1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53#include <linux/module.h>
54#include <linux/types.h>
55#include <linux/kernel.h>
56#include <linux/jiffies.h>
57#include <linux/string.h>
58#include <linux/in.h>
59#include <linux/errno.h>
60#include <linux/init.h>
61#include <linux/skbuff.h>
62#include <linux/jhash.h>
63#include <linux/slab.h>
64#include <linux/vmalloc.h>
65#include <linux/reciprocal_div.h>
66#include <net/netlink.h>
67#include <linux/if_vlan.h>
68#include <net/pkt_sched.h>
69#include <net/pkt_cls.h>
70#include <net/tcp.h>
71#include <net/flow_dissector.h>
72
73#if IS_ENABLED(CONFIG_NF_CONNTRACK)
74#include <net/netfilter/nf_conntrack_core.h>
75#endif
76
77#define CAKE_SET_WAYS (8)
78#define CAKE_MAX_TINS (8)
79#define CAKE_QUEUES (1024)
80#define CAKE_FLOW_MASK 63
81#define CAKE_FLOW_NAT_FLAG 64
82
83
84
85
86
87
88
89
90struct cobalt_params {
91 u64 interval;
92 u64 target;
93 u64 mtu_time;
94 u32 p_inc;
95 u32 p_dec;
96};
97
98
99
100
101
102
103
104
105
106
107struct cobalt_vars {
108 u32 count;
109 u32 rec_inv_sqrt;
110 ktime_t drop_next;
111 ktime_t blue_timer;
112 u32 p_drop;
113 bool dropping;
114 bool ecn_marked;
115};
116
117enum {
118 CAKE_SET_NONE = 0,
119 CAKE_SET_SPARSE,
120 CAKE_SET_SPARSE_WAIT,
121 CAKE_SET_BULK,
122 CAKE_SET_DECAYING
123};
124
125struct cake_flow {
126
127 struct sk_buff *head;
128 struct sk_buff *tail;
129 struct list_head flowchain;
130 s32 deficit;
131 u32 dropped;
132 struct cobalt_vars cvars;
133 u16 srchost;
134 u16 dsthost;
135 u8 set;
136};
137
138struct cake_host {
139 u32 srchost_tag;
140 u32 dsthost_tag;
141 u16 srchost_bulk_flow_count;
142 u16 dsthost_bulk_flow_count;
143};
144
145struct cake_heap_entry {
146 u16 t:3, b:10;
147};
148
149struct cake_tin_data {
150 struct cake_flow flows[CAKE_QUEUES];
151 u32 backlogs[CAKE_QUEUES];
152 u32 tags[CAKE_QUEUES];
153 u16 overflow_idx[CAKE_QUEUES];
154 struct cake_host hosts[CAKE_QUEUES];
155 u16 flow_quantum;
156
157 struct cobalt_params cparams;
158 u32 drop_overlimit;
159 u16 bulk_flow_count;
160 u16 sparse_flow_count;
161 u16 decaying_flow_count;
162 u16 unresponsive_flow_count;
163
164 u32 max_skblen;
165
166 struct list_head new_flows;
167 struct list_head old_flows;
168 struct list_head decaying_flows;
169
170
171 ktime_t time_next_packet;
172 u64 tin_rate_ns;
173 u64 tin_rate_bps;
174 u16 tin_rate_shft;
175
176 u16 tin_quantum;
177 s32 tin_deficit;
178 u32 tin_backlog;
179 u32 tin_dropped;
180 u32 tin_ecn_mark;
181
182 u32 packets;
183 u64 bytes;
184
185 u32 ack_drops;
186
187
188 u64 avge_delay;
189 u64 peak_delay;
190 u64 base_delay;
191
192
193 u32 way_directs;
194 u32 way_hits;
195 u32 way_misses;
196 u32 way_collisions;
197};
198
199struct cake_sