - remainder;
1016        metadata_access_enable();
1017        fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1018        metadata_access_disable();
1019        if (!fault)
1020                return 1;
1021        while (end > fault && end[-1] == POISON_INUSE)
1022                end--;
1023
1024        slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1025                        fault, end - 1, fault - start);
1026        print_section(KERN_ERR, "Padding ", pad, remainder);
1027
1028        restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1029        return 0;
1030}
1031
1032static int check_object(struct kmem_cache *s, struct page *page,
1033                                        void *object, u8 val)
1034{
1035        u8 *p = object;
1036        u8 *endobject = object + s->object_size;
1037
1038        if (s->flags & SLAB_RED_ZONE) {
1039                if (!check_bytes_and_report(s, page, object, "Left Redzone",
1040                        object - s->red_left_pad, val, s->red_left_pad))
1041                        return 0;
1042
1043                if (!check_bytes_and_report(s, page, object, "Right Redzone",
1044                        endobject, val, s->inuse - s->object_size))
1045                        return 0;
1046        } else {
1047                if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1048                        check_bytes_and_report(s, page, p, "Alignment padding",
1049                                endobject, POISON_INUSE,
1050                                s->inuse - s->object_size);
1051                }
1052        }
1053
1054        if (s->flags & SLAB_POISON) {
1055                if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1056                        (!check_bytes_and_report(s, page, p, "Poison", p,
1057                                        POISON_FREE, s->object_size - 1) ||
1058                         !check_bytes_and_report(s, page, p, "End Poison",
1059                                p + s->object_size - 1, POISON_END, 1)))
1060                        return 0;
1061                /*
1062                 * check_pad_bytes cleans up on its own.
1063                 */
1064                check_pad_bytes(s, page, p);
1065        }
1066
1067        if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1068                /*
1069                 * Object and freepointer overlap. Cannot check
1070                 * freepointer while object is allocated.
1071                 */
1072                return 1;
1073
1074        /* Check free pointer validity */
1075        if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1076                object_err(s, page, p, "Freepointer corrupt");
1077                /*
1078                 * No choice but to zap it and thus lose the remainder
1079                 * of the free objects in this slab. May cause
1080                 * another error because the object count is now wrong.
1081                 */
1082                set_freepointer(s, p, NULL);
1083                return 0;
1084        }
1085        return 1;
1086}
1087
1088static int check_slab(struct kmem_cache *s, struct page *page)
1089{
1090        int maxobj;
1091
1092        if (!PageSlab(page)) {
1093                slab_err(s, page, "Not a valid slab page");
1094                return 0;
1095        }
1096
1097        maxobj = order_objects(compound_order(page), s->size);
1098        if (page->objects > maxobj) {
1099                slab_err(s, page, "objects %u > max %u",
1100                        page->objects, maxobj);
1101                return 0;
1102        }
1103        if (page->inuse > page->objects) {
1104                slab_err(s, page, "inuse %u > max %u",
1105                        page->inuse, page->objects);
1106                return 0;
1107        }
1108        /* Slab_pad_check fixes things up after itself */
1109        slab_pad_check(s, page);
1110        return 1;
1111}
1112
1113/*
1114 * Determine if a certain object on a page is on the freelist. Must hold the
1115 * slab lock to guarantee that the chains are in a consistent state.
1116 */
1117static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1118{
1119        int nr = 0;
1120        void *fp;
1121        void *object = NULL;
1122        int max_objects;
1123
1124        fp = page->freelist;
1125        while (fp && nr <= page->objects) {
1126                if (fp == search)
1127                        return 1;
1128                if (!check_valid_pointer(s, page, fp)) {
1129                        if (object) {
1130                                object_err(s, page, object,
1131                                        "Freechain corrupt");
1132                                set_freepointer(s, object, NULL);
1133                        } else {
1134                                slab_err(s, page, "Freepointer corrupt");
1135                                page->freelist = NULL;
1136                                page->inuse = page->objects;
1137                                slab_fix(s, "Freelist cleared");
1138                                return 0;
1139                        }
1140                        break;
1141                }
1142                object = fp;
1143                fp = get_freepointer(s, object);
1144                nr++;
1145        }
1146
1147        max_objects = order_objects(compound_order(page), s->size);
1148        if (max_objects > MAX_OBJS_PER_PAGE)
1149                max_objects = MAX_OBJS_PER_PAGE;
1150
1151        if (page->objects != max_objects) {
1152                slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1153                         page->objects, max_objects);
1154                page->objects = max_objects;
1155                slab_fix(s, "Number of objects adjusted");
1156        }
1157        if (page->inuse != page->objects - nr) {
1158                slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1159                         page->inuse, page->objects - nr);
1160                page->inuse = page->objects - nr;
1161                slab_fix(s, "Object count adjusted");
1162        }
1163        return search == NULL;
1164}
1165
1166static void trace(struct kmem_cache *s, struct page *page, void *object,
1167                                                                int alloc)
1168{
1169        if (s->flags & SLAB_TRACE) {
1170                pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1171                        s->name,
1172                        alloc ? "alloc" : "free",
1173                        object, page->inuse,
1174                        page->freelist);
1175
1176                if (!alloc)
1177                        print_section(KERN_INFO, "Object ", (void *)object,
1178                                        s->object_size);
1179
1180                dump_stack();
1181        }
1182}
1183
1184/*
1185 * Tracking of fully allocated slabs for debugging purposes.
1186 */
1187static void add_full(struct kmem_cache *s,
1188        struct kmem_cache_node *n, struct page *page)
1189{
1190        if (!(s->flags & SLAB_STORE_USER))
1191                return;
1192
1193        lockdep_assert_held(&n->list_lock);
1194        list_add(&page->slab_list, &n->full);
1195}
1196
1197static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1198{
1199        if (!(s->flags & SLAB_STORE_USER))
1200                return;
1201
1202        lockdep_assert_held(&n->list_lock);
1203        list_del(&page->slab_list);
1204}
1205
1206/* Tracking of the number of slabs for debugging purposes */
1207static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1208{
1209        struct kmem_cache_node *n = get_node(s, node);
1210
1211        return atomic_long_read(&n->nr_slabs);
1212}
1213
1214static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1215{
1216        return atomic_long_read(&n->nr_slabs);
1217}
1218
1219static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1220{
1221        struct kmem_cache_node *n = get_node(s, node);
1222
1223        /*
1224         * May be called early in order to allocate a slab for the
1225         * kmem_cache_node structure. Solve the chicken-egg
1226         * dilemma by deferring the increment of the count during
1227         * bootstrap (see early_kmem_cache_node_alloc).
1228         */
1229        if (likely(n)) {
1230                atomic_long_inc(&n->nr_slabs);
1231                atomic_long_add(objects, &n->total_objects);
1232        }
1233}
1234static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1235{
1236        struct kmem_cache_node *n = get_node(s, node);
1237
1238        atomic_long_dec(&n->nr_slabs);
1239        atomic_long_sub(objects, &n->total_objects);
1240}
1241
1242/* Object debug checks for alloc/free paths */
1243static void setup_object_debug(struct kmem_cache *s, struct page *page,
1244                                                                void *object)
1245{
1246        if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1247                return;
1248
1249        init_object(s, object, SLUB_RED_INACTIVE);
1250        init_tracking(s, object);
1251}
1252
1253static
1254void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1255{
1256        if (!kmem_cache_debug_flags(s, SLAB_POISON))
1257                return;
1258
1259        metadata_access_enable();
1260        memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1261        metadata_access_disable();
1262}
1263
1264static inline int alloc_consistency_checks(struct kmem_cache *s,
1265                                        struct page *page, void *object)
1266{
1267        if (!check_slab(s, page))
1268                return 0;
1269
1270        if (!check_valid_pointer(s, page, object)) {
1271                object_err(s, page, object, "Freelist Pointer check fails");
1272                return 0;
1273        }
1274
1275        if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1276                return 0;
1277
1278        return 1;
1279}
1280
1281static noinline int alloc_debug_processing(struct kmem_cache *s,
1282                                        struct page *page,
1283                                        void *object, unsigned long addr)
1284{
1285        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1286                if (!alloc_consistency_checks(s, page, object))
1287                        goto bad;
1288        }
1289
1290        /* Success perform special debug activities for allocs */
1291        if (s->flags & SLAB_STORE_USER)
1292                set_track(s, object, TRACK_ALLOC, addr);
1293        trace(s, page, object, 1);
1294        init_object(s, object, SLUB_RED_ACTIVE);
1295        return 1;
1296
1297bad:
1298        if (PageSlab(page)) {
1299                /*
1300                 * If this is a slab page then lets do the best we can
1301                 * to avoid issues in the future. Marking all objects
1302                 * as used avoids touching the remaining objects.
1303                 */
1304                slab_fix(s, "Marking all objects used");
1305                page->inuse = page->objects;
1306                page->freelist = NULL;
1307        }
1308        return 0;
1309}
1310
1311static inline int free_consistency_checks(struct kmem_cache *s,
1312                struct page *page, void *object, unsigned long addr)
1313{
1314        if (!check_valid_pointer(s, page, object)) {
1315                slab_err(s, page, "Invalid object pointer 0x%p", object);
1316                return 0;
1317        }
1318
1319        if (on_freelist(s, page, object)) {
1320                object_err(s, page, object, "Object already free");
1321                return 0;
1322        }
1323
1324        if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1325                return 0;
1326
1327        if (unlikely(s != page->slab_cache)) {
1328                if (!PageSlab(page)) {
1329                        slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1330                                 object);
1331                } else if (!page->slab_cache) {
1332                        pr_err("SLUB <none>: no slab for object 0x%p.\n",
1333                               object);
1334                        dump_stack();
1335                } else
1336                        object_err(s, page, object,
1337                                        "page slab pointer corrupt.");
1338                return 0;
1339        }
1340        return 1;
1341}
1342
1343/* Supports checking bulk free of a constructed freelist */
1344static noinline int free_debug_processing(
1345        struct kmem_cache *s, struct page *page,
1346        void *head, void *tail, int bulk_cnt,
1347        unsigned long addr)
1348{
1349        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1350        void *object = head;
1351        int cnt = 0;
1352        unsigned long flags, flags2;
1353        int ret = 0;
1354
1355        spin_lock_irqsave(&n->list_lock, flags);
1356        slab_lock(page, &flags2);
1357
1358        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1359                if (!check_slab(s, page))
1360                        goto out;
1361        }
1362
1363next_object:
1364        cnt++;
1365
1366        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1367                if (!free_consistency_checks(s, page, object, addr))
1368                        goto out;
1369        }
1370
1371        if (s->flags & SLAB_STORE_USER)
1372                set_track(s, object, TRACK_FREE, addr);
1373        trace(s, page, object, 0);
1374        /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1375        init_object(s, object, SLUB_RED_INACTIVE);
1376
1377        /* Reached end of constructed freelist yet? */
1378        if (object != tail) {
1379                object = get_freepointer(s, object);
1380                goto next_object;
1381        }
1382        ret = 1;
1383
1384out:
1385        if (cnt != bulk_cnt)
1386                slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1387                         bulk_cnt, cnt);
1388
1389        slab_unlock(page, &flags2);
1390        spin_unlock_irqrestore(&n->list_lock, flags);
1391        if (!ret)
1392                slab_fix(s, "Object at 0x%p not freed", object);
1393        return ret;
1394}
1395
1396/*
1397 * Parse a block of slub_debug options. Blocks are delimited by ';'
1398 *
1399 * @str:    start of block
1400 * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1401 * @slabs:  return start of list of slabs, or NULL when there's no list
1402 * @init:   assume this is initial parsing and not per-kmem-create parsing
1403 *
1404 * returns the start of next block if there's any, or NULL
1405 */
1406static char *
1407parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1408{
1409        bool higher_order_disable = false;
1410
1411        /* Skip any completely empty blocks */
1412        while (*str && *str == ';')
1413                str++;
1414
1415        if (*str == ',') {
1416                /*
1417                 * No options but restriction on slabs. This means full
1418                 * debugging for slabs matching a pattern.
1419                 */
1420                *flags = DEBUG_DEFAULT_FLAGS;
1421                goto check_slabs;
1422        }
1423        *flags = 0;
1424
1425        /* Determine which debug features should be switched on */
1426        for (; *str && *str != ',' && *str != ';'; str++) {
1427                switch (tolower(*str)) {
1428                case '-':
1429                        *flags = 0;
1430                        break;
1431                case 'f':
1432                        *flags |= SLAB_CONSISTENCY_CHECKS;
1433                        break;
1434                case 'z':
1435                        *flags |= SLAB_RED_ZONE;
1436                        break;
1437                case 'p':
1438                        *flags |= SLAB_POISON;
1439                        break;
1440                case 'u':
1441                        *flags |= SLAB_STORE_USER;
1442                        break;
1443                case 't':
1444                        *flags |= SLAB_TRACE;
1445                        break;
1446                case 'a':
1447                        *flags |= SLAB_FAILSLAB;
1448                        break;
1449                case 'o':
1450                        /*
1451                         * Avoid enabling debugging on caches if its minimum
1452                         * order would increase as a result.
1453                         */
1454                        higher_order_disable = true;
1455                        break;
1456                default:
1457                        if (init)
1458                                pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1459                }
1460        }
1461check_slabs:
1462        if (*str == ',')
1463                *slabs = ++str;
1464        else
1465                *slabs = NULL;
1466
1467        /* Skip over the slab list */
1468        while (*str && *str != ';')
1469                str++;
1470
1471        /* Skip any completely empty blocks */
1472        while (*str && *str == ';')
1473                str++;
1474
1475        if (init && higher_order_disable)
1476                disable_higher_order_debug = 1;
1477
1478        if (*str)
1479                return str;
1480        else
1481                return NULL;
1482}
1483
1484static int __init setup_slub_debug(char *str)
1485{
1486        slab_flags_t flags;
1487        slab_flags_t global_flags;
1488        char *saved_str;
1489        char *slab_list;
1490        bool global_slub_debug_changed = false;
1491        bool slab_list_specified = false;
1492
1493        global_flags = DEBUG_DEFAULT_FLAGS;
1494        if (*str++ != '=' || !*str)
1495                /*
1496                 * No options specified. Switch on full debugging.
1497                 */
1498                goto out;
1499
1500        saved_str = str;
1501        while (str) {
1502                str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1503
1504                if (!slab_list) {
1505                        global_flags = flags;
1506                        global_slub_debug_changed = true;
1507                } else {
1508                        slab_list_specified = true;
1509                }
1510        }
1511
1512        /*
1513         * For backwards compatibility, a single list of flags with list of
1514         * slabs means debugging is only changed for those slabs, so the global
1515         * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1516         * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1517         * long as there is no option specifying flags without a slab list.
1518         */
1519        if (slab_list_specified) {
1520                if (!global_slub_debug_changed)
1521                        global_flags = slub_debug;
1522                slub_debug_string = saved_str;
1523        }
1524out:
1525        slub_debug = global_flags;
1526        if (slub_debug != 0 || slub_debug_string)
1527                static_branch_enable(&slub_debug_enabled);
1528        else
1529                static_branch_disable(&slub_debug_enabled);
1530        if ((static_branch_unlikely(&init_on_alloc) ||
1531             static_branch_unlikely(&init_on_free)) &&
1532            (slub_debug & SLAB_POISON))
1533                pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1534        return 1;
1535}
1536
1537__setup("slub_debug", setup_slub_debug);
1538
1539/*
1540 * kmem_cache_flags - apply debugging options to the cache
1541 * @object_size:        the size of an object without meta data
1542 * @flags:              flags to set
1543 * @name:               name of the cache
1544 *
1545 * Debug option(s) are applied to @flags. In addition to the debug
1546 * option(s), if a slab name (or multiple) is specified i.e.
1547 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1548 * then only the select slabs will receive the debug option(s).
1549 */
1550slab_flags_t kmem_cache_flags(unsigned int object_size,
1551        slab_flags_t flags, const char *name)
1552{
1553        char *iter;
1554        size_t len;
1555        char *next_block;
1556        slab_flags_t block_flags;
1557        slab_flags_t slub_debug_local = slub_debug;
1558
1559        /*
1560         * If the slab cache is for debugging (e.g. kmemleak) then
1561         * don't store user (stack trace) information by default,
1562         * but let the user enable it via the command line below.
1563         */
1564        if (flags & SLAB_NOLEAKTRACE)
1565                slub_debug_local &= ~SLAB_STORE_USER;
1566
1567        len = strlen(name);
1568        next_block = slub_debug_string;
1569        /* Go through all blocks of debug options, see if any matches our slab's name */
1570        while (next_block) {
1571                next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1572                if (!iter)
1573                        continue;
1574                /* Found a block that has a slab list, search it */
1575                while (*iter) {
1576                        char *end, *glob;
1577                        size_t cmplen;
1578
1579                        end = strchrnul(iter, ',');
1580                        if (next_block && next_block < end)
1581                                end = next_block - 1;
1582
1583                        glob = strnchr(iter, end - iter, '*');
1584                        if (glob)
1585                                cmplen = glob - iter;
1586                        else
1587                                cmplen = max_t(size_t, len, (end - iter));
1588
1589                        if (!strncmp(name, iter, cmplen)) {
1590                                flags |= block_flags;
1591                                return flags;
1592                        }
1593
1594                        if (!*end || *end == ';')
1595                                break;
1596                        iter = end + 1;
1597                }
1598        }
1599
1600        return flags | slub_debug_local;
1601}
1602#else /* !CONFIG_SLUB_DEBUG */
1603static inline void setup_object_debug(struct kmem_cache *s,
1604                        struct page *page, void *object) {}
1605static inline
1606void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1607
1608static inline int alloc_debug_processing(struct kmem_cache *s,
1609        struct page *page, void *object, unsigned long addr) { return 0; }
1610
1611static inline int free_debug_processing(
1612        struct kmem_cache *s, struct page *page,
1613        void *head, void *tail, int bulk_cnt,
1614        unsigned long addr) { return 0; }
1615
1616static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1617                        { return 1; }
1618static inline int check_object(struct kmem_cache *s, struct page *page,
1619                        void *object, u8 val) { return 1; }
1620static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1621                                        struct page *page) {}
1622static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1623                                        struct page *page) {}
1624slab_flags_t kmem_cache_flags(unsigned int object_size,
1625        slab_flags_t flags, const char *name)
1626{
1627        return flags;
1628}
1629#define slub_debug 0
1630
1631#define disable_higher_order_debug 0
1632
1633static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1634                                                        { return 0; }
1635static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1636                                                        { return 0; }
1637static inline void inc_slabs_node(struct kmem_cache *s, int node,
1638                                                        int objects) {}
1639static inline void dec_slabs_node(struct kmem_cache *s, int node,
1640                                                        int objects) {}
1641
1642static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1643                               void **freelist, void *nextfree)
1644{
1645        return false;
1646}
1647#endif /* CONFIG_SLUB_DEBUG */
1648
1649/*
1650 * Hooks for other subsystems that check memory allocations. In a typical
1651 * production configuration these hooks all should produce no code at all.
1652 */
1653static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1654{
1655        ptr = kasan_kmalloc_large(ptr, size, flags);
1656        /* As ptr might get tagged, call kmemleak hook after KASAN. */
1657        kmemleak_alloc(ptr, size, 1, flags);
1658        return ptr;
1659}
1660
1661static __always_inline void kfree_hook(void *x)
1662{
1663        kmemleak_free(x);
1664        kasan_kfree_large(x);
1665}
1666
1667static __always_inline bool slab_free_hook(struct kmem_cache *s,
1668                                                void *x, bool init)
1669{
1670        kmemleak_free_recursive(x, s->flags);
1671
1672        debug_check_no_locks_freed(x, s->object_size);
1673
1674        if (!(s->flags & SLAB_DEBUG_OBJECTS))
1675                debug_check_no_obj_freed(x, s->object_size);
1676
1677        /* Use KCSAN to help debug racy use-after-free. */
1678        if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1679                __kcsan_check_access(x, s->object_size,
1680                                     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1681
1682        /*
1683         * As memory initialization might be integrated into KASAN,
1684         * kasan_slab_free and initialization memset's must be
1685         * kept together to avoid discrepancies in behavior.
1686         *
1687         * The initialization memset's clear the object and the metadata,
1688         * but don't touch the SLAB redzone.
1689         */
1690        if (init) {
1691                int rsize;
1692
1693                if (!kasan_has_integrated_init())
1694                        memset(kasan_reset_tag(x), 0, s->object_size);
1695                rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1696                memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1697                       s->size - s->inuse - rsize);
1698        }
1699        /* KASAN might put x into memory quarantine, delaying its reuse. */
1700        return kasan_slab_free(s, x, init);
1701}
1702
1703static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1704                                           void **head, void **tail,
1705                                           int *cnt)
1706{
1707
1708        void *object;
1709        void *next = *head;
1710        void *old_tail = *tail ? *tail : *head;
1711
1712        if (is_kfence_address(next)) {
1713                slab_free_hook(s, next, false);
1714                return true;
1715        }
1716
1717        /* Head and tail of the reconstructed freelist */
1718        *head = NULL;
1719        *tail = NULL;
1720
1721        do {
1722                object = next;
1723                next = get_freepointer(s, object);
1724
1725                /* If object's reuse doesn't have to be delayed */
1726                if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1727                        /* Move object to the new freelist */
1728                        set_freepointer(s, object, *head);
1729                        *head = object;
1730                        if (!*tail)
1731                                *tail = object;
1732                } else {
1733                        /*
1734                         * Adjust the reconstructed freelist depth
1735                         * accordingly if object's reuse is delayed.
1736                         */
1737                        --(*cnt);
1738                }
1739        } while (object != old_tail);
1740
1741        if (*head == *tail)
1742                *tail = NULL;
1743
1744        return *head != NULL;
1745}
1746
1747static void *setup_object(struct kmem_cache *s, struct page *page,
1748                                void *object)
1749{
1750        setup_object_debug(s, page, object);
1751        object = kasan_init_slab_obj(s, object);
1752        if (unlikely(s->ctor)) {
1753                kasan_unpoison_object_data(s, object);
1754                s->ctor(object);
1755                kasan_poison_object_data(s, object);
1756        }
1757        return object;
1758}
1759
1760/*
1761 * Slab allocation and freeing
1762 */
1763static inline struct page *alloc_slab_page(struct kmem_cache *s,
1764                gfp_t flags, int node, struct kmem_cache_order_objects oo)
1765{
1766        struct page *page;
1767        unsigned int order = oo_order(oo);
1768
1769        if (node == NUMA_NO_NODE)
1770                page = alloc_pages(flags, order);
1771        else
1772                page = __alloc_pages_node(node, flags, order);
1773
1774        return page;
1775}
1776
1777#ifdef CONFIG_SLAB_FREELIST_RANDOM
1778/* Pre-initialize the random sequence cache */
1779static int init_cache_random_seq(struct kmem_cache *s)
1780{
1781        unsigned int count = oo_objects(s->oo);
1782        int err;
1783
1784        /* Bailout if already initialised */
1785        if (s->random_seq)
1786                return 0;
1787
1788        err = cache_random_seq_create(s, count, GFP_KERNEL);
1789        if (err) {
1790                pr_err("SLUB: Unable to initialize free list for %s\n",
1791                        s->name);
1792                return err;
1793        }
1794
1795        /* Transform to an offset on the set of pages */
1796        if (s->random_seq) {
1797                unsigned int i;
1798
1799                for (i = 0; i < count; i++)
1800                        s->random_seq[i] *= s->size;
1801        }
1802        return 0;
1803}
1804
1805/* Initialize each random sequence freelist per cache */
1806static void __init init_freelist_randomization(void)
1807{
1808        struct kmem_cache *s;
1809
1810        mutex_lock(&slab_mutex);
1811
1812        list_for_each_entry(s, &slab_caches, list)
1813                init_cache_random_seq(s);
1814
1815        mutex_unlock(&slab_mutex);
1816}
1817
1818/* Get the next entry on the pre-computed freelist randomized */
1819static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1820                                unsigned long *pos, void *start,
1821                                unsigned long page_limit,
1822                                unsigned long freelist_count)
1823{
1824        unsigned int idx;
1825
1826        /*
1827         * If the target page allocation failed, the number of objects on the
1828         * page might be smaller than the usual size defined by the cache.
1829         */
1830        do {
1831                idx = s->random_seq[*pos];
1832                *pos += 1;
1833                if (*pos >= freelist_count)
1834                        *pos = 0;
1835        } while (unlikely(idx >= page_limit));
1836
1837        return (char *)start + idx;
1838}
1839
1840/* Shuffle the single linked freelist based on a random pre-computed sequence */
1841static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1842{
1843        void *start;
1844        void *cur;
1845        void *next;
1846        unsigned long idx, pos, page_limit, freelist_count;
1847
1848        if (page->objects < 2 || !s->random_seq)
1849                return false;
1850
1851        freelist_count = oo_objects(s->oo);
1852        pos = get_random_int() % freelist_count;
1853
1854        page_limit = page->objects * s->size;
1855        start = fixup_red_left(s, page_address(page));
1856
1857        /* First entry is used as the base of the freelist */
1858        cur = next_freelist_entry(s, page, &pos, start, page_limit,
1859                                freelist_count);
1860        cur = setup_object(s, page, cur);
1861        page->freelist = cur;
1862
1863        for (idx = 1; idx < page->objects; idx++) {
1864                next = next_freelist_entry(s, page, &pos, start, page_limit,
1865                        freelist_count);
1866                next = setup_object(s, page, next);
1867                set_freepointer(s, cur, next);
1868                cur = next;
1869        }
1870        set_freepointer(s, cur, NULL);
1871
1872        return true;
1873}
1874#else
1875static inline int init_cache_random_seq(struct kmem_cache *s)
1876{
1877        return 0;
1878}
1879static inline void init_freelist_randomization(void) { }
1880static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1881{
1882        return false;
1883}
1884#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1885
1886static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1887{
1888        struct page *page;
1889        struct kmem_cache_order_objects oo = s->oo;
1890        gfp_t alloc_gfp;
1891        void *start, *p, *next;
1892        int idx;
1893        bool shuffle;
1894
1895        flags &= gfp_allowed_mask;
1896
1897        flags |= s->allocflags;
1898
1899        /*
1900         * Let the initial higher-order allocation fail under memory pressure
1901         * so we fall-back to the minimum order allocation.
1902         */
1903        alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1904        if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1905                alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1906
1907        page = alloc_slab_page(s, alloc_gfp, node, oo);
1908        if (unlikely(!page)) {
1909                oo = s->min;
1910                alloc_gfp = flags;
1911                /*
1912                 * Allocation may have failed due to fragmentation.
1913                 * Try a lower order alloc if possible
1914                 */
1915                page = alloc_slab_page(s, alloc_gfp, node, oo);
1916                if (unlikely(!page))
1917                        goto out;
1918                stat(s, ORDER_FALLBACK);
1919        }
1920
1921        page->objects = oo_objects(oo);
1922
1923        account_slab_page(page, oo_order(oo), s, flags);
1924
1925        page->slab_cache = s;
1926        __SetPageSlab(page);
1927        if (page_is_pfmemalloc(page))
1928                SetPageSlabPfmemalloc(page);
1929
1930        kasan_poison_slab(page);
1931
1932        start = page_address(page);
1933
1934        setup_page_debug(s, page, start);
1935
1936        shuffle = shuffle_freelist(s, page);
1937
1938        if (!shuffle) {
1939                start = fixup_red_left(s, start);
1940                start = setup_object(s, page, start);
1941                page->freelist = start;
1942                for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1943                        next = p + s->size;
1944                        next = setup_object(s, page, next);
1945                        set_freepointer(s, p, next);
1946                        p = next;
1947                }
1948                set_freepointer(s, p, NULL);
1949        }
1950
1951        page->inuse = page->objects;
1952        page->frozen = 1;
1953
1954out:
1955        if (!page)
1956                return NULL;
1957
1958        inc_slabs_node(s, page_to_nid(page), page->objects);
1959
1960        return page;
1961}
1962
1963static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1964{
1965        if (unlikely(flags & GFP_SLAB_BUG_MASK))
1966                flags = kmalloc_fix_flags(flags);
1967
1968        WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1969
1970        return allocate_slab(s,
1971                flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1972}
1973
1974static void __free_slab(struct kmem_cache *s, struct page *page)
1975{
1976        int order = compound_order(page);
1977        int pages = 1 << order;
1978
1979        if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1980                void *p;
1981
1982                slab_pad_check(s, page);
1983                for_each_object(p, s, page_address(page),
1984                                                page->objects)
1985                        check_object(s, page, p, SLUB_RED_INACTIVE);
1986        }
1987
1988        __ClearPageSlabPfmemalloc(page);
1989        __ClearPageSlab(page);
1990        /* In union with page->mapping where page allocator expects NULL */
1991        page->slab_cache = NULL;
1992        if (current->reclaim_state)
1993                current->reclaim_state->reclaimed_slab += pages;
1994        unaccount_slab_page(page, order, s);
1995        __free_pages(page, order);
1996}
1997
1998static void rcu_free_slab(struct rcu_head *h)
1999{
2000        struct page *page = container_of(h, struct page, rcu_head);
2001
2002        __free_slab(page->slab_cache, page);
2003}
2004
2005static void free_slab(struct kmem_cache *s, struct page *page)
2006{
2007        if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2008                call_rcu(&page->rcu_head, rcu_free_slab);
2009        } else
2010                __free_slab(s, page);
2011}
2012
2013static void discard_slab(struct kmem_cache *s, struct page *page)
2014{
2015        dec_slabs_node(s, page_to_nid(page), page->objects);
2016        free_slab(s, page);
2017}
2018
2019/*
2020 * Management of partially allocated slabs.
2021 */
2022static inline void
2023__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
2024{
2025        n->nr_partial++;
2026        if (tail == DEACTIVATE_TO_TAIL)
2027                list_add_tail(&page->slab_list, &n->partial);
2028        else
2029                list_add(&page->slab_list, &n->partial);
2030}
2031
2032static inline void add_partial(struct kmem_cache_node *n,
2033                                struct page *page, int tail)
2034{
2035        lockdep_assert_held(&n->list_lock);
2036        __add_partial(n, page, tail);
2037}
2038
2039static inline void remove_partial(struct kmem_cache_node *n,
2040                                        struct page *page)
2041{
2042        lockdep_assert_held(&n->list_lock);
2043        list_del(&page->slab_list);
2044        n->nr_partial--;
2045}
2046
2047/*
2048 * Remove slab from the partial list, freeze it and
2049 * return the pointer to the freelist.
2050 *
2051 * Returns a list of objects or NULL if it fails.
2052 */
2053static inline void *acquire_slab(struct kmem_cache *s,
2054                struct kmem_cache_node *n, struct page *page,
2055                int mode, int *objects)
2056{
2057        void *freelist;
2058        unsigned long counters;
2059        struct page new;
2060
2061        lockdep_assert_held(&n->list_lock);
2062
2063        /*
2064         * Zap the freelist and set the frozen bit.
2065         * The old freelist is the list of objects for the
2066         * per cpu allocation list.
2067         */
2068        freelist = page->freelist;
2069        counters = page->counters;
2070        new.counters = counters;
2071        *objects = new.objects - new.inuse;
2072        if (mode) {
2073                new.inuse = page->objects;
2074                new.freelist = NULL;
2075        } else {
2076                new.freelist = freelist;
2077        }
2078
2079        VM_BUG_ON(new.frozen);
2080        new.frozen = 1;
2081
2082        if (!__cmpxchg_double_slab(s, page,
2083                        freelist, counters,
2084                        new.freelist, new.counters,
2085                        "acquire_slab"))
2086                return NULL;
2087
2088        remove_partial(n, page);
2089        WARN_ON(!freelist);
2090        return freelist;
2091}
2092
2093#ifdef CONFIG_SLUB_CPU_PARTIAL
2094static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2095#else
2096static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
2097                                   int drain) { }
2098#endif
2099static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2100
2101/*
2102 * Try to allocate a partial slab from a specific node.
2103 */
2104static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2105                              struct page **ret_page, gfp_t gfpflags)
2106{
2107        struct page *page, *page2;
2108        void *object = NULL;
2109        unsigned int available = 0;
2110        unsigned long flags;
2111        int objects;
2112
2113        /*
2114         * Racy check. If we mistakenly see no partial slabs then we
2115         * just allocate an empty slab. If we mistakenly try to get a
2116         * partial slab and there is none available then get_partial()
2117         * will return NULL.
2118         */
2119        if (!n || !n->nr_partial)
2120                return NULL;
2121
2122        spin_lock_irqsave(&n->list_lock, flags);
2123        list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2124                void *t;
2125
2126                if (!pfmemalloc_match(page, gfpflags))
2127                        continue;
2128
2129                t = acquire_slab(s, n, page, object == NULL, &objects);
2130                if (!t)
2131                        break;
2132
2133                available += objects;
2134                if (!object) {
2135                        *ret_page = page;
2136                        stat(s, ALLOC_FROM_PARTIAL);
2137                        object = t;
2138                } else {
2139                        put_cpu_partial(s, page, 0);
2140                        stat(s, CPU_PARTIAL_NODE);
2141                }
2142                if (!kmem_cache_has_cpu_partial(s)
2143                        || available > slub_cpu_partial(s) / 2)
2144                        break;
2145
2146        }
2147        spin_unlock_irqrestore(&n->list_lock, flags);
2148        return object;
2149}
2150
2151/*
2152 * Get a page from somewhere. Search in increasing NUMA distances.
2153 */
2154static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2155                             struct page **ret_page)
2156{
2157#ifdef CONFIG_NUMA
2158        struct zonelist *zonelist;
2159        struct zoneref *z;
2160        struct zone *zone;
2161        enum zone_type highest_zoneidx = gfp_zone(flags);
2162        void *object;
2163        unsigned int cpuset_mems_cookie;
2164
2165        /*
2166         * The defrag ratio allows a configuration of the tradeoffs between
2167         * inter node defragmentation and node local allocations. A lower
2168         * defrag_ratio increases the tendency to do local allocations
2169         * instead of attempting to obtain partial slabs from other nodes.
2170         *
2171         * If the defrag_ratio is set to 0 then kmalloc() always
2172         * returns node local objects. If the ratio is higher then kmalloc()
2173         * may return off node objects because partial slabs are obtained
2174         * from other nodes and filled up.
2175         *
2176         * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2177         * (which makes defrag_ratio = 1000) then every (well almost)
2178         * allocation will first attempt to defrag slab caches on other nodes.
2179         * This means scanning over all nodes to look for partial slabs which
2180         * may be expensive if we do it every time we are trying to find a slab
2181         * with available objects.
2182         */
2183        if (!s->remote_node_defrag_ratio ||
2184                        get_cycles() % 1024 > s->remote_node_defrag_ratio)
2185                return NULL;
2186
2187        do {
2188                cpuset_mems_cookie = read_mems_allowed_begin();
2189                zonelist = node_zonelist(mempolicy_slab_node(), flags);
2190                for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2191                        struct kmem_cache_node *n;
2192
2193                        n = get_node(s, zone_to_nid(zone));
2194
2195                        if (n && cpuset_zone_allowed(zone, flags) &&
2196                                        n->nr_partial > s->min_partial) {
2197                                object = get_partial_node(s, n, ret_page, flags);
2198                                if (object) {
2199                                        /*
2200                                         * Don't check read_mems_allowed_retry()
2201                                         * here - if mems_allowed was updated in
2202                                         * parallel, that was a harmless race
2203                                         * between allocation and the cpuset
2204                                         * update
2205                                         */
2206                                        return object;
2207                                }
2208                        }
2209                }
2210        } while (read_mems_allowed_retry(cpuset_mems_cookie));
2211#endif  /* CONFIG_NUMA */
2212        return NULL;
2213}
2214
2215/*
2216 * Get a partial page, lock it and return it.
2217 */
2218static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2219                         struct page **ret_page)
2220{
2221        void *object;
2222        int searchnode = node;
2223
2224        if (node == NUMA_NO_NODE)
2225                searchnode = numa_mem_id();
2226
2227        object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
2228        if (object || node != NUMA_NO_NODE)
2229                return object;
2230
2231        return get_any_partial(s, flags, ret_page);
2232}
2233
2234#ifdef CONFIG_PREEMPTION
2235/*
2236 * Calculate the next globally unique transaction for disambiguation
2237 * during cmpxchg. The transactions start with the cpu number and are then
2238 * incremented by CONFIG_NR_CPUS.
2239 */
2240#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2241#else
2242/*
2243 * No preemption supported therefore also no need to check for
2244 * different cpus.
2245 */
2246#define TID_STEP 1
2247#endif
2248
2249static inline unsigned long next_tid(unsigned long tid)
2250{
2251        return tid + TID_STEP;
2252}
2253
2254#ifdef SLUB_DEBUG_CMPXCHG
2255static inline unsigned int tid_to_cpu(unsigned long tid)
2256{
2257        return tid % TID_STEP;
2258}
2259
2260static inline unsigned long tid_to_event(unsigned long tid)
2261{
2262        return tid / TID_STEP;
2263}
2264#endif
2265
2266static inline unsigned int init_tid(int cpu)
2267{
2268        return cpu;
2269}
2270
2271static inline void note_cmpxchg_failure(const char *n,
2272                const struct kmem_cache *s, unsigned long tid)
2273{
2274#ifdef SLUB_DEBUG_CMPXCHG
2275        unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2276
2277        pr_info("%s %s: cmpxchg redo ", n, s->name);
2278
2279#ifdef CONFIG_PREEMPTION
2280        if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2281                pr_warn("due to cpu change %d -> %d\n",
2282                        tid_to_cpu(tid), tid_to_cpu(actual_tid));
2283        else
2284#endif
2285        if (tid_to_event(tid) != tid_to_event(actual_tid))
2286                pr_warn("due to cpu running other code. Event %ld->%ld\n",
2287                        tid_to_event(tid), tid_to_event(actual_tid));
2288        else
2289                pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2290                        actual_tid, tid, next_tid(tid));
2291#endif
2292        stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2293}
2294
2295static void init_kmem_cache_cpus(struct kmem_cache *s)
2296{
2297        int cpu;
2298        struct kmem_cache_cpu *c;
2299
2300        for_each_possible_cpu(cpu) {
2301                c = per_cpu_ptr(s->cpu_slab, cpu);
2302                local_lock_init(&c->lock);
2303                c->tid = init_tid(cpu);
2304        }
2305}
2306
2307/*
2308 * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2309 * unfreezes the slabs and puts it on the proper list.
2310 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2311 * by the caller.
2312 */
2313static void deactivate_slab(struct kmem_cache *s, struct page *page,
2314                            void *freelist)
2315{
2316        enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2317        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2318        int lock = 0, free_delta = 0;
2319        enum slab_modes l = M_NONE, m = M_NONE;
2320        void *nextfree, *freelist_iter, *freelist_tail;
2321        int tail = DEACTIVATE_TO_HEAD;
2322        unsigned long flags = 0;
2323        struct page new;
2324        struct page old;
2325
2326        if (page->freelist) {
2327                stat(s, DEACTIVATE_REMOTE_FREES);
2328                tail = DEACTIVATE_TO_TAIL;
2329        }
2330
2331        /*
2332         * Stage one: Count the objects on cpu's freelist as free_delta and
2333         * remember the last object in freelist_tail for later splicing.
2334         */
2335        freelist_tail = NULL;
2336        freelist_iter = freelist;
2337        while (freelist_iter) {
2338                nextfree = get_freepointer(s, freelist_iter);
2339
2340                /*
2341                 * If 'nextfree' is invalid, it is possible that the object at
2342                 * 'freelist_iter' is already corrupted.  So isolate all objects
2343                 * starting at 'freelist_iter' by skipping them.
2344                 */
2345                if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2346                        break;
2347
2348                freelist_tail = freelist_iter;
2349                free_delta++;
2350
2351                freelist_iter = nextfree;
2352        }
2353
2354        /*
2355         * Stage two: Unfreeze the page while splicing the per-cpu
2356         * freelist to the head of page's freelist.
2357         *
2358         * Ensure that the page is unfrozen while the list presence
2359         * reflects the actual number of objects during unfreeze.
2360         *
2361         * We setup the list membership and then perform a cmpxchg
2362         * with the count. If there is a mismatch then the page
2363         * is not unfrozen but the page is on the wrong list.
2364         *
2365         * Then we restart the process which may have to remove
2366         * the page from the list that we just put it on again
2367         * because the number of objects in the slab may have
2368         * changed.
2369         */
2370redo:
2371
2372        old.freelist = READ_ONCE(page->freelist);
2373        old.counters = READ_ONCE(page->counters);
2374        VM_BUG_ON(!old.frozen);
2375
2376        /* Determine target state of the slab */
2377        new.counters = old.counters;
2378        if (freelist_tail) {
2379                new.inuse -= free_delta;
2380                set_freepointer(s, freelist_tail, old.freelist);
2381                new.freelist = freelist;
2382        } else
2383                new.freelist = old.freelist;
2384
2385        new.frozen = 0;
2386
2387        if (!new.inuse && n->nr_partial >= s->min_partial)
2388                m = M_FREE;
2389        else if (new.freelist) {
2390                m = M_PARTIAL;
2391                if (!lock) {
2392                        lock = 1;
2393                        /*
2394                         * Taking the spinlock removes the possibility
2395                         * that acquire_slab() will see a slab page that
2396                         * is frozen
2397                         */
2398                        spin_lock_irqsave(&n->list_lock, flags);
2399                }
2400        } else {
2401                m = M_FULL;
2402                if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2403                        lock = 1;
2404                        /*
2405                         * This also ensures that the scanning of full
2406                         * slabs from diagnostic functions will not see
2407                         * any frozen slabs.
2408                         */
2409                        spin_lock_irqsave(&n->list_lock, flags);
2410                }
2411        }
2412
2413        if (l != m) {
2414                if (l == M_PARTIAL)
2415                        remove_partial(n, page);
2416                else if (l == M_FULL)
2417                        remove_full(s, n, page);
2418
2419                if (m == M_PARTIAL)
2420                        add_partial(n, page, tail);
2421                else if (m == M_FULL)
2422                        add_full(s, n, page);
2423        }
2424
2425        l = m;
2426        if (!cmpxchg_double_slab(s, page,
2427                                old.freelist, old.counters,
2428                                new.freelist, new.counters,
2429                                "unfreezing slab"))
2430                goto redo;
2431
2432        if (lock)
2433                spin_unlock_irqrestore(&n->list_lock, flags);
2434
2435        if (m == M_PARTIAL)
2436                stat(s, tail);
2437        else if (m == M_FULL)
2438                stat(s, DEACTIVATE_FULL);
2439        else if (m == M_FREE) {
2440                stat(s, DEACTIVATE_EMPTY);
2441                discard_slab(s, page);
2442                stat(s, FREE_SLAB);
2443        }
2444}
2445
2446#ifdef CONFIG_SLUB_CPU_PARTIAL
2447static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2448{
2449        struct kmem_cache_node *n = NULL, *n2 = NULL;
2450        struct page *page, *discard_page = NULL;
2451        unsigned long flags = 0;
2452
2453        while (partial_page) {
2454                struct page new;
2455                struct page old;
2456
2457                page = partial_page;
2458                partial_page = page->next;
2459
2460                n2 = get_node(s, page_to_nid(page));
2461                if (n != n2) {
2462                        if (n)
2463                                spin_unlock_irqrestore(&n->list_lock, flags);
2464
2465                        n = n2;
2466                        spin_lock_irqsave(&n->list_lock, flags);
2467                }
2468
2469                do {
2470
2471                        old.freelist = page->freelist;
2472                        old.counters = page->counters;
2473                        VM_BUG_ON(!old.frozen);
2474
2475                        new.counters = old.counters;
2476                        new.freelist = old.freelist;
2477
2478                        new.frozen = 0;
2479
2480                } while (!__cmpxchg_double_slab(s, page,
2481                                old.freelist, old.counters,
2482                                new.freelist, new.counters,
2483                                "unfreezing slab"));
2484
2485                if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2486                        page->next = discard_page;
2487                        discard_page = page;
2488                } else {
2489                        add_partial(n, page, DEACTIVATE_TO_TAIL);
2490                        stat(s, FREE_ADD_PARTIAL);
2491                }
2492        }
2493
2494        if (n)
2495                spin_unlock_irqrestore(&n->list_lock, flags);
2496
2497        while (discard_page) {
2498                page = discard_page;
2499                discard_page = discard_page->next;
2500
2501                stat(s, DEACTIVATE_EMPTY);
2502                discard_slab(s, page);
2503                stat(s, FREE_SLAB);
2504        }
2505}
2506
2507/*
2508 * Unfreeze all the cpu partial slabs.
2509 */
2510static void unfreeze_partials(struct kmem_cache *s)
2511{
2512        struct page *partial_page;
2513        unsigned long flags;
2514
2515        local_lock_irqsave(&s->cpu_slab->lock, flags);
2516        partial_page = this_cpu_read(s->cpu_slab->partial);
2517        this_cpu_write(s->cpu_slab->partial, NULL);
2518        local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2519
2520        if (partial_page)
2521                __unfreeze_partials(s, partial_page);
2522}
2523
2524static void unfreeze_partials_cpu(struct kmem_cache *s,
2525                                  struct kmem_cache_cpu *c)
2526{
2527        struct page *partial_page;
2528
2529        partial_page = slub_percpu_partial(c);
2530        c->partial = NULL;
2531
2532        if (partial_page)
2533                __unfreeze_partials(s, partial_page);
2534}
2535
2536/*
2537 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2538 * partial page slot if available.
2539 *
2540 * If we did not find a slot then simply move all the partials to the
2541 * per node partial list.
2542 */
2543static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2544{
2545        struct page *oldpage;
2546        struct page *page_to_unfreeze = NULL;
2547        unsigned long flags;
2548        int pages = 0;
2549        int pobjects = 0;
2550
2551        local_lock_irqsave(&s->cpu_slab->lock, flags);
2552
2553        oldpage = this_cpu_read(s->cpu_slab->partial);
2554
2555        if (oldpage) {
2556                if (drain && oldpage->pobjects > slub_cpu_partial(s)) {
2557                        /*
2558                         * Partial array is full. Move the existing set to the
2559                         * per node partial list. Postpone the actual unfreezing
2560                         * outside of the critical section.
2561                         */
2562                        page_to_unfreeze = oldpage;
2563                        oldpage = NULL;
2564                } else {
2565                        pobjects = oldpage->pobjects;
2566                        pages = oldpage->pages;
2567                }
2568        }
2569
2570        pages++;
2571        pobjects += page->objects - page->inuse;
2572
2573        page->pages = pages;
2574        page->pobjects = pobjects;
2575        page->next = oldpage;
2576
2577        this_cpu_write(s->cpu_slab->partial, page);
2578
2579        local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2580
2581        if (page_to_unfreeze) {
2582                __unfreeze_partials(s, page_to_unfreeze);
2583                stat(s, CPU_PARTIAL_DRAIN);
2584        }
2585}
2586
2587#else   /* CONFIG_SLUB_CPU_PARTIAL */
2588
2589static inline void unfreeze_partials(struct kmem_cache *s) { }
2590static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2591                                  struct kmem_cache_cpu *c) { }
2592
2593#endif  /* CONFIG_SLUB_CPU_PARTIAL */
2594
2595static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2596{
2597        unsigned long flags;
2598        struct page *page;
2599        void *freelist;
2600
2601        local_lock_irqsave(&s->cpu_slab->lock, flags);
2602
2603        page = c->page;
2604        freelist = c->freelist;
2605
2606        c->page = NULL;
2607        c->freelist = NULL;
2608        c->tid = next_tid(c->tid);
2609
2610        local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2611
2612        if (page) {
2613                deactivate_slab(s, page, freelist);
2614                stat(s, CPUSLAB_FLUSH);
2615        }
2616}
2617
2618static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2619{
2620        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2621        void *freelist = c->freelist;
2622        struct page *page = c->page;
2623
2624        c->page = NULL;
2625        c->freelist = NULL;
2626        c->tid = next_tid(c->tid);
2627
2628        if (page) {
2629                deactivate_slab(s, page, freelist);
2630                stat(s, CPUSLAB_FLUSH);
2631        }
2632
2633        unfreeze_partials_cpu(s, c);
2634}
2635
2636struct slub_flush_work {
2637        struct work_struct work;
2638        struct kmem_cache *s;
2639        bool skip;
2640};
2641
2642/*
2643 * Flush cpu slab.
2644 *
2645 * Called from CPU work handler with migration disabled.
2646 */
2647static void flush_cpu_slab(struct work_struct *w)
2648{
2649        struct kmem_cache *s;
2650        struct kmem_cache_cpu *c;
2651        struct slub_flush_work *sfw;
2652
2653        sfw = container_of(w, struct slub_flush_work, work);
2654
2655        s = sfw->s;
2656        c = this_cpu_ptr(s->cpu_slab);
2657
2658        if (c->page)
2659                flush_slab(s, c);
2660
2661        unfreeze_partials(s);
2662}
2663
2664static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2665{
2666        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2667
2668        return c->page || slub_percpu_partial(c);
2669}
2670
2671static DEFINE_MUTEX(flush_lock);
2672static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2673
2674static void flush_all_cpus_locked(struct kmem_cache *s)
2675{
2676        struct slub_flush_work *sfw;
2677        unsigned int cpu;
2678
2679        lockdep_assert_cpus_held();
2680        mutex_lock(&flush_lock);
2681
2682        for_each_online_cpu(cpu) {
2683                sfw = &per_cpu(slub_flush, cpu);
2684                if (!has_cpu_slab(cpu, s)) {
2685                        sfw->skip = true;
2686                        continue;
2687                }
2688                INIT_WORK(&sfw->work, flush_cpu_slab);
2689                sfw->skip = false;
2690                sfw->s = s;
2691                schedule_work_on(cpu, &sfw->work);
2692        }
2693
2694        for_each_online_cpu(cpu) {
2695                sfw = &per_cpu(slub_flush, cpu);
2696                if (sfw->skip)
2697                        continue;
2698                flush_work(&sfw->work);
2699        }
2700
2701        mutex_unlock(&flush_lock);
2702}
2703
2704static void flush_all(struct kmem_cache *s)
2705{
2706        cpus_read_lock();
2707        flush_all_cpus_locked(s);
2708        cpus_read_unlock();
2709}
2710
2711/*
2712 * Use the cpu notifier to insure that the cpu slabs are flushed when
2713 * necessary.
2714 */
2715static int slub_cpu_dead(unsigned int cpu)
2716{
2717        struct kmem_cache *s;
2718
2719        mutex_lock(&slab_mutex);
2720        list_for_each_entry(s, &slab_caches, list)
2721                __flush_cpu_slab(s, cpu);
2722        mutex_unlock(&slab_mutex);
2723        return 0;
2724}
2725
2726/*
2727 * Check if the objects in a per cpu structure fit numa
2728 * locality expectations.
2729 */
2730static inline int node_match(struct page *page, int node)
2731{
2732#ifdef CONFIG_NUMA
2733        if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2734                return 0;
2735#endif
2736        return 1;
2737}
2738
2739#ifdef CONFIG_SLUB_DEBUG
2740static int count_free(struct page *page)
2741{
2742        return page->objects - page->inuse;
2743}
2744
2745static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2746{
2747        return atomic_long_read(&n->total_objects);
2748}
2749#endif /* CONFIG_SLUB_DEBUG */
2750
2751#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2752static unsigned long count_partial(struct kmem_cache_node *n,
2753                                        int (*get_count)(struct page *))
2754{
2755        unsigned long flags;
2756        unsigned long x = 0;
2757        struct page *page;
2758
2759        spin_lock_irqsave(&n->list_lock, flags);
2760        list_for_each_entry(page, &n->partial, slab_list)
2761                x += get_count(page);
2762        spin_unlock_irqrestore(&n->list_lock, flags);
2763        return x;
2764}
2765#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2766
2767static noinline void
2768slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2769{
2770#ifdef CONFIG_SLUB_DEBUG
2771        static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2772                                      DEFAULT_RATELIMIT_BURST);
2773        int node;
2774        struct kmem_cache_node *n;
2775
2776        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2777                return;
2778
2779        pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2780                nid, gfpflags, &gfpflags);
2781        pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2782                s->name, s->object_size, s->size, oo_order(s->oo),
2783                oo_order(s->min));
2784
2785        if (oo_order(s->min) > get_order(s->object_size))
2786                pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2787                        s->name);
2788
2789        for_each_kmem_cache_node(s, node, n) {
2790                unsigned long nr_slabs;
2791                unsigned long nr_objs;
2792                unsigned long nr_free;
2793
2794                nr_free  = count_partial(n, count_free);
2795                nr_slabs = node_nr_slabs(n);
2796                nr_objs  = node_nr_objs(n);
2797
2798                pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2799                        node, nr_slabs, nr_objs, nr_free);
2800        }
2801#endif
2802}
2803
2804static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2805{
2806        if (unlikely(PageSlabPfmemalloc(page)))
2807                return gfp_pfmemalloc_allowed(gfpflags);
2808
2809        return true;
2810}
2811
2812/*
2813 * A variant of pfmemalloc_match() that tests page flags without asserting
2814 * PageSlab. Intended for opportunistic checks before taking a lock and
2815 * rechecking that nobody else freed the page under us.
2816 */
2817static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2818{
2819        if (unlikely(__PageSlabPfmemalloc(page)))
2820                return gfp_pfmemalloc_allowed(gfpflags);
2821
2822        return true;
2823}
2824
2825/*
2826 * Check the page->freelist of a page and either transfer the freelist to the
2827 * per cpu freelist or deactivate the page.
2828 *
2829 * The page is still frozen if the return value is not NULL.
2830 *
2831 * If this function returns NULL then the page has been unfrozen.
2832 */
2833static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2834{
2835        struct page new;
2836        unsigned long counters;
2837        void *freelist;
2838
2839        lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2840
2841        do {
2842                freelist = page->freelist;
2843                counters = page->counters;
2844
2845                new.counters = counters;
2846                VM_BUG_ON(!new.frozen);
2847
2848                new.inuse = page->objects;
2849                new.frozen = freelist != NULL;
2850
2851        } while (!__cmpxchg_double_slab(s, page,
2852                freelist, counters,
2853                NULL, new.counters,
2854                "get_freelist"));
2855
2856        return freelist;
2857}
2858
2859/*
2860 * Slow path. The lockless freelist is empty or we need to perform
2861 * debugging duties.
2862 *
2863 * Processing is still very fast if new objects have been freed to the
2864 * regular freelist. In that case we simply take over the regular freelist
2865 * as the lockless freelist and zap the regular freelist.
2866 *
2867 * If that is not working then we fall back to the partial lists. We take the
2868 * first element of the freelist as the object to allocate now and move the
2869 * rest of the freelist to the lockless freelist.
2870 *
2871 * And if we were unable to get a new slab from the partial slab lists then
2872 * we need to allocate a new slab. This is the slowest path since it involves
2873 * a call to the page allocator and the setup of a new slab.
2874 *
2875 * Version of __slab_alloc to use when we know that preemption is
2876 * already disabled (which is the case for bulk allocation).
2877 */
2878static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2879                          unsigned long addr, struct kmem_cache_cpu *c)
2880{
2881        void *freelist;
2882        struct page *page;
2883        unsigned long flags;
2884
2885        stat(s, ALLOC_SLOWPATH);
2886
2887reread_page:
2888
2889        page = READ_ONCE(c->page);
2890        if (!page) {
2891                /*
2892                 * if the node is not online or has no normal memory, just
2893                 * ignore the node constraint
2894                 */
2895                if (unlikely(node != NUMA_NO_NODE &&
2896                             !node_isset(node, slab_nodes)))
2897                        node = NUMA_NO_NODE;
2898                goto new_slab;
2899        }
2900redo:
2901
2902        if (unlikely(!node_match(page, node))) {
2903                /*
2904                 * same as above but node_match() being false already
2905                 * implies node != NUMA_NO_NODE
2906                 */
2907                if (!node_isset(node, slab_nodes)) {
2908                        node = NUMA_NO_NODE;
2909                        goto redo;
2910                } else {
2911                        stat(s, ALLOC_NODE_MISMATCH);
2912                        goto deactivate_slab;
2913                }
2914        }
2915
2916        /*
2917         * By rights, we should be searching for a slab page that was
2918         * PFMEMALLOC but right now, we are losing the pfmemalloc
2919         * information when the page leaves the per-cpu allocator
2920         */
2921        if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2922                goto deactivate_slab;
2923
2924        /* must check again c->page in case we got preempted and it changed */
2925        local_lock_irqsave(&s->cpu_slab->lock, flags);
2926        if (unlikely(page != c->page)) {
2927                local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2928                goto reread_page;
2929        }
2930        freelist = c->freelist;
2931        if (freelist)
2932                goto load_freelist;
2933
2934        freelist = get_freelist(s, page);
2935
2936        if (!freelist) {
2937                c->page = NULL;
2938                local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2939                stat(s, DEACTIVATE_BYPASS);
2940                goto new_slab;
2941        }
2942
2943        stat(s, ALLOC_REFILL);
2944
2945load_freelist:
2946
2947        lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2948
2949        /*
2950         * freelist is pointing to the list of objects to be used.
2951         * page is pointing to the page from which the objects are obtained.
2952         * That page must be frozen for per cpu allocations to work.
2953         */
2954        VM_BUG_ON(!c->page->frozen);
2955        c->freelist = get_freepointer(s, freelist);
2956        c->tid = next_tid(c->tid);
2957        local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2958        return freelist;
2959
2960deactivate_slab:
2961
2962        local_lock_irqsave(&s->cpu_slab->lock, flags);
2963        if (page != c->page) {
2964                local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2965                goto reread_page;
2966        }
2967        freelist = c->freelist;
2968        c->page = NULL;
2969        c->freelist = NULL;
2970        local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2971        deactivate_slab(s, page, freelist);
2972
2973new_slab:
2974
2975        if (slub_percpu_partial(c)) {
2976                local_lock_irqsave(&s->cpu_slab->lock, flags);
2977                if (unlikely(c->page)) {
2978                        local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2979                        goto reread_page;
2980                }
2981                if (unlikely(!slub_percpu_partial(c))) {
2982                        local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2983                        /* we were preempted and partial list got empty */
2984                        goto new_objects;
2985                }
2986
2987                page = c->page = slub_percpu_partial(c);
2988                slub_set_percpu_partial(c, page);
2989                local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2990                stat(s, CPU_PARTIAL_ALLOC);
2991                goto redo;
2992        }
2993
2994new_objects:
2995
2996        freelist = get_partial(s, gfpflags, node, &page);
2997        if (freelist)
2998                goto check_new_page;
2999
3000        slub_put_cpu_ptr(s->cpu_slab);
3001        page = new_slab(s, gfpflags, node);
3002        c = slub_get_cpu_ptr(s->cpu_slab);
3003
3004        if (unlikely(!page)) {
3005                slab_out_of_memory(s, gfpflags, node);
3006                return NULL;
3007        }
3008
3009        /*
3010         * No other reference to the page yet so we can
3011         * muck around with it freely without cmpxchg
3012         */
3013        freelist = page->freelist;
3014        page->freelist = NULL;
3015
3016        stat(s, ALLOC_SLAB);
3017
3018check_new_page:
3019
3020        if (kmem_cache_debug(s)) {
3021                if (!alloc_debug_processing(s, page, freelist, addr)) {
3022                        /* Slab failed checks. Next slab needed */
3023                        goto new_slab;
3024                } else {
3025                        /*
3026                         * For debug case, we don't load freelist so that all
3027                         * allocations go through alloc_debug_processing()
3028                         */
3029                        goto return_single;
3030                }
3031        }
3032
3033        if (unlikely(!pfmemalloc_match(page, gfpflags)))
3034                /*
3035                 * For !pfmemalloc_match() case we don't load freelist so that
3036                 * we don't make further mismatched allocations easier.
3037                 */
3038                goto return_single;
3039
3040retry_load_page:
3041
3042        local_lock_irqsave(&s->cpu_slab->lock, flags);
3043        if (unlikely(c->page)) {
3044                void *flush_freelist = c->freelist;
3045                struct page *flush_page = c->page;
3046
3047                c->page = NULL;
3048                c->freelist = NULL;
3049                c->tid = next_tid(c->tid);
3050
3051                local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3052
3053                deactivate_slab(s, flush_page, flush_freelist);
3054
3055                stat(s, CPUSLAB_FLUSH);
3056
3057                goto retry_load_page;
3058        }
3059        c->page = page;
3060
3061        goto load_freelist;
3062
3063return_single:
3064
3065        deactivate_slab(s, page, get_freepointer(s, freelist));
3066        return freelist;
3067}
3068
3069/*
3070 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3071 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3072 * pointer.
3073 */
3074static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3075                          unsigned long addr, struct kmem_cache_cpu *c)
3076{
3077        void *p;
3078
3079#ifdef CONFIG_PREEMPT_COUNT
3080        /*
3081         * We may have been preempted and rescheduled on a different
3082         * cpu before disabling preemption. Need to reload cpu area
3083         * pointer.
3084         */
3085        c = slub_get_cpu_ptr(s->cpu_slab);
3086#endif
3087
3088        p = ___slab_alloc(s, gfpflags, node, addr, c);
3089#ifdef CONFIG_PREEMPT_COUNT
3090        slub_put_cpu_ptr(s->cpu_slab);
3091#endif
3092        return p;
3093}
3094
3095/*
3096 * If the object has been wiped upon free, make sure it's fully initialized by
3097 * zeroing out freelist pointer.
3098 */
3099static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3100                                                   void *obj)
3101{
3102        if (unlikely(slab_want_init_on_free(s)) && obj)
3103                memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3104                        0, sizeof(void *));
3105}
3106
3107/*
3108 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3109 * have the fastpath folded into their functions. So no function call
3110 * overhead for requests that can be satisfied on the fastpath.
3111 *
3112 * The fastpath works by first checking if the lockless freelist can be used.
3113 * If not then __slab_alloc is called for slow processing.
3114 *
3115 * Otherwise we can simply pick the next object from the lockless free list.
3116 */
3117static __always_inline void *slab_alloc_node(struct kmem_cache *s,
3118                gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3119{
3120        void *object;
3121        struct kmem_cache_cpu *c;
3122        struct page *page;
3123        unsigned long tid;
3124        struct obj_cgroup *objcg = NULL;
3125        bool init = false;
3126
3127        s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
3128        if (!s)
3129                return NULL;
3130
3131        object = kfence_alloc(s, orig_size, gfpflags);
3132        if (unlikely(object))
3133                goto out;
3134
3135redo:
3136        /*
3137         * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3138         * enabled. We may switch back and forth between cpus while
3139         * reading from one cpu area. That does not matter as long
3140         * as we end up on the original cpu again when doing the cmpxchg.
3141         *
3142         * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3143         * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3144         * the tid. If we are preempted and switched to another cpu between the
3145         * two reads, it's OK as the two are still associated with the same cpu
3146         * and cmpxchg later will validate the cpu.
3147         */
3148        c = raw_cpu_ptr(s->cpu_slab);
3149        tid = READ_ONCE(c->tid);
3150
3151        /*
3152         * Irqless object alloc/free algorithm used here depends on sequence
3153         * of fetching cpu_slab's data. tid should be fetched before anything
3154         * on c to guarantee that object and page associated with previous tid
3155         * won't be used with current tid. If we fetch tid first, object and
3156         * page could be one associated with next tid and our alloc/free
3157         * request will be failed. In this case, we will retry. So, no problem.
3158         */
3159        barrier();
3160
3161        /*
3162         * The transaction ids are globally unique per cpu and per operation on
3163         * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3164         * occurs on the right processor and that there was no operation on the
3165         * linked list in between.
3166         */
3167
3168        object = c->freelist;
3169        page = c->page;
3170        /*
3171         * We cannot use the lockless fastpath on PREEMPT_RT because if a
3172         * slowpath has taken the local_lock_irqsave(), it is not protected
3173         * against a fast path operation in an irq handler. So we need to take
3174         * the slow path which uses local_lock. It is still relatively fast if
3175         * there is a suitable cpu freelist.
3176         */
3177        if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3178            unlikely(!object || !page || !node_match(page, node))) {
3179                object = __slab_alloc(s, gfpflags, node, addr, c);
3180        } else {
3181                void *next_object = get_freepointer_safe(s, object);
3182
3183                /*
3184                 * The cmpxchg will only match if there was no additional
3185                 * operation and if we are on the right processor.
3186                 *
3187                 * The cmpxchg does the following atomically (without lock
3188                 * semantics!)
3189                 * 1. Relocate first pointer to the current per cpu area.
3190                 * 2. Verify that tid and freelist have not been changed
3191                 * 3. If they were not changed replace tid and freelist
3192                 *
3193                 * Since this is without lock semantics the protection is only
3194                 * against code executing on this cpu *not* from access by
3195                 * other cpus.
3196                 */
3197                if (unlikely(!this_cpu_cmpxchg_double(
3198                                s->cpu_slab->freelist, s->cpu_slab->tid,
3199                                object, tid,
3200                                next_object, next_tid(tid)))) {
3201
3202                        note_cmpxchg_failure("slab_alloc", s, tid);
3203                        goto redo;
3204                }
3205                prefetch_freepointer(s, next_object);
3206                stat(s, ALLOC_FASTPATH);
3207        }
3208
3209        maybe_wipe_obj_freeptr(s, object);
3210        init = slab_want_init_on_alloc(gfpflags, s);
3211
3212out:
3213        slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3214
3215        return object;
3216}
3217
3218static __always_inline void *slab_alloc(struct kmem_cache *s,
3219                gfp_t gfpflags, unsigned long addr, size_t orig_size)
3220{
3221        return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
3222}
3223
3224void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3225{
3226        void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
3227
3228        trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3229                                s->size, gfpflags);
3230
3231        return ret;
3232}
3233EXPORT_SYMBOL(kmem_cache_alloc);
3234
3235#ifdef CONFIG_TRACING
3236void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3237{
3238        void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
3239        trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3240        ret = kasan_kmalloc(s, ret, size, gfpflags);
3241        return ret;
3242}
3243EXPORT_SYMBOL(kmem_cache_alloc_trace);
3244#endif
3245
3246#ifdef CONFIG_NUMA
3247void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3248{
3249        void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3250
3251        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3252                                    s->object_size, s->size, gfpflags, node);
3253
3254        return ret;
3255}
3256EXPORT_SYMBOL(kmem_cache_alloc_node);
3257
3258#ifdef CONFIG_TRACING
3259void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3260                                    gfp_t gfpflags,
3261                                    int node, size_t size)
3262{
3263        void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3264
3265        trace_kmalloc_node(_RET_IP_, ret,
3266                           size, s->size, gfpflags, node);
3267
3268        ret = kasan_kmalloc(s, ret, size, gfpflags);
3269        return ret;
3270}
3271EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3272#endif
3273#endif  /* CONFIG_NUMA */
3274
3275/*
3276 * Slow path handling. This may still be called frequently since objects
3277 * have a longer lifetime than the cpu slabs in most processing loads.
3278 *
3279 * So we still attempt to reduce cache line usage. Just take the slab
3280 * lock and free the item. If there is no additional partial page
3281 * handling required then we can return immediately.
3282 */
3283static void __slab_free(struct kmem_cache *s, struct page *page,
3284                        void *head, void *tail, int cnt,
3285                        unsigned long addr)
3286
3287{
3288        void *prior;
3289        int was_frozen;
3290        struct page new;
3291        unsigned long counters;
3292        struct kmem_cache_node *n = NULL;
3293        unsigned long flags;
3294
3295        stat(s, FREE_SLOWPATH);
3296
3297        if (kfence_free(head))
3298                return;
3299
3300        if (kmem_cache_debug(s) &&
3301            !free_debug_processing(s, page, head, tail, cnt, addr))
3302                return;
3303
3304        do {
3305                if (unlikely(n)) {
3306                        spin_unlock_irqrestore(&n->list_lock, flags);
3307                        n = NULL;
3308                }
3309                prior = page->freelist;
3310                counters = page->counters;
3311                set_freepointer(s, tail, prior);
3312                new.counters = counters;
3313                was_frozen = new.frozen;
3314                new.inuse -= cnt;
3315                if ((!new.inuse || !prior) && !was_frozen) {
3316
3317                        if (kmem_cache_has_cpu_partial(s) && !prior) {
3318
3319                                /*
3320                                 * Slab was on no list before and will be
3321                                 * partially empty
3322                                 * We can defer the list move and instead
3323                                 * freeze it.
3324                                 */
3325                                new.frozen = 1;
3326
3327                        } else { /* Needs to be taken off a list */
3328
3329                                n = get_node(s, page_to_nid(page));
3330                                /*
3331                                 * Speculatively acquire the list_lock.
3332                                 * If the cmpxchg does not succeed then we may
3333                                 * drop the list_lock without any processing.
3334                                 *
3335                                 * Otherwise the list_lock will synchronize with
3336                                 * other processors updating the list of slabs.
3337                                 */
3338                                spin_lock_irqsave(&n->list_lock, flags);
3339
3340                        }
3341                }
3342
3343        } while (!cmpxchg_double_slab(s, page,
3344                prior, counters,
3345                head, new.counters,
3346                "__slab_free"));
3347
3348        if (likely(!n)) {
3349
3350                if (likely(was_frozen)) {
3351                        /*
3352                         * The list lock was not taken therefore no list
3353                         * activity can be necessary.
3354                         */
3355                        stat(s, FREE_FROZEN);
3356                } else if (new.frozen) {
3357                        /*
3358                         * If we just froze the page then put it onto the
3359                         * per cpu partial list.
3360                         */
3361                        put_cpu_partial(s, page, 1);
3362                        stat(s, CPU_PARTIAL_FREE);
3363                }
3364
3365                return;
3366        }
3367
3368        if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3369                goto slab_empty;
3370
3371        /*
3372         * Objects left in the slab. If it was not on the partial list before
3373         * then add it.
3374         */
3375        if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3376                remove_full(s, n, page);
3377                add_partial(n, page, DEACTIVATE_TO_TAIL);
3378                stat(s, FREE_ADD_PARTIAL);
3379        }
3380        spin_unlock_irqrestore(&n->list_lock, flags);
3381        return;
3382
3383slab_empty:
3384        if (prior) {
3385                /*
3386                 * Slab on the partial list.
3387                 */
3388                remove_partial(n, page);
3389                stat(s, FREE_REMOVE_PARTIAL);
3390        } else {
3391                /* Slab must be on the full list */
3392                remove_full(s, n, page);
3393        }
3394
3395        spin_unlock_irqrestore(&n->list_lock, flags);
3396        stat(s, FREE_SLAB);
3397        discard_slab(s, page);
3398}
3399
3400/*
3401 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3402 * can perform fastpath freeing without additional function calls.
3403 *
3404 * The fastpath is only possible if we are freeing to the current cpu slab
3405 * of this processor. This typically the case if we have just allocated
3406 * the item before.
3407 *
3408 * If fastpath is not possible then fall back to __slab_free where we deal
3409 * with all sorts of special processing.
3410 *
3411 * Bulk free of a freelist with several objects (all pointing to the
3412 * same page) possible by specifying head and tail ptr, plus objects
3413 * count (cnt). Bulk free indicated by tail pointer being set.
3414 */
3415static __always_inline void do_slab_free(struct kmem_cache *s,
3416                                struct page *page, void *head, void *tail,
3417                                int cnt, unsigned long addr)
3418{
3419        void *tail_obj = tail ? : head;
3420        struct kmem_cache_cpu *c;
3421        unsigned long tid;
3422
3423        /* memcg_slab_free_hook() is already called for bulk free. */
3424        if (!tail)
3425                memcg_slab_free_hook(s, &head, 1);
3426redo:
3427        /*
3428         * Determine the currently cpus per cpu slab.
3429         * The cpu may change afterward. However that does not matter since
3430         * data is retrieved via this pointer. If we are on the same cpu
3431         * during the cmpxchg then the free will succeed.
3432         */
3433        c = raw_cpu_ptr(s->cpu_slab);
3434        tid = READ_ONCE(c->tid);
3435
3436        /* Same with comment on barrier() in slab_alloc_node() */
3437        barrier();
3438
3439        if (likely(page == c->page)) {
3440#ifndef CONFIG_PREEMPT_RT
3441                void **freelist = READ_ONCE(c->freelist);
3442
3443                set_freepointer(s, tail_obj, freelist);
3444
3445                if (unlikely(!this_cpu_cmpxchg_double(
3446                                s->cpu_slab->freelist, s->cpu_slab->tid,
3447                                freelist, tid,
3448                                head, next_tid(tid)))) {
3449
3450                        note_cmpxchg_failure("slab_free", s, tid);
3451                        goto redo;
3452                }
3453#else /* CONFIG_PREEMPT_RT */
3454                /*
3455                 * We cannot use the lockless fastpath on PREEMPT_RT because if
3456                 * a slowpath has taken the local_lock_irqsave(), it is not
3457                 * protected against a fast path operation in an irq handler. So
3458                 * we need to take the local_lock. We shouldn't simply defer to
3459                 * __slab_free() as that wouldn't use the cpu freelist at all.
3460                 */
3461                void **freelist;
3462
3463                local_lock(&s->cpu_slab->lock);
3464                c = this_cpu_ptr(s->cpu_slab);
3465                if (unlikely(page != c->page)) {
3466                        local_unlock(&s->cpu_slab->lock);
3467                        goto redo;
3468                }
3469                tid = c->tid;
3470                freelist = c->freelist;
3471
3472                set_freepointer(s, tail_obj, freelist);
3473                c->freelist = head;
3474                c->tid = next_tid(tid);
3475
3476                local_unlock(&s->cpu_slab->lock);
3477#endif
3478                stat(s, FREE_FASTPATH);
3479        } else
3480                __slab_free(s, page, head, tail_obj, cnt, addr);
3481
3482}
3483
3484static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3485                                      void *head, void *tail, int cnt,
3486                                      unsigned long addr)
3487{
3488        /*
3489         * With KASAN enabled slab_free_freelist_hook modifies the freelist
3490         * to remove objects, whose reuse must be delayed.
3491         */
3492        if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3493                do_slab_free(s, page, head, tail, cnt, addr);
3494}
3495
3496#ifdef CONFIG_KASAN_GENERIC
3497void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3498{
3499        do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3500}
3501#endif
3502
3503void kmem_cache_free(struct kmem_cache *s, void *x)
3504{
3505        s = cache_from_obj(s, x);
3506        if (!s)
3507                return;
3508        slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3509        trace_kmem_cache_free(_RET_IP_, x, s->name);
3510}
3511EXPORT_SYMBOL(kmem_cache_free);
3512
3513struct detached_freelist {
3514        struct page *page;
3515        void *tail;
3516        void *freelist;
3517        int cnt;
3518        struct kmem_cache *s;
3519};
3520
3521static inline void free_nonslab_page(struct page *page, void *object)
3522{
3523        unsigned int order = compound_order(page);
3524
3525        VM_BUG_ON_PAGE(!PageCompound(page), page);
3526        kfree_hook(object);
3527        mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3528        __free_pages(page, order);
3529}
3530
3531/*
3532 * This function progressively scans the array with free objects (with
3533 * a limited look ahead) and extract objects belonging to the same
3534 * page.  It builds a detached freelist directly within the given
3535 * page/objects.  This can happen without any need for
3536 * synchronization, because the objects are owned by running process.
3537 * The freelist is build up as a single linked list in the objects.
3538 * The idea is, that this detached freelist can then be bulk
3539 * transferred to the real freelist(s), but only requiring a single
3540 * synchronization primitive.  Look ahead in the array is limited due
3541 * to performance reasons.
3542 */
3543static inline
3544int build_detached_freelist(struct kmem_cache *s, size_t size,
3545                            void **p, struct detached_freelist *df)
3546{
3547        size_t first_skipped_index = 0;
3548        int lookahead = 3;
3549        void *object;
3550        struct page *page;
3551
3552        /* Always re-init detached_freelist */
3553        df->page = NULL;
3554
3555        do {
3556                object = p[--size];
3557                /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3558        } while (!object && size);
3559
3560        if (!object)
3561                return 0;
3562
3563        page = virt_to_head_page(object);
3564        if (!s) {
3565                /* Handle kalloc'ed objects */
3566                if (unlikely(!PageSlab(page))) {
3567                        free_nonslab_page(page, object);
3568                        p[size] = NULL; /* mark object processed */
3569                        return size;
3570                }
3571                /* Derive kmem_cache from object */
3572                df->s = page->slab_cache;
3573        } else {
3574                df->s = cache_from_obj(s, object); /* Support for memcg */
3575        }
3576
3577        if (is_kfence_address(object)) {
3578                slab_free_hook(df->s, object, false);
3579                __kfence_free(object);
3580                p[size] = NULL; /* mark object processed */
3581                return size;
3582        }
3583
3584        /* Start new detached freelist */
3585        df->page = page;
3586        set_freepointer(df->s, object, NULL);
3587        df->tail = object;
3588        df->freelist = object;
3589        p[size] = NULL; /* mark object processed */
3590        df->cnt = 1;
3591
3592        while (size) {
3593                object = p[--size];
3594                if (!object)
3595                        continue; /* Skip processed objects */
3596
3597                /* df->page is always set at this point */
3598                if (df->page == virt_to_head_page(object)) {
3599                        /* Opportunity build freelist */
3600                        set_freepointer(df->s, object, df->freelist);
3601                        df->freelist = object;
3602                        df->cnt++;
3603                        p[size] = NULL; /* mark object processed */
3604
3605                        continue;
3606                }
3607
3608                /* Limit look ahead search */
3609                if (!--lookahead)
3610                        break;
3611
3612                if (!first_skipped_index)
3613                        first_skipped_index = size + 1;
3614        }
3615
3616        return first_skipped_index;
3617}
3618
3619/* Note that interrupts must be enabled when calling this function. */
3620void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3621{
3622        if (WARN_ON(!size))
3623                return;
3624
3625        memcg_slab_free_hook(s, p, size);
3626        do {
3627                struct detached_freelist df;
3628
3629                size = build_detached_freelist(s, size, p, &df);
3630                if (!df.page)
3631                        continue;
3632
3633                slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3634        } while (likely(size));
3635}
3636EXPORT_SYMBOL(kmem_cache_free_bulk);
3637
3638/* Note that interrupts must be enabled when calling this function. */
3639int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3640                          void **p)
3641{
3642        struct kmem_cache_cpu *c;
3643        int i;
3644        struct obj_cgroup *objcg = NULL;
3645
3646        /* memcg and kmem_cache debug support */
3647        s = slab_pre_alloc_hook(s, &objcg, size, flags);
3648        if (unlikely(!s))
3649                return false;
3650        /*
3651         * Drain objects in the per cpu slab, while disabling local
3652         * IRQs, which protects against PREEMPT and interrupts
3653         * handlers invoking normal fastpath.
3654         */
3655        c = slub_get_cpu_ptr(s->cpu_slab);
3656        local_lock_irq(&s->cpu_slab->lock);
3657
3658        for (i = 0; i < size; i++) {
3659                void *object = kfence_alloc(s, s->object_size, flags);
3660
3661                if (unlikely(object)) {
3662                        p[i] = object;
3663                        continue;
3664                }
3665
3666                object = c->freelist;
3667                if (unlikely(!object)) {
3668                        /*
3669                         * We may have removed an object from c->freelist using
3670                         * the fastpath in the previous iteration; in that case,
3671                         * c->tid has not been bumped yet.
3672                         * Since ___slab_alloc() may reenable interrupts while
3673                         * allocating memory, we should bump c->tid now.
3674                         */
3675                        c->tid = next_tid(c->tid);
3676
3677                        local_unlock_irq(&s->cpu_slab->lock);
3678
3679                        /*
3680                         * Invoking slow path likely have side-effect
3681                         * of re-populating per CPU c->freelist
3682                         */
3683                        p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3684                                            _RET_IP_, c);
3685                        if (unlikely(!p[i]))
3686                                goto error;
3687
3688                        c = this_cpu_ptr(s->cpu_slab);
3689                        maybe_wipe_obj_freeptr(s, p[i]);
3690
3691                        local_lock_irq(&s->cpu_slab->lock);
3692
3693                        continue; /* goto for-loop */
3694                }
3695                c->freelist = get_freepointer(s, object);
3696                p[i] = object;
3697                maybe_wipe_obj_freeptr(s, p[i]);
3698        }
3699        c->tid = next_tid(c->tid);
3700        local_unlock_irq(&s->cpu_slab->lock);
3701        slub_put_cpu_ptr(s->cpu_slab);
3702
3703        /*
3704         * memcg and kmem_cache debug support and memory initialization.
3705         * Done outside of the IRQ disabled fastpath loop.
3706         */
3707        slab_post_alloc_hook(s, objcg, flags, size, p,
3708                                slab_want_init_on_alloc(flags, s));
3709        return i;
3710error:
3711        slub_put_cpu_ptr(s->cpu_slab);
3712        slab_post_alloc_hook(s, objcg, flags, i, p, false);
3713        __kmem_cache_free_bulk(s, i, p);
3714        return 0;
3715}
3716EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3717
3718
3719/*
3720 * Object placement in a slab is made very easy because we always start at
3721 * offset 0. If we tune the size of the object to the alignment then we can
3722 * get the required alignment by putting one properly sized object after
3723 * another.
3724 *
3725 * Notice that the allocation order determines the sizes of the per cpu
3726 * caches. Each processor has always one slab available for allocations.
3727 * Increasing the allocation order reduces the number of times that slabs
3728 * must be moved on and off the partial lists and is therefore a factor in
3729 * locking overhead.
3730 */
3731
3732/*
3733 * Minimum / Maximum order of slab pages. This influences locking overhead
3734 * and slab fragmentation. A higher order reduces the number of partial slabs
3735 * and increases the number of allocations possible without having to
3736 * take the list_lock.
3737 */
3738static unsigned int slub_min_order;
3739static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3740static unsigned int slub_min_objects;
3741
3742/*
3743 * Calculate the order of allocation given an slab object size.
3744 *
3745 * The order of allocation has significant impact on performance and other
3746 * system components. Generally order 0 allocations should be preferred since
3747 * order 0 does not cause fragmentation in the page allocator. Larger objects
3748 * be problematic to put into order 0 slabs because there may be too much
3749 * unused space left. We go to a higher order if more than 1/16th of the slab
3750 * would be wasted.
3751 *
3752 * In order to reach satisfactory performance we must ensure that a minimum
3753 * number of objects is in one slab. Otherwise we may generate too much
3754 * activity on the partial lists which requires taking the list_lock. This is
3755 * less a concern for large slabs though which are rarely used.
3756 *
3757 * slub_max_order specifies the order where we begin to stop considering the
3758 * number of objects in a slab as critical. If we reach slub_max_order then
3759 * we try to keep the page order as low as possible. So we accept more waste
3760 * of space in favor of a small page order.
3761 *
3762 * Higher order allocations also allow the placement of more objects in a
3763 * slab and thereby reduce object handling overhead. If the user has
3764 * requested a higher minimum order then we start with that one instead of
3765 * the smallest order which will fit the object.
3766 */
3767static inline unsigned int slab_order(unsigned int size,
3768                unsigned int min_objects, unsigned int max_order,
3769                unsigned int fract_leftover)
3770{
3771        unsigned int min_order = slub_min_order;
3772        unsigned int order;
3773
3774        if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3775                return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3776
3777        for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3778                        order <= max_order; order++) {
3779
3780                unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3781                unsigned int rem;
3782
3783                rem = slab_size % size;
3784
3785                if (rem <= slab_size / fract_leftover)
3786                        break;
3787        }
3788
3789        return order;
3790}
3791
3792static inline int calculate_order(unsigned int size)
3793{
3794        unsigned int order;
3795        unsigned int min_objects;
3796        unsigned int max_objects;
3797        unsigned int nr_cpus;
3798
3799        /*
3800         * Attempt to find best configuration for a slab. This
3801         * works by first attempting to generate a layout with
3802         * the best configuration and backing off gradually.
3803         *
3804         * First we increase the acceptable waste in a slab. Then
3805         * we reduce the minimum objects required in a slab.
3806         */
3807        min_objects = slub_min_objects;
3808        if (!min_objects) {
3809                /*
3810                 * Some architectures will only update present cpus when
3811                 * onlining them, so don't trust the number if it's just 1. But
3812                 * we also don't want to use nr_cpu_ids always, as on some other
3813                 * architectures, there can be many possible cpus, but never
3814                 * onlined. Here we compromise between trying to avoid too high
3815                 * order on systems that appear larger than they are, and too
3816                 * low order on systems that appear smaller than they are.
3817                 */
3818                nr_cpus = num_present_cpus();
3819                if (nr_cpus <= 1)
3820                        nr_cpus = nr_cpu_ids;
3821                min_objects = 4 * (fls(nr_cpus) + 1);
3822        }
3823        max_objects = order_objects(slub_max_order, size);
3824        min_objects = min(min_objects, max_objects);
3825
3826        while (min_objects > 1) {
3827                unsigned int fraction;
3828
3829                fraction = 16;
3830                while (fraction >= 4) {
3831                        order = slab_order(size, min_objects,
3832                                        slub_max_order, fraction);
3833                        if (order <= slub_max_order)
3834                                return order;
3835                        fraction /= 2;
3836                }
3837                min_objects--;
3838        }
3839
3840        /*
3841         * We were unable to place multiple objects in a slab. Now
3842         * lets see if we can place a single object there.
3843         */
3844        order = slab_order(size, 1, slub_max_order, 1);
3845        if (order <= slub_max_order)
3846                return order;
3847
3848        /*
3849         * Doh this slab cannot be placed using slub_max_order.
3850         */
3851        order = slab_order(size, 1, MAX_ORDER, 1);
3852        if (order < MAX_ORDER)
3853                return order;
3854        return -ENOSYS;
3855}
3856
3857static void
3858init_kmem_cache_node(struct kmem_cache_node *n)
3859{
3860        n->nr_partial = 0;
3861        spin_lock_init(&n->list_lock);
3862        INIT_LIST_HEAD(&n->partial);
3863#ifdef CONFIG_SLUB_DEBUG
3864        atomic_long_set(&n->nr_slabs, 0);
3865        atomic_long_set(&n->total_objects, 0);
3866        INIT_LIST_HEAD(&n->full);
3867#endif
3868}
3869
3870static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3871{
3872        BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3873                        KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3874
3875        /*
3876         * Must align to double word boundary for the double cmpxchg
3877         * instructions to work; see __pcpu_double_call_return_bool().
3878         */
3879        s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3880                                     2 * sizeof(void *));
3881
3882        if (!s->cpu_slab)
3883                return 0;
3884
3885        init_kmem_cache_cpus(s);
3886
3887        return 1;
3888}
3889
3890static struct kmem_cache *kmem_cache_node;
3891
3892/*
3893 * No kmalloc_node yet so do it by hand. We know that this is the first
3894 * slab on the node for this slabcache. There are no concurrent accesses
3895 * possible.
3896 *
3897 * Note that this function only works on the kmem_cache_node
3898 * when allocating for the kmem_cache_node. This is used for bootstrapping
3899 * memory on a fresh node that has no slab structures yet.
3900 */
3901static void early_kmem_cache_node_alloc(int node)
3902{
3903        struct page *page;
3904        struct kmem_cache_node *n;
3905
3906        BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3907
3908        page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3909
3910        BUG_ON(!page);
3911        if (page_to_nid(page) != node) {
3912                pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3913                pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3914        }
3915
3916        n = page->freelist;
3917        BUG_ON(!n);
3918#ifdef CONFIG_SLUB_DEBUG
3919        init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3920        init_tracking(kmem_cache_node, n);
3921#endif
3922        n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3923        page->freelist = get_freepointer(kmem_cache_node, n);
3924        page->inuse = 1;
3925        page->frozen = 0;
3926        kmem_cache_node->node[node] = n;
3927        init_kmem_cache_node(n);
3928        inc_slabs_node(kmem_cache_node, node, page->objects);
3929
3930        /*
3931         * No locks need to be taken here as it has just been
3932         * initialized and there is no concurrent access.
3933         */
3934        __add_partial(n, page, DEACTIVATE_TO_HEAD);
3935}
3936
3937static void free_kmem_cache_nodes(struct kmem_cache *s)
3938{
3939        int node;
3940        struct kmem_cache_node *n;
3941
3942        for_each_kmem_cache_node(s, node, n) {
3943                s->node[node] = NULL;
3944                kmem_cache_free(kmem_cache_node, n);
3945        }
3946}
3947
3948void __kmem_cache_release(struct kmem_cache *s)
3949{
3950        cache_random_seq_destroy(s);
3951        free_percpu(s->cpu_slab);
3952        free_kmem_cache_nodes(s);
3953}
3954
3955static int init_kmem_cache_nodes(struct kmem_cache *s)
3956{
3957        int node;
3958
3959        for_each_node_mask(node, slab_nodes) {
3960                struct kmem_cache_node *n;
3961
3962                if (slab_state == DOWN) {
3963                        early_kmem_cache_node_alloc(node);
3964                        continue;
3965                }
3966                n = kmem_cache_alloc_node(kmem_cache_node,
3967                                                GFP_KERNEL, node);
3968
3969                if (!n) {
3970                        free_kmem_cache_nodes(s);
3971                        return 0;
3972                }
3973
3974                init_kmem_cache_node(n);
3975                s->node[node] = n;
3976        }
3977        return 1;
3978}
3979
3980static void set_min_partial(struct kmem_cache *s, unsigned long min)
3981{
3982        if (min < MIN_PARTIAL)
3983                min = MIN_PARTIAL;
3984        else if (min > MAX_PARTIAL)
3985                min = MAX_PARTIAL;
3986        s->min_partial = min;
3987}
3988
3989static void set_cpu_partial(struct kmem_cache *s)
3990{
3991#ifdef CONFIG_SLUB_CPU_PARTIAL
3992        /*
3993         * cpu_partial determined the maximum number of objects kept in the
3994         * per cpu partial lists of a processor.
3995         *
3996         * Per cpu partial lists mainly contain slabs that just have one
3997         * object freed. If they are used for allocation then they can be
3998         * filled up again with minimal effort. The slab will never hit the
3999         * per node partial lists and therefore no locking will be required.
4000         *
4001         * This setting also determines
4002         *
4003         * A) The number of objects from per cpu partial slabs dumped to the
4004         *    per node list when we reach the limit.
4005         * B) The number of objects in cpu partial slabs to extract from the
4006         *    per node list when we run out of per cpu objects. We only fetch
4007         *    50% to keep some capacity around for frees.
4008         */
4009        if (!kmem_cache_has_cpu_partial(s))
4010                slub_set_cpu_partial(s, 0);
4011        else if (s->size >= PAGE_SIZE)
4012                slub_set_cpu_partial(s, 2);
4013        else if (s->size >= 1024)
4014                slub_set_cpu_partial(s, 6);
4015        else if (s->size >= 256)
4016                slub_set_cpu_partial(s, 13);
4017        else
4018                slub_set_cpu_partial(s, 30);
4019#endif
4020}
4021
4022/*
4023 * calculate_sizes() determines the order and the distribution of data within
4024 * a slab object.
4025 */
4026static int calculate_sizes(struct kmem_cache *s, int forced_order)
4027{
4028        slab_flags_t flags = s->flags;
4029        unsigned int size = s->object_size;
4030        unsigned int order;
4031
4032        /*
4033         * Round up object size to the next word boundary. We can only
4034         * place the free pointer at word boundaries and this determines
4035         * the possible location of the free pointer.
4036         */
4037        size = ALIGN(size, sizeof(void *));
4038
4039#ifdef CONFIG_SLUB_DEBUG
4040        /*
4041         * Determine if we can poison the object itself. If the user of
4042         * the slab may touch the object after free or before allocation
4043         * then we should never poison the object itself.
4044         */
4045        if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4046                        !s->ctor)
4047                s->flags |= __OBJECT_POISON;
4048        else
4049                s->flags &= ~__OBJECT_POISON;
4050
4051
4052        /*
4053         * If we are Redzoning then check if there is some space between the
4054         * end of the object and the free pointer. If not then add an
4055         * additional word to have some bytes to store Redzone information.
4056         */
4057        if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4058                size += sizeof(void *);
4059#endif
4060
4061        /*
4062         * With that we have determined the number of bytes in actual use
4063         * by the object and redzoning.
4064         */
4065        s->inuse = size;
4066
4067        if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4068            ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4069            s->ctor) {
4070                /*
4071                 * Relocate free pointer after the object if it is not
4072                 * permitted to overwrite the first word of the object on
4073                 * kmem_cache_free.
4074                 *
4075                 * This is the case if we do RCU, have a constructor or
4076                 * destructor, are poisoning the objects, or are
4077                 * redzoning an object smaller than sizeof(void *).
4078                 *
4079                 * The assumption that s->offset >= s->inuse means free
4080                 * pointer is outside of the object is used in the
4081                 * freeptr_outside_object() function. If that is no
4082                 * longer true, the function needs to be modified.
4083                 */
4084                s->offset = size;
4085                size += sizeof(void *);
4086        } else {
4087                /*
4088                 * Store freelist pointer near middle of object to keep
4089                 * it away from the edges of the object to avoid small
4090                 * sized over/underflows from neighboring allocations.
4091                 */
4092                s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4093        }
4094
4095#ifdef CONFIG_SLUB_DEBUG
4096        if (flags & SLAB_STORE_USER)
4097                /*
4098                 * Need to store information about allocs and frees after
4099                 * the object.
4100                 */
4101                size += 2 * sizeof(struct track);
4102#endif
4103
4104        kasan_cache_create(s, &size, &s->flags);
4105#ifdef CONFIG_SLUB_DEBUG
4106        if (flags & SLAB_RED_ZONE) {
4107                /*
4108                 * Add some empty padding so that we can catch
4109                 * overwrites from earlier objects rather than let
4110                 * tracking information or the free pointer be
4111                 * corrupted if a user writes before the start
4112                 * of the object.
4113                 */
4114                size += sizeof(void *);
4115
4116                s->red_left_pad = sizeof(void *);
4117                s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4118                size += s->red_left_pad;
4119        }
4120#endif
4121
4122        /*
4123         * SLUB stores one object immediately after another beginning from
4124         * offset 0. In order to align the objects we have to simply size
4125         * each object to conform to the alignment.
4126         */
4127        size = ALIGN(size, s->align);
4128        s->size = size;
4129        s->reciprocal_size = reciprocal_value(size);
4130        if (forced_order >= 0)
4131                order = forced_order;
4132        else
4133                order = calculate_order(size);
4134
4135        if ((int)order < 0)
4136                return 0;
4137
4138        s->allocflags = 0;
4139        if (order)
4140                s->allocflags |= __GFP_COMP;
4141
4142        if (s->flags & SLAB_CACHE_DMA)
4143                s->allocflags |= GFP_DMA;
4144
4145        if (s->flags & SLAB_CACHE_DMA32)
4146                s->allocflags |= GFP_DMA32;
4147
4148        if (s->flags & SLAB_RECLAIM_ACCOUNT)
4149                s->allocflags |= __GFP_RECLAIMABLE;
4150
4151        /*
4152         * Determine the number of objects per slab
4153         */
4154        s->oo = oo_make(order, size);
4155        s->min = oo_make(get_order(size), size);
4156        if (oo_objects(s->oo) > oo_objects(s->max))
4157                s->max = s->oo;
4158
4159        return !!oo_objects(s->oo);
4160}
4161
4162static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4163{
4164        s->flags = kmem_cache_flags(s->size, flags, s->name);
4165#ifdef CONFIG_SLAB_FREELIST_HARDENED
4166        s->random = get_random_long();
4167#endif
4168
4169        if (!calculate_sizes(s, -1))
4170                goto error;
4171        if (disable_higher_order_debug) {
4172                /*
4173                 * Disable debugging flags that store metadata if the min slab
4174                 * order increased.
4175                 */
4176                if (get_order(s->size) > get_order(s->object_size)) {
4177                        s->flags &= ~DEBUG_METADATA_FLAGS;
4178                        s->offset = 0;
4179                        if (!calculate_sizes(s, -1))
4180                                goto error;
4181                }
4182        }
4183
4184#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4185    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4186        if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4187                /* Enable fast mode */
4188                s->flags |= __CMPXCHG_DOUBLE;
4189#endif
4190
4191        /*
4192         * The larger the object size is, the more pages we want on the partial
4193         * list to avoid pounding the page allocator excessively.
4194         */
4195        set_min_partial(s, ilog2(s->size) / 2);
4196
4197        set_cpu_partial(s);
4198
4199#ifdef CONFIG_NUMA
4200        s->remote_node_defrag_ratio = 1000;
4201#endif
4202
4203        /* Initialize the pre-computed randomized freelist if slab is up */
4204        if (slab_state >= UP) {
4205                if (init_cache_random_seq(s))
4206                        goto error;
4207        }
4208
4209        if (!init_kmem_cache_nodes(s))
4210                goto error;
4211
4212        if (alloc_kmem_cache_cpus(s))
4213                return 0;
4214
4215error:
4216        __kmem_cache_release(s);
4217        return -EINVAL;
4218}
4219
4220static void list_slab_objects(struct kmem_cache *s, struct page *page,
4221                              const char *text)
4222{
4223#ifdef CONFIG_SLUB_DEBUG
4224        void *addr = page_address(page);
4225        unsigned long flags;
4226        unsigned long *map;
4227        void *p;
4228
4229        slab_err(s, page, text, s->name);
4230        slab_lock(page, &flags);
4231
4232        map = get_map(s, page);
4233        for_each_object(p, s, addr, page->objects) {
4234
4235                if (!test_bit(__obj_to_index(s, addr, p), map)) {
4236                        pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4237                        print_tracking(s, p);
4238                }
4239        }
4240        put_map(map);
4241        slab_unlock(page, &flags);
4242#endif
4243}
4244
4245/*
4246 * Attempt to free all partial slabs on a node.
4247 * This is called from __kmem_cache_shutdown(). We must take list_lock
4248 * because sysfs file might still access partial list after the shutdowning.
4249 */
4250static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4251{
4252        LIST_HEAD(discard);
4253        struct page *page, *h;
4254
4255        BUG_ON(irqs_disabled());
4256        spin_lock_irq(&n->list_lock);
4257        list_for_each_entry_safe(page, h, &n->partial, slab_list) {
4258                if (!page->inuse) {
4259                        remove_partial(n, page);
4260                        list_add(&page->slab_list, &discard);
4261                } else {
4262                        list_slab_objects(s, page,
4263                          "Objects remaining in %s on __kmem_cache_shutdown()");
4264                }
4265        }
4266        spin_unlock_irq(&n->list_lock);
4267
4268        list_for_each_entry_safe(page, h, &discard, slab_list)
4269                discard_slab(s, page);
4270}
4271
4272bool __kmem_cache_empty(struct kmem_cache *s)
4273{
4274        int node;
4275        struct kmem_cache_node *n;
4276
4277        for_each_kmem_cache_node(s, node, n)
4278                if (n->nr_partial || slabs_node(s, node))
4279                        return false;
4280        return true;
4281}
4282
4283/*
4284 * Release all resources used by a slab cache.
4285 */
4286int __kmem_cache_shutdown(struct kmem_cache *s)
4287{
4288        int node;
4289        struct kmem_cache_node *n;
4290
4291        flush_all_cpus_locked(s);
4292        /* Attempt to free all objects */
4293        for_each_kmem_cache_node(s, node, n) {
4294                free_partial(s, n);
4295                if (n->nr_partial || slabs_node(s, node))
4296                        return 1;
4297        }
4298        return 0;
4299}
4300
4301#ifdef CONFIG_PRINTK
4302void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4303{
4304        void *base;
4305        int __maybe_unused i;
4306        unsigned int objnr;
4307        void *objp;
4308        void *objp0;
4309        struct kmem_cache *s = page->slab_cache;
4310        struct track __maybe_unused *trackp;
4311
4312        kpp->kp_ptr = object;
4313        kpp->kp_page = page;
4314        kpp->kp_slab_cache = s;
4315        base = page_address(page);
4316        objp0 = kasan_reset_tag(object);
4317#ifdef CONFIG_SLUB_DEBUG
4318        objp = restore_red_left(s, objp0);
4319#else
4320        objp = objp0;
4321#endif
4322        objnr = obj_to_index(s, page, objp);
4323        kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4324        objp = base + s->size * objnr;
4325        kpp->kp_objp = objp;
4326        if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4327            !(s->flags & SLAB_STORE_USER))
4328                return;
4329#ifdef CONFIG_SLUB_DEBUG
4330        objp = fixup_red_left(s, objp);
4331        trackp = get_track(s, objp, TRACK_ALLOC);
4332        kpp->kp_ret = (void *)trackp->addr;
4333#ifdef CONFIG_STACKTRACE
4334        for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4335                kpp->kp_stack[i] = (void *)trackp->addrs[i];
4336                if (!kpp->kp_stack[i])
4337                        break;
4338        }
4339
4340        trackp = get_track(s, objp, TRACK_FREE);
4341        for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4342                kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4343                if (!kpp->kp_free_stack[i])
4344                        break;
4345        }
4346#endif
4347#endif
4348}
4349#endif
4350
4351/********************************************************************
4352 *              Kmalloc subsystem
4353 *******************************************************************/
4354
4355static int __init setup_slub_min_order(char *str)
4356{
4357        get_option(&str, (int *)&slub_min_order);
4358
4359        return 1;
4360}
4361
4362__setup("slub_min_order=", setup_slub_min_order);
4363
4364static int __init setup_slub_max_order(char *str)
4365{
4366        get_option(&str, (int *)&slub_max_order);
4367        slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4368
4369        return 1;
4370}
4371
4372__setup("slub_max_order=", setup_slub_max_order);
4373
4374static int __init setup_slub_min_objects(char *str)
4375{
4376        get_option(&str, (int *)&slub_min_objects);
4377
4378        return 1;
4379}
4380
4381__setup("slub_min_objects=", setup_slub_min_objects);
4382
4383void *__kmalloc(size_t size, gfp_t flags)
4384{
4385        struct kmem_cache *s;
4386        void *ret;
4387
4388        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4389                return kmalloc_large(size, flags);
4390
4391        s = kmalloc_slab(size, flags);
4392
4393        if (unlikely(ZERO_OR_NULL_PTR(s)))
4394                return s;
4395
4396        ret = slab_alloc(s, flags, _RET_IP_, size);
4397
4398        trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4399
4400        ret = kasan_kmalloc(s, ret, size, flags);
4401
4402        return ret;
4403}
4404EXPORT_SYMBOL(__kmalloc);
4405
4406#ifdef CONFIG_NUMA
4407static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4408{
4409        struct page *page;
4410        void *ptr = NULL;
4411        unsigned int order = get_order(size);
4412
4413        flags |= __GFP_COMP;
4414        page = alloc_pages_node(node, flags, order);
4415        if (page) {
4416                ptr = page_address(page);
4417                mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4418                                      PAGE_SIZE << order);
4419        }
4420
4421        return kmalloc_large_node_hook(ptr, size, flags);
4422}
4423
4424void *__kmalloc_node(size_t size, gfp_t flags, int node)
4425{
4426        struct kmem_cache *s;
4427        void *ret;
4428
4429        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4430                ret = kmalloc_large_node(size, flags, node);
4431
4432                trace_kmalloc_node(_RET_IP_, ret,
4433                                   size, PAGE_SIZE << get_order(size),
4434                                   flags, node);
4435
4436                return ret;
4437        }
4438
4439        s = kmalloc_slab(size, flags);
4440
4441        if (unlikely(ZERO_OR_NULL_PTR(s)))
4442                return s;
4443
4444        ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4445
4446        trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4447
4448        ret = kasan_kmalloc(s, ret, size, flags);
4449
4450        return ret;
4451}
4452EXPORT_SYMBOL(__kmalloc_node);
4453#endif  /* CONFIG_NUMA */
4454
4455#ifdef CONFIG_HARDENED_USERCOPY
4456/*
4457 * Rejects incorrectly sized objects and objects that are to be copied
4458 * to/from userspace but do not fall entirely within the containing slab
4459 * cache's usercopy region.
4460 *
4461 * Returns NULL if check passes, otherwise const char * to name of cache
4462 * to indicate an error.
4463 */
4464void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4465                         bool to_user)
4466{
4467        struct kmem_cache *s;
4468        unsigned int offset;
4469        size_t object_size;
4470        bool is_kfence = is_kfence_address(ptr);
4471
4472        ptr = kasan_reset_tag(ptr);
4473
4474        /* Find object and usable object size. */
4475        s = page->slab_cache;
4476
4477        /* Reject impossible pointers. */
4478        if (ptr < page_address(page))
4479                usercopy_abort("SLUB object not in SLUB page?!", NULL,
4480                               to_user, 0, n);
4481
4482        /* Find offset within object. */
4483        if (is_kfence)
4484                offset = ptr - kfence_object_start(ptr);
4485        else
4486                offset = (ptr - page_address(page)) % s->size;
4487
4488        /* Adjust for redzone and reject if within the redzone. */
4489        if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4490                if (offset < s->red_left_pad)
4491                        usercopy_abort("SLUB object in left red zone",
4492                                       s->name, to_user, offset, n);
4493                offset -= s->red_left_pad;
4494        }
4495
4496        /* Allow address range falling entirely within usercopy region. */
4497        if (offset >= s->useroffset &&
4498            offset - s->useroffset <= s->usersize &&
4499            n <= s->useroffset - offset + s->usersize)
4500                return;
4501
4502        /*
4503         * If the copy is still within the allocated object, produce
4504         * a warning instead of rejecting the copy. This is intended
4505         * to be a temporary method to find any missing usercopy
4506         * whitelists.
4507         */
4508        object_size = slab_ksize(s);
4509        if (usercopy_fallback &&
4510            offset <= object_size && n <= object_size - offset) {
4511                usercopy_warn("SLUB object", s->name, to_user, offset, n);
4512                return;
4513        }
4514
4515        usercopy_abort("SLUB object", s->name, to_user, offset, n);
4516}
4517#endif /* CONFIG_HARDENED_USERCOPY */
4518
4519size_t __ksize(const void *object)
4520{
4521        struct page *page;
4522
4523        if (unlikely(object == ZERO_SIZE_PTR))
4524                return 0;
4525
4526        page = virt_to_head_page(object);
4527
4528        if (unlikely(!PageSlab(page))) {
4529                WARN_ON(!PageCompound(page));
4530                return page_size(page);
4531        }
4532
4533        return slab_ksize(page->slab_cache);
4534}
4535EXPORT_SYMBOL(__ksize);
4536
4537void kfree(const void *x)
4538{
4539        struct page *page;
4540        void *object = (void *)x;
4541
4542        trace_kfree(_RET_IP_, x);
4543
4544        if (unlikely(ZERO_OR_NULL_PTR(x)))
4545                return;
4546
4547        page = virt_to_head_page(x);
4548        if (unlikely(!PageSlab(page))) {
4549                free_nonslab_page(page, object);
4550                return;
4551        }
4552        slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4553}
4554EXPORT_SYMBOL(kfree);
4555
4556#define SHRINK_PROMOTE_MAX 32
4557
4558/*
4559 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4560 * up most to the head of the partial lists. New allocations will then
4561 * fill those up and thus they can be removed from the partial lists.
4562 *
4563 * The slabs with the least items are placed last. This results in them
4564 * being allocated from last increasing the chance that the last objects
4565 * are freed in them.
4566 */
4567static int __kmem_cache_do_shrink(struct kmem_cache *s)
4568{
4569        int node;
4570        int i;
4571        struct kmem_cache_node *n;
4572        struct page *page;
4573        struct page *t;
4574        struct list_head discard;
4575        struct list_head promote[SHRINK_PROMOTE_MAX];
4576        unsigned long flags;
4577        int ret = 0;
4578
4579        for_each_kmem_cache_node(s, node, n) {
4580                INIT_LIST_HEAD(&discard);
4581                for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4582                        INIT_LIST_HEAD(promote + i);
4583
4584                spin_lock_irqsave(&n->list_lock, flags);
4585
4586                /*
4587                 * Build lists of slabs to discard or promote.
4588                 *
4589                 * Note that concurrent frees may occur while we hold the
4590                 * list_lock. page->inuse here is the upper limit.
4591                 */
4592                list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4593                        int free = page->objects - page->inuse;
4594
4595                        /* Do not reread page->inuse */
4596                        barrier();
4597
4598                        /* We do not keep full slabs on the list */
4599                        BUG_ON(free <= 0);
4600
4601                        if (free == page->objects) {
4602                                list_move(&page->slab_list, &discard);
4603                                n->nr_partial--;
4604                        } else if (free <= SHRINK_PROMOTE_MAX)
4605                                list_move(&page->slab_list, promote + free - 1);
4606                }
4607
4608                /*
4609                 * Promote the slabs filled up most to the head of the
4610                 * partial list.
4611                 */
4612                for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4613                        list_splice(promote + i, &n->partial);
4614
4615                spin_unlock_irqrestore(&n->list_lock, flags);
4616
4617                /* Release empty slabs */
4618                list_for_each_entry_safe(page, t, &discard, slab_list)
4619                        discard_slab(s, page);
4620
4621                if (slabs_node(s, node))
4622                        ret = 1;
4623        }
4624
4625        return ret;
4626}
4627
4628int __kmem_cache_shrink(struct kmem_cache *s)
4629{
4630        flush_all(s);
4631        return __kmem_cache_do_shrink(s);
4632}
4633
4634static int slab_mem_going_offline_callback(void *arg)
4635{
4636        struct kmem_cache *s;
4637
4638        mutex_lock(&slab_mutex);
4639        list_for_each_entry(s, &slab_caches, list) {
4640                flush_all_cpus_locked(s);
4641                __kmem_cache_do_shrink(s);
4642        }
4643        mutex_unlock(&slab_mutex);
4644
4645        return 0;
4646}
4647
4648static void slab_mem_offline_callback(void *arg)
4649{
4650        struct memory_notify *marg = arg;
4651        int offline_node;
4652
4653        offline_node = marg->status_change_nid_normal;
4654
4655        /*
4656         * If the node still has available memory. we need kmem_cache_node
4657         * for it yet.
4658         */
4659        if (offline_node < 0)
4660                return;
4661
4662        mutex_lock(&slab_mutex);
4663        node_clear(offline_node, slab_nodes);
4664        /*
4665         * We no longer free kmem_cache_node structures here, as it would be
4666         * racy with all get_node() users, and infeasible to protect them with
4667         * slab_mutex.
4668         */
4669        mutex_unlock(&slab_mutex);
4670}
4671
4672static int slab_mem_going_online_callback(void *arg)
4673{
4674        struct kmem_cache_node *n;
4675        struct kmem_cache *s;
4676        struct memory_notify *marg = arg;
4677        int nid = marg->status_change_nid_normal;
4678        int ret = 0;
4679
4680        /*
4681         * If the node's memory is already available, then kmem_cache_node is
4682         * already created. Nothing to do.
4683         */
4684        if (nid < 0)
4685                return 0;
4686
4687        /*
4688         * We are bringing a node online. No memory is available yet. We must
4689         * allocate a kmem_cache_node structure in order to bring the node
4690         * online.
4691         */
4692        mutex_lock(&slab_mutex);
4693        list_for_each_entry(s, &slab_caches, list) {
4694                /*
4695                 * The structure may already exist if the node was previously
4696                 * onlined and offlined.
4697                 */
4698                if (get_node(s, nid))
4699                        continue;
4700                /*
4701                 * XXX: kmem_cache_alloc_node will fallback to other nodes
4702                 *      since memory is not yet available from the node that
4703                 *      is brought up.
4704                 */
4705                n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4706                if (!n) {
4707                        ret = -ENOMEM;
4708                        goto out;
4709                }
4710                init_kmem_cache_node(n);
4711                s->node[nid] = n;
4712        }
4713        /*
4714         * Any cache created after this point will also have kmem_cache_node
4715         * initialized for the new node.
4716         */
4717        node_set(nid, slab_nodes);
4718out:
4719        mutex_unlock(&slab_mutex);
4720        return ret;
4721}
4722
4723static int slab_memory_callback(struct notifier_block *self,
4724                                unsigned long action, void *arg)
4725{
4726        int ret = 0;
4727
4728        switch (action) {
4729        case MEM_GOING_ONLINE:
4730                ret = slab_mem_going_online_callback(arg);
4731                break;
4732        case MEM_GOING_OFFLINE:
4733                ret = slab_mem_going_offline_callback(arg);
4734                break;
4735        case MEM_OFFLINE:
4736        case MEM_CANCEL_ONLINE:
4737                slab_mem_offline_callback(arg);
4738                break;
4739        case MEM_ONLINE:
4740        case MEM_CANCEL_OFFLINE:
4741                break;
4742        }
4743        if (ret)
4744                ret = notifier_from_errno(ret);
4745        else
4746                ret = NOTIFY_OK;
4747        return ret;
4748}
4749
4750static struct notifier_block slab_memory_callback_nb = {
4751        .notifier_call = slab_memory_callback,
4752        .priority = SLAB_CALLBACK_PRI,
4753};
4754
4755/********************************************************************
4756 *                      Basic setup of slabs
4757 *******************************************************************/
4758
4759/*
4760 * Used for early kmem_cache structures that were allocated using
4761 * the page allocator. Allocate them properly then fix up the pointers
4762 * that may be pointing to the wrong kmem_cache structure.
4763 */
4764
4765static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4766{
4767        int node;
4768        struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4769        struct kmem_cache_node *n;
4770
4771        memcpy(s, static_cache, kmem_cache->object_size);
4772
4773        /*
4774         * This runs very early, and only the boot processor is supposed to be
4775         * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4776         * IPIs around.
4777         */
4778        __flush_cpu_slab(s, smp_processor_id());
4779        for_each_kmem_cache_node(s, node, n) {
4780                struct page *p;
4781
4782                list_for_each_entry(p, &n->partial, slab_list)
4783                        p->slab_cache = s;
4784
4785#ifdef CONFIG_SLUB_DEBUG
4786                list_for_each_entry(p, &n->full, slab_list)
4787                        p->slab_cache = s;
4788#endif
4789        }
4790        list_add(&s->list, &slab_caches);
4791        return s;
4792}
4793
4794void __init kmem_cache_init(void)
4795{
4796        static __initdata struct kmem_cache boot_kmem_cache,
4797                boot_kmem_cache_node;
4798        int node;
4799
4800        if (debug_guardpage_minorder())
4801                slub_max_order = 0;
4802
4803        /* Print slub debugging pointers without hashing */
4804        if (__slub_debug_enabled())
4805                no_hash_pointers_enable(NULL);
4806
4807        kmem_cache_node = &boot_kmem_cache_node;
4808        kmem_cache = &boot_kmem_cache;
4809
4810        /*
4811         * Initialize the nodemask for which we will allocate per node
4812         * structures. Here we don't need taking slab_mutex yet.
4813         */
4814        for_each_node_state(node, N_NORMAL_MEMORY)
4815                node_set(node, slab_nodes);
4816
4817        create_boot_cache(kmem_cache_node, "kmem_cache_node",
4818                sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4819
4820        register_hotmemory_notifier(&slab_memory_callback_nb);
4821
4822        /* Able to allocate the per node structures */
4823        slab_state = PARTIAL;
4824
4825        create_boot_cache(kmem_cache, "kmem_cache",
4826                        offsetof(struct kmem_cache, node) +
4827                                nr_node_ids * sizeof(struct kmem_cache_node *),
4828                       SLAB_HWCACHE_ALIGN, 0, 0);
4829
4830        kmem_cache = bootstrap(&boot_kmem_cache);
4831        kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4832
4833        /* Now we can use the kmem_cache to allocate kmalloc slabs */
4834        setup_kmalloc_cache_index_table();
4835        create_kmalloc_caches(0);
4836
4837        /* Setup random freelists for each cache */
4838        init_freelist_randomization();
4839
4840        cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4841                                  slub_cpu_dead);
4842
4843        pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4844                cache_line_size(),
4845                slub_min_order, slub_max_order, slub_min_objects,
4846                nr_cpu_ids, nr_node_ids);
4847}
4848
4849void __init kmem_cache_init_late(void)
4850{
4851}
4852
4853struct kmem_cache *
4854__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4855                   slab_flags_t flags, void (*ctor)(void *))
4856{
4857        struct kmem_cache *s;
4858
4859        s = find_mergeable(size, align, flags, name, ctor);
4860        if (s) {
4861                s->refcount++;
4862
4863                /*
4864                 * Adjust the object sizes so that we clear
4865                 * the complete object on kzalloc.
4866                 */
4867                s->object_size = max(s->object_size, size);
4868                s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4869
4870                if (sysfs_slab_alias(s, name)) {
4871                        s->refcount--;
4872                        s = NULL;
4873                }
4874        }
4875
4876        return s;
4877}
4878
4879int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4880{
4881        int err;
4882
4883        err = kmem_cache_open(s, flags);
4884        if (err)
4885                return err;
4886
4887        /* Mutex is not taken during early boot */
4888        if (slab_state <= UP)
4889                return 0;
4890
4891        err = sysfs_slab_add(s);
4892        if (err) {
4893                __kmem_cache_release(s);
4894                return err;
4895        }
4896
4897        if (s->flags & SLAB_STORE_USER)
4898                debugfs_slab_add(s);
4899
4900        return 0;
4901}
4902
4903void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4904{
4905        struct kmem_cache *s;
4906        void *ret;
4907
4908        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4909                return kmalloc_large(size, gfpflags);
4910
4911        s = kmalloc_slab(size, gfpflags);
4912
4913        if (unlikely(ZERO_OR_NULL_PTR(s)))
4914                return s;
4915
4916        ret = slab_alloc(s, gfpflags, caller, size);
4917
4918        /* Honor the call site pointer we received. */
4919        trace_kmalloc(caller, ret, size, s->size, gfpflags);
4920
4921        return ret;
4922}
4923EXPORT_SYMBOL(__kmalloc_track_caller);
4924
4925#ifdef CONFIG_NUMA
4926void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4927                                        int node, unsigned long caller)
4928{
4929        struct kmem_cache *s;
4930        void *ret;
4931
4932        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4933                ret = kmalloc_large_node(size, gfpflags, node);
4934
4935                trace_kmalloc_node(caller, ret,
4936                                   size, PAGE_SIZE << get_order(size),
4937                                   gfpflags, node);
4938
4939                return ret;
4940        }
4941
4942        s = kmalloc_slab(size, gfpflags);
4943
4944        if (unlikely(ZERO_OR_NULL_PTR(s)))
4945                return s;
4946
4947        ret = slab_alloc_node(s, gfpflags, node, caller, size);
4948
4949        /* Honor the call site pointer we received. */
4950        trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4951
4952        return ret;
4953}
4954EXPORT_SYMBOL(__kmalloc_node_track_caller);
4955#endif
4956
4957#ifdef CONFIG_SYSFS
4958static int count_inuse(struct page *page)
4959{
4960        return page->inuse;
4961}
4962
4963static int count_total(struct page *page)
4964{
4965        return page->objects;
4966}
4967#endif
4968
4969#ifdef CONFIG_SLUB_DEBUG
4970static void validate_slab(struct kmem_cache *s, struct page *page,
4971                          unsigned long *obj_map)
4972{
4973        void *p;
4974        void *addr = page_address(page);
4975        unsigned long flags;
4976
4977        slab_lock(page, &flags);
4978
4979        if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4980                goto unlock;
4981
4982        /* Now we know that a valid freelist exists */
4983        __fill_map(obj_map, s, page);
4984        for_each_object(p, s, addr, page->objects) {
4985                u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4986                         SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4987
4988                if (!check_object(s, page, p, val))
4989                        break;
4990        }
4991unlock:
4992        slab_unlock(page, &flags);
4993}
4994
4995static int validate_slab_node(struct kmem_cache *s,
4996                struct kmem_cache_node *n, unsigned long *obj_map)
4997{
4998        unsigned long count = 0;
4999        struct page *page;
5000        unsigned long flags;
5001
5002        spin_lock_irqsave(&n->list_lock, flags);
5003
5004        list_for_each_entry(page, &n->partial, slab_list) {
5005                validate_slab(s, page, obj_map);
5006                count++;
5007        }
5008        if (count != n->nr_partial) {
5009                pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5010                       s->name, count, n->nr_partial);
5011                slab_add_kunit_errors();
5012        }
5013
5014        if (!(s->flags & SLAB_STORE_USER))
5015                goto out;
5016
5017        list_for_each_entry(page, &n->full, slab_list) {
5018                validate_slab(s, page, obj_map);
5019                count++;
5020        }
5021        if (count != atomic_long_read(&n->nr_slabs)) {
5022                pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5023                       s->name, count, atomic_long_read(&n->nr_slabs));
5024                slab_add_kunit_errors();
5025        }
5026
5027out:
5028        spin_unlock_irqrestore(&n->list_lock, flags);
5029        return count;
5030}
5031
5032long validate_slab_cache(struct kmem_cache *s)
5033{
5034        int node;
5035        unsigned long count = 0;
5036        struct kmem_cache_node *n;
5037        unsigned long *obj_map;
5038
5039        obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5040        if (!obj_map)
5041                return -ENOMEM;
5042
5043        flush_all(s);
5044        for_each_kmem_cache_node(s, node, n)
5045                count += validate_slab_node(s, n, obj_map);
5046
5047        bitmap_free(obj_map);
5048
5049        return count;
5050}
5051EXPORT_SYMBOL(validate_slab_cache);
5052
5053#ifdef CONFIG_DEBUG_FS
5054/*
5055 * Generate lists of code addresses where slabcache objects are allocated
5056 * and freed.
5057 */
5058
5059struct location {
5060        unsigned long count;
5061        unsigned long addr;
5062        long long sum_time;
5063        long min_time;
5064        long max_time;
5065        long min_pid;
5066        long max_pid;
5067        DECLARE_BITMAP(cpus, NR_CPUS);
5068        nodemask_t nodes;
5069};
5070
5071struct loc_track {
5072        unsigned long max;
5073        unsigned long count;
5074        struct location *loc;
5075};
5076
5077static struct dentry *slab_debugfs_root;
5078
5079static void free_loc_track(struct loc_track *t)
5080{
5081        if (t->max)
5082                free_pages((unsigned long)t->loc,
5083                        get_order(sizeof(struct location) * t->max));
5084}
5085
5086static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5087{
5088        struct location *l;
5089        int order;
5090
5091        order = get_order(sizeof(struct location) * max);
5092
5093        l = (void *)__get_free_pages(flags, order);
5094        if (!l)
5095                return 0;
5096
5097        if (t->count) {
5098                memcpy(l, t->loc, sizeof(struct location) * t->count);
5099                free_loc_track(t);
5100        }
5101        t->max = max;
5102        t->loc = l;
5103        return 1;
5104}
5105
5106static int add_location(struct loc_track *t, struct kmem_cache *s,
5107                                const struct track *track)
5108{
5109        long start, end, pos;
5110        struct location *l;
5111        unsigned long caddr;
5112        unsigned long age = jiffies - track->when;
5113
5114        start = -1;
5115        end = t->count;
5116
5117        for ( ; ; ) {
5118                pos = start + (end - start + 1) / 2;
5119
5120                /*
5121                 * There is nothing at "end". If we end up there
5122                 * we need to add something to before end.
5123                 */
5124                if (pos == end)
5125                        break;
5126
5127                caddr = t->loc[pos].addr;
5128                if (track->addr == caddr) {
5129
5130                        l = &t->loc[pos];
5131                        l->count++;
5132                        if (track->when) {
5133                                l->sum_time += age;
5134                                if (age < l->min_time)
5135                                        l->min_time = age;
5136                                if (age > l->max_time)
5137                                        l->max_time = age;
5138
5139                                if (track->pid < l->min_pid)
5140                                        l->min_pid = track->pid;
5141                                if (track->pid > l->max_pid)
5142                                        l->max_pid = track->pid;
5143
5144                                cpumask_set_cpu(track->cpu,
5145                                                to_cpumask(l->cpus));
5146                        }
5147                        node_set(page_to_nid(virt_to_page(track)), l->nodes);
5148                        return 1;
5149                }
5150
5151                if (track->addr < caddr)
5152                        end = pos;
5153                else
5154                        start = pos;
5155        }
5156
5157        /*
5158         * Not found. Insert new tracking element.
5159         */
5160        if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5161                return 0;
5162
5163        l = t->loc + pos;
5164        if (pos < t->count)
5165                memmove(l + 1, l,
5166                        (t->count - pos) * sizeof(struct location));
5167        t->count++;
5168        l->count = 1;
5169        l->addr = track->addr;
5170        l->sum_time = age;
5171        l->min_time = age;
5172        l->max_time = age;
5173        l->min_pid = track->pid;
5174        l->max_pid = track->pid;
5175        cpumask_clear(to_cpumask(l->cpus));
5176        cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5177        nodes_clear(l->nodes);
5178        node_set(page_to_nid(virt_to_page(track)), l->nodes);
5179        return 1;
5180}
5181
5182static void process_slab(struct loc_track *t, struct kmem_cache *s,
5183                struct page *page, enum track_item alloc,
5184                unsigned long *obj_map)
5185{
5186        void *addr = page_address(page);
5187        void *p;
5188
5189        __fill_map(obj_map, s, page);
5190
5191        for_each_object(p, s, addr, page->objects)
5192                if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5193                        add_location(t, s, get_track(s, p, alloc));
5194}
5195#endif  /* CONFIG_DEBUG_FS   */
5196#endif  /* CONFIG_SLUB_DEBUG */
5197
5198#ifdef CONFIG_SYSFS
5199enum slab_stat_type {
5200        SL_ALL,                 /* All slabs */
5201        SL_PARTIAL,             /* Only partially allocated slabs */
5202        SL_CPU,                 /* Only slabs used for cpu caches */
5203        SL_OBJECTS,             /* Determine allocated objects not slabs */
5204        SL_TOTAL                /* Determine object capacity not slabs */
5205};
5206
5207#define SO_ALL          (1 << SL_ALL)
5208#define SO_PARTIAL      (1 << SL_PARTIAL)
5209#define SO_CPU          (1 << SL_CPU)
5210#define SO_OBJECTS      (1 << SL_OBJECTS)
5211#define SO_TOTAL        (1 << SL_TOTAL)
5212
5213static ssize_t show_slab_objects(struct kmem_cache *s,
5214                                 char *buf, unsigned long flags)
5215{
5216        unsigned long total = 0;
5217        int node;
5218        int x;
5219        unsigned long *nodes;
5220        int len = 0;
5221
5222        nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5223        if (!nodes)
5224                return -ENOMEM;
5225
5226        if (flags & SO_CPU) {
5227                int cpu;
5228
5229                for_each_possible_cpu(cpu) {
5230                        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5231                                                               cpu);
5232                        int node;
5233                        struct page *page;
5234
5235                        page = READ_ONCE(c->page);
5236                        if (!page)
5237                                continue;
5238
5239                        node = page_to_nid(page);
5240                        if (flags & SO_TOTAL)
5241                                x = page->objects;
5242                        else if (flags & SO_OBJECTS)
5243                                x = page->inuse;
5244                        else
5245                                x = 1;
5246
5247                        total += x;
5248                        nodes[node] += x;
5249
5250                        page = slub_percpu_partial_read_once(c);
5251                        if (page) {
5252                                node = page_to_nid(page);
5253                                if (flags & SO_TOTAL)
5254                                        WARN_ON_ONCE(1);
5255                                else if (flags & SO_OBJECTS)
5256                                        WARN_ON_ONCE(1);
5257                                else
5258                                        x = page->pages;
5259                                total += x;
5260                                nodes[node] += x;
5261                        }
5262                }
5263        }
5264
5265        /*
5266         * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5267         * already held which will conflict with an existing lock order:
5268         *
5269         * mem_hotplug_lock->slab_mutex->kernfs_mutex
5270         *
5271         * We don't really need mem_hotplug_lock (to hold off
5272         * slab_mem_going_offline_callback) here because slab's memory hot
5273         * unplug code doesn't destroy the kmem_cache->node[] data.
5274         */
5275
5276#ifdef CONFIG_SLUB_DEBUG
5277        if (flags & SO_ALL) {
5278                struct kmem_cache_node *n;
5279
5280                for_each_kmem_cache_node(s, node, n) {
5281
5282                        if (flags & SO_TOTAL)
5283                                x = atomic_long_read(&n->total_objects);
5284                        else if (flags & SO_OBJECTS)
5285                                x = atomic_long_read(&n->total_objects) -
5286                                        count_partial(n, count_free);
5287                        else
5288                                x = atomic_long_read(&n->nr_slabs);
5289                        total += x;
5290                        nodes[node] += x;
5291                }
5292
5293        } else
5294#endif
5295        if (flags & SO_PARTIAL) {
5296                struct kmem_cache_node *n;
5297
5298                for_each_kmem_cache_node(s, node, n) {
5299                        if (flags & SO_TOTAL)
5300                                x = count_partial(n, count_total);
5301                        else if (flags & SO_OBJECTS)
5302                                x = count_partial(n, count_inuse);
5303                        else
5304                                x = n->nr_partial;
5305                        total += x;
5306                        nodes[node] += x;
5307                }
5308        }
5309
5310        len += sysfs_emit_at(buf, len, "%lu", total);
5311#ifdef CONFIG_NUMA
5312        for (node = 0; node < nr_node_ids; node++) {
5313                if (nodes[node])
5314                        len += sysfs_emit_at(buf, len, " N%d=%lu",
5315                                             node, nodes[node]);
5316        }
5317#endif
5318        len += sysfs_emit_at(buf, len, "\n");
5319        kfree(nodes);
5320
5321        return len;
5322}
5323
5324#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5325#define to_slab(n) container_of(n, struct kmem_cache, kobj)
5326
5327struct slab_attribute {
5328        struct attribute attr;
5329        ssize_t (*show)(struct kmem_cache *s, char *buf);
5330        ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5331};
5332
5333#define SLAB_ATTR_RO(_name) \
5334        static struct slab_attribute _name##_attr = \
5335        __ATTR(_name, 0400, _name##_show, NULL)
5336
5337#define SLAB_ATTR(_name) \
5338        static struct slab_attribute _name##_attr =  \
5339        __ATTR(_name, 0600, _name##_show, _name##_store)
5340
5341static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5342{
5343        return sysfs_emit(buf, "%u\n", s->size);
5344}
5345SLAB_ATTR_RO(slab_size);
5346
5347static ssize_t align_show(struct kmem_cache *s, char *buf)
5348{
5349        return sysfs_emit(buf, "%u\n", s->align);
5350}
5351SLAB_ATTR_RO(align);
5352
5353static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5354{
5355        return sysfs_emit(buf, "%u\n", s->object_size);
5356}
5357SLAB_ATTR_RO(object_size);
5358
5359static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5360{
5361        return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5362}
5363SLAB_ATTR_RO(objs_per_slab);
5364
5365static ssize_t order_show(struct kmem_cache *s, char *buf)
5366{
5367        return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5368}
5369SLAB_ATTR_RO(order);
5370
5371static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5372{
5373        return sysfs_emit(buf, "%lu\n", s->min_partial);
5374}
5375
5376static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5377                                 size_t length)
5378{
5379        unsigned long min;
5380        int err;
5381
5382        err = kstrtoul(buf, 10, &min);
5383        if (err)
5384                return err;
5385
5386        set_min_partial(s, min);
5387        return length;
5388}
5389SLAB_ATTR(min_partial);
5390
5391static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5392{
5393        return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5394}
5395
5396static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5397                                 size_t length)
5398{
5399        unsigned int objects;
5400        int err;
5401
5402        err = kstrtouint(buf, 10, &objects);
5403        if (err)
5404                return err;
5405        if (objects && !kmem_cache_has_cpu_partial(s))
5406                return -EINVAL;
5407
5408        slub_set_cpu_partial(s, objects);
5409        flush_all(s);
5410        return length;
5411}
5412SLAB_ATTR(cpu_partial);
5413
5414static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5415{
5416        if (!s->ctor)
5417                return 0;
5418        return sysfs_emit(buf, "%pS\n", s->ctor);
5419}
5420SLAB_ATTR_RO(ctor);
5421
5422static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5423{
5424        return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5425}
5426SLAB_ATTR_RO(aliases);
5427
5428static ssize_t partial_show(struct kmem_cache *s, char *buf)
5429{
5430        return show_slab_objects(s, buf, SO_PARTIAL);
5431}
5432SLAB_ATTR_RO(partial);
5433
5434static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5435{
5436        return show_slab_objects(s, buf, SO_CPU);
5437}
5438SLAB_ATTR_RO(cpu_slabs);
5439
5440static ssize_t objects_show(struct kmem_cache *s, char *buf)
5441{
5442        return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5443}
5444SLAB_ATTR_RO(objects);
5445
5446static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5447{
5448        return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5449}
5450SLAB_ATTR_RO(objects_partial);
5451
5452static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5453{
5454        int objects = 0;
5455        int pages = 0;
5456        int cpu;
5457        int len = 0;
5458
5459        for_each_online_cpu(cpu) {
5460                struct page *page;
5461
5462                page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5463
5464                if (page) {
5465                        pages += page->pages;
5466                        objects += page->pobjects;
5467                }
5468        }
5469
5470        len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5471
5472#ifdef CONFIG_SMP
5473        for_each_online_cpu(cpu) {
5474                struct page *page;
5475
5476                page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5477                if (page)
5478                        len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5479                                             cpu, page->pobjects, page->pages);
5480        }
5481#endif
5482        len += sysfs_emit_at(buf, len, "\n");
5483
5484        return len;
5485}
5486SLAB_ATTR_RO(slabs_cpu_partial);
5487
5488static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5489{
5490        return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5491}
5492SLAB_ATTR_RO(reclaim_account);
5493
5494static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5495{
5496        return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5497}
5498SLAB_ATTR_RO(hwcache_align);
5499
5500#ifdef CONFIG_ZONE_DMA
5501static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5502{
5503        return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5504}
5505SLAB_ATTR_RO(cache_dma);
5506#endif
5507
5508static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5509{
5510        return sysfs_emit(buf, "%u\n", s->usersize);
5511}
5512SLAB_ATTR_RO(usersize);
5513
5514static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5515{
5516        return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5517}
5518SLAB_ATTR_RO(destroy_by_rcu);
5519
5520#ifdef CONFIG_SLUB_DEBUG
5521static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5522{
5523        return show_slab_objects(s, buf, SO_ALL);
5524}
5525SLAB_ATTR_RO(slabs);
5526
5527static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5528{
5529        return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5530}
5531SLAB_ATTR_RO(total_objects);
5532
5533static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5534{
5535        return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5536}
5537SLAB_ATTR_RO(sanity_checks);
5538
5539static ssize_t trace_show(struct kmem_cache *s, char *buf)
5540{
5541        return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5542}
5543SLAB_ATTR_RO(trace);
5544
5545static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5546{
5547        return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5548}
5549
5550SLAB_ATTR_RO(red_zone);
5551
5552static ssize_t poison_show(struct kmem_cache *s, char *buf)
5553{
5554        return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5555}
5556
5557SLAB_ATTR_RO(poison);
5558
5559static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5560{
5561        return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5562}
5563
5564SLAB_ATTR_RO(store_user);
5565
5566static ssize_t validate_show(struct kmem_cache *s, char *buf)
5567{
5568        return 0;
5569}
5570
5571static ssize_t validate_store(struct kmem_cache *s,
5572                        const char *buf, size_t length)
5573{
5574        int ret = -EINVAL;
5575
5576        if (buf[0] == '1') {
5577                ret = validate_slab_cache(s);
5578                if (ret >= 0)
5579                        ret = length;
5580        }
5581        return ret;
5582}
5583SLAB_ATTR(validate);
5584
5585#endif /* CONFIG_SLUB_DEBUG */
5586
5587#ifdef CONFIG_FAILSLAB
5588static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5589{
5590        return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5591}
5592SLAB_ATTR_RO(failslab);
5593#endif
5594
5595static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5596{
5597        return 0;
5598}
5599
5600static ssize_t shrink_store(struct kmem_cache *s,
5601                        const char *buf, size_t length)
5602{
5603        if (buf[0] == '1')
5604                kmem_cache_shrink(s);
5605        else
5606                return -EINVAL;
5607        return length;
5608}
5609SLAB_ATTR(shrink);
5610
5611#ifdef CONFIG_NUMA
5612static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5613{
5614        return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5615}
5616
5617static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5618                                const char *buf, size_t length)
5619{
5620        unsigned int ratio;
5621        int err;
5622
5623        err = kstrtouint(buf, 10, &ratio);
5624        if (err)
5625                return err;
5626        if (ratio > 100)
5627                return -ERANGE;
5628
5629        s->remote_node_defrag_ratio = ratio * 10;
5630
5631        return length;
5632}
5633SLAB_ATTR(remote_node_defrag_ratio);
5634#endif
5635
5636#ifdef CONFIG_SLUB_STATS
5637static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5638{
5639        unsigned long sum  = 0;
5640        int cpu;
5641        int len = 0;
5642        int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5643
5644        if (!data)
5645                return -ENOMEM;
5646
5647        for_each_online_cpu(cpu) {
5648                unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5649
5650                data[cpu] = x;
5651                sum += x;
5652        }
5653
5654        len += sysfs_emit_at(buf, len, "%lu", sum);
5655
5656#ifdef CONFIG_SMP
5657        for_each_online_cpu(cpu) {
5658                if (data[cpu])
5659                        len += sysfs_emit_at(buf, len, " C%d=%u",
5660                                             cpu, data[cpu]);
5661        }
5662#endif
5663        kfree(data);
5664        len += sysfs_emit_at(buf, len, "\n");
5665
5666        return len;
5667}
5668
5669static void clear_stat(struct kmem_cache *s, enum stat_item si)
5670{
5671        int cpu;
5672
5673        for_each_online_cpu(cpu)
5674                per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5675}
5676
5677#define STAT_ATTR(si, text)                                     \
5678static ssize_t text##_show(struct kmem_cache *s, char *buf)     \
5679{                                                               \
5680        return show_stat(s, buf, si);                           \
5681}                                                               \
5682static ssize_t text##_store(struct kmem_cache *s,               \
5683                                const char *buf, size_t length) \
5684{                                                               \
5685        if (buf[0] != '0')                                      \
5686                return -EINVAL;                                 \
5687        clear_stat(s, si);                                      \
5688        return length;                                          \
5689}                                                               \
5690SLAB_ATTR(text);                                                \
5691
5692STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5693STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5694STAT_ATTR(FREE_FASTPATH, free_fastpath);
5695STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5696STAT_ATTR(FREE_FROZEN, free_frozen);
5697STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5698STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5699STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5700STAT_ATTR(ALLOC_SLAB, alloc_slab);
5701STAT_ATTR(ALLOC_REFILL, alloc_refill);
5702STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5703STAT_ATTR(FREE_SLAB, free_slab);
5704STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5705STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5706STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5707STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5708STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5709STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5710STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5711STAT_ATTR(ORDER_FALLBACK, order_fallback);
5712STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5713STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5714STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5715STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5716STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5717STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5718#endif  /* CONFIG_SLUB_STATS */
5719
5720static struct attribute *slab_attrs[] = {
5721        &slab_size_attr.attr,
5722        &object_size_attr.attr,
5723        &objs_per_slab_attr.attr,
5724        &order_attr.attr,
5725        &min_partial_attr.attr,
5726        &cpu_partial_attr.attr,
5727        &objects_attr.attr,
5728        &objects_partial_attr.attr,
5729        &partial_attr.attr,
5730        &cpu_slabs_attr.attr,
5731        &ctor_attr.attr,
5732        &aliases_attr.attr,
5733        &align_attr.attr,
5734        &hwcache_align_attr.attr,
5735        &reclaim_account_attr.attr,
5736        &destroy_by_rcu_attr.attr,
5737        &shrink_attr.attr,
5738        &slabs_cpu_partial_attr.attr,
5739#ifdef CONFIG_SLUB_DEBUG
5740        &total_objects_attr.attr,
5741        &slabs_attr.attr,
5742        &sanity_checks_attr.attr,
5743        &trace_attr.attr,
5744        &red_zone_attr.attr,
5745        &poison_attr.attr,
5746        &store_user_attr.attr,
5747        &validate_attr.attr,
5748#endif
5749#ifdef CONFIG_ZONE_DMA
5750        &cache_dma_attr.attr,
5751#endif
5752#ifdef CONFIG_NUMA
5753        &remote_node_defrag_ratio_attr.attr,
5754#endif
5755#ifdef CONFIG_SLUB_STATS
5756        &alloc_fastpath_attr.attr,
5757        &alloc_slowpath_attr.attr,
5758        &free_fastpath_attr.attr,
5759        &free_slowpath_attr.attr,
5760        &free_frozen_attr.attr,
5761        &free_add_partial_attr.attr,
5762        &free_remove_partial_attr.attr,
5763        &alloc_from_partial_attr.attr,
5764        &alloc_slab_attr.attr,
5765        &alloc_refill_attr.attr,
5766        &alloc_node_mismatch_attr.attr,
5767        &free_slab_attr.attr,
5768        &cpuslab_flush_attr.attr,
5769        &deactivate_full_attr.attr,
5770        &deactivate_empty_attr.attr,
5771        &deactivate_to_head_attr.attr,
5772        &deactivate_to_tail_attr.attr,
5773        &deactivate_remote_frees_attr.attr,
5774        &deactivate_bypass_attr.attr,
5775        &order_fallback_attr.attr,
5776        &cmpxchg_double_fail_attr.attr,
5777        &cmpxchg_double_cpu_fail_attr.attr,
5778        &cpu_partial_alloc_attr.attr,
5779        &cpu_partial_free_attr.attr,
5780        &cpu_partial_node_attr.attr,
5781        &cpu_partial_drain_attr.attr,
5782#endif
5783#ifdef CONFIG_FAILSLAB
5784        &failslab_attr.attr,
5785#endif
5786        &usersize_attr.attr,
5787
5788        NULL
5789};
5790
5791static const struct attribute_group slab_attr_group = {
5792        .attrs = slab_attrs,
5793};
5794
5795static ssize_t slab_attr_show(struct kobject *kobj,
5796                                struct attribute *attr,
5797                                char *buf)
5798{
5799        struct slab_attribute *attribute;
5800        struct kmem_cache *s;
5801        int err;
5802
5803        attribute = to_slab_attr(attr);
5804        s = to_slab(kobj);
5805
5806        if (!attribute->show)
5807                return -EIO;
5808
5809        err = attribute->show(s, buf);
5810
5811        return err;
5812}
5813
5814static ssize_t slab_attr_store(struct kobject *kobj,
5815                                struct attribute *attr,
5816                                const char *buf, size_t len)
5817{
5818        struct slab_attribute *attribute;
5819        struct kmem_cache *s;
5820        int err;
5821
5822        attribute = to_slab_attr(attr);
5823        s = to_slab(kobj);
5824
5825        if (!attribute->store)
5826                return -EIO;
5827
5828        err = attribute->store(s, buf, len);
5829        return err;
5830}
5831
5832static void kmem_cache_release(struct kobject *k)
5833{
5834        slab_kmem_cache_release(to_slab(k));
5835}
5836
5837static const struct sysfs_ops slab_sysfs_ops = {
5838        .show = slab_attr_show,
5839        .store = slab_attr_store,
5840};
5841
5842static struct kobj_type slab_ktype = {
5843        .sysfs_ops = &slab_sysfs_ops,
5844        .release = kmem_cache_release,
5845};
5846
5847static struct kset *slab_kset;
5848
5849static inline struct kset *cache_kset(struct kmem_cache *s)
5850{
5851        return slab_kset;
5852}
5853
5854#define ID_STR_LENGTH 64
5855
5856/* Create a unique string id for a slab cache:
5857 *
5858 * Format       :[flags-]size
5859 */
5860static char *create_unique_id(struct kmem_cache *s)
5861{
5862        char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5863        char *p = name;
5864
5865        BUG_ON(!name);
5866
5867        *p++ = ':';
5868        /*
5869         * First flags affecting slabcache operations. We will only
5870         * get here for aliasable slabs so we do not need to support
5871         * too many flags. The flags here must cover all flags that
5872         * are matched during merging to guarantee that the id is
5873         * unique.
5874         */
5875        if (s->flags & SLAB_CACHE_DMA)
5876                *p++ = 'd';
5877        if (s->flags & SLAB_CACHE_DMA32)
5878                *p++ = 'D';
5879        if (s->flags & SLAB_RECLAIM_ACCOUNT)
5880                *p++ = 'a';
5881        if (s->flags & SLAB_CONSISTENCY_CHECKS)
5882                *p++ = 'F';
5883        if (s->flags & SLAB_ACCOUNT)
5884                *p++ = 'A';
5885        if (p != name + 1)
5886                *p++ = '-';
5887        p += sprintf(p, "%07u", s->size);
5888
5889        BUG_ON(p > name + ID_STR_LENGTH - 1);
5890        return name;
5891}
5892
5893static int sysfs_slab_add(struct kmem_cache *s)
5894{
5895        int err;
5896        const char *name;
5897        struct kset *kset = cache_kset(s);
5898        int unmergeable = slab_unmergeable(s);
5899
5900        if (!kset) {
5901                kobject_init(&s->kobj, &slab_ktype);
5902                return 0;
5903        }
5904
5905        if (!unmergeable && disable_higher_order_debug &&
5906                        (slub_debug & DEBUG_METADATA_FLAGS))
5907                unmergeable = 1;
5908
5909        if (unmergeable) {
5910                /*
5911                 * Slabcache can never be merged so we can use the name proper.
5912                 * This is typically the case for debug situations. In that
5913                 * case we can catch duplicate names easily.
5914                 */
5915                sysfs_remove_link(&slab_kset->kobj, s->name);
5916                name = s->name;
5917        } else {
5918                /*
5919                 * Create a unique name for the slab as a target
5920                 * for the symlinks.
5921                 */
5922                name = create_unique_id(s);
5923        }
5924
5925        s->kobj.kset = kset;
5926        err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5927        if (err)
5928                goto out;
5929
5930        err = sysfs_create_group(&s->kobj, &slab_attr_group);
5931        if (err)
5932                goto out_del_kobj;
5933
5934        if (!unmergeable) {
5935                /* Setup first alias */
5936                sysfs_slab_alias(s, s->name);
5937        }
5938out:
5939        if (!unmergeable)
5940                kfree(name);
5941        return err;
5942out_del_kobj:
5943        kobject_del(&s->kobj);
5944        goto out;
5945}
5946
5947void sysfs_slab_unlink(struct kmem_cache *s)
5948{
5949        if (slab_state >= FULL)
5950                kobject_del(&s->kobj);
5951}
5952
5953void sysfs_slab_release(struct kmem_cache *s)
5954{
5955        if (slab_state >= FULL)
5956                kobject_put(&s->kobj);
5957}
5958
5959/*
5960 * Need to buffer aliases during bootup until sysfs becomes
5961 * available lest we lose that information.
5962 */
5963struct saved_alias {
5964        struct kmem_cache *s;
5965        const char *name;
5966        struct saved_alias *next;
5967};
5968
5969static struct saved_alias *alias_list;
5970
5971static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5972{
5973        struct saved_alias *al;
5974
5975        if (slab_state == FULL) {
5976                /*
5977                 * If we have a leftover link then remove it.
5978                 */
5979                sysfs_remove_link(&slab_kset->kobj, name);
5980                return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5981        }
5982
5983        al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5984        if (!al)
5985                return -ENOMEM;
5986
5987        al->s = s;
5988        al->name = name;
5989        al->next = alias_list;
5990        alias_list = al;
5991        return 0;
5992}
5993
5994static int __init slab_sysfs_init(void)
5995{
5996        struct kmem_cache *s;
5997        int err;
5998
5999        mutex_lock(&slab_mutex);
6000
6001        slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6002        if (!slab_kset) {
6003                mutex_unlock(&slab_mutex);
6004                pr_err("Cannot register slab subsystem.\n");
6005                return -ENOSYS;
6006        }
6007
6008        slab_state = FULL;
6009
6010        list_for_each_entry(s, &slab_caches, list) {
6011                err = sysfs_slab_add(s);
6012                if (err)
6013                        pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6014                               s->name);
6015        }
6016
6017        while (alias_list) {
6018                struct saved_alias *al = alias_list;
6019
6020                alias_list = alias_list->next;
6021                err = sysfs_slab_alias(al->s, al->name);
6022                if (err)
6023                        pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6024                               al->name);
6025                kfree(al);
6026        }
6027
6028        mutex_unlock(&slab_mutex);
6029        return 0;
6030}
6031
6032__initcall(slab_sysfs_init);
6033#endif /* CONFIG_SYSFS */
6034
6035#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6036static int slab_debugfs_show(struct seq_file *seq, void *v)
6037{
6038
6039        struct location *l;
6040        unsigned int idx = *(unsigned int *)v;
6041        struct loc_track *t = seq->private;
6042
6043        if (idx < t->count) {
6044                l = &t->loc[idx];
6045
6046                seq_printf(seq, "%7ld ", l->count);
6047
6048                if (l->addr)
6049                        seq_printf(seq, "%pS", (void *)l->addr);
6050                else
6051                        seq_puts(seq, "<not-available>");
6052
6053                if (l->sum_time != l->min_time) {
6054                        seq_printf(seq, " age=%ld/%llu/%ld",
6055                                l->min_time, div_u64(l->sum_time, l->count),
6056                                l->max_time);
6057                } else
6058                        seq_printf(seq, " age=%ld", l->min_time);
6059
6060                if (l->min_pid != l->max_pid)
6061                        seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6062                else
6063                        seq_printf(seq, " pid=%ld",
6064                                l->min_pid);
6065
6066                if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6067                        seq_printf(seq, " cpus=%*pbl",
6068                                 cpumask_pr_args(to_cpumask(l->cpus)));
6069
6070                if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6071                        seq_printf(seq, " nodes=%*pbl",
6072                                 nodemask_pr_args(&l->nodes));
6073
6074                seq_puts(seq, "\n");
6075        }
6076
6077        if (!idx && !t->count)
6078                seq_puts(seq, "No data\n");
6079
6080        return 0;
6081}
6082
6083static void slab_debugfs_stop(struct seq_file *seq, void *v)
6084{
6085}
6086
6087static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6088{
6089        struct loc_track *t = seq->private;
6090
6091        v = ppos;
6092        ++*ppos;
6093        if (*ppos <= t->count)
6094                return v;
6095
6096        return NULL;
6097}
6098
6099static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6100{
6101        return ppos;
6102}
6103
6104static const struct seq_operations slab_debugfs_sops = {
6105        .start  = slab_debugfs_start,
6106        .next   = slab_debugfs_next,
6107        .stop   = slab_debugfs_stop,
6108        .show   = slab_debugfs_show,
6109};
6110
6111static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6112{
6113
6114        struct kmem_cache_node *n;
6115        enum track_item alloc;
6116        int node;
6117        struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6118                                                sizeof(struct loc_track));
6119        struct kmem_cache *s = file_inode(filep)->i_private;
6120        unsigned long *obj_map;
6121
6122        if (!t)
6123                return -ENOMEM;
6124
6125        obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6126        if (!obj_map) {
6127                seq_release_private(inode, filep);
6128                return -ENOMEM;
6129        }
6130
6131        if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6132                alloc = TRACK_ALLOC;
6133        else
6134                alloc = TRACK_FREE;
6135
6136        if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6137                bitmap_free(obj_map);
6138                seq_release_private(inode, filep);
6139                return -ENOMEM;
6140        }
6141
6142        for_each_kmem_cache_node(s, node, n) {
6143                unsigned long flags;
6144                struct page *page;
6145
6146                if (!atomic_long_read(&n->nr_slabs))
6147                        continue;
6148
6149                spin_lock_irqsave(&n->list_lock, flags);
6150                list_for_each_entry(page, &n->partial, slab_list)
6151                        process_slab(t, s, page, alloc, obj_map);
6152                list_for_each_entry(page, &n->full, slab_list)
6153                        process_slab(t, s, page, alloc, obj_map);
6154                spin_unlock_irqrestore(&n->list_lock, flags);
6155        }
6156
6157        bitmap_free(obj_map);
6158        return 0;
6159}
6160
6161static int slab_debug_trace_release(struct inode *inode, struct file *file)
6162{
6163        struct seq_file *seq = file->private_data;
6164        struct loc_track *t = seq->private;
6165
6166        free_loc_track(t);
6167        return seq_release_private(inode, file);
6168}
6169
6170static const struct file_operations slab_debugfs_fops = {
6171        .open    = slab_debug_trace_open,
6172        .read    = seq_read,
6173        .llseek  = seq_lseek,
6174        .release = slab_debug_trace_release,
6175};
6176
6177static void debugfs_slab_add(struct kmem_cache *s)
6178{
6179        struct dentry *slab_cache_dir;
6180
6181        if (unlikely(!slab_debugfs_root))
6182                return;
6183
6184        slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6185
6186        debugfs_create_file("alloc_traces", 0400,
6187                slab_cache_dir, s, &slab_debugfs_fops);
6188
6189        debugfs_create_file("free_traces", 0400,
6190                slab_cache_dir, s, &slab_debugfs_fops);
6191}
6192
6193void debugfs_slab_release(struct kmem_cache *s)
6194{
6195        debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6196}
6197
6198static int __init slab_debugfs_init(void)
6199{
6200        struct kmem_cache *s;
6201
6202        slab_debugfs_root = debugfs_create_dir("slab", NULL);
6203
6204        list_for_each_entry(s, &slab_caches, list)
6205                if (s->flags & SLAB_STORE_USER)
6206                        debugfs_slab_add(s);
6207
6208        return 0;
6209
6210}
6211__initcall(slab_debugfs_init);
6212#endif
6213/*
6214 * The /proc/slabinfo ABI
6215 */
6216#ifdef CONFIG_SLUB_DEBUG
6217void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6218{
6219        unsigned long nr_slabs = 0;
6220        unsigned long nr_objs = 0;
6221        unsigned long nr_free = 0;
6222        int node;
6223        struct kmem_cache_node *n;
6224
6225        for_each_kmem_cache_node(s, node, n) {
6226                nr_slabs += node_nr_slabs(n);
6227                nr_objs += node_nr_objs(n);
6228                nr_free += count_partial(n, count_free);
6229        }
6230
6231        sinfo->active_objs = nr_objs - nr_free;
6232        sinfo->num_objs = nr_objs;
6233        sinfo->active_slabs = nr_slabs;
6234        sinfo->num_slabs = nr_slabs;
6235        sinfo->objects_per_slab = oo_objects(s->oo);
6236        sinfo->cache_order = oo_order(s->oo);
6237}
6238
6239void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6240{
6241}
6242
6243ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6244                       size_t count, loff_t *ppos)
6245{
6246        return -EIO;
6247}
6248#endif /* CONFIG_SLUB_DEBUG */
6249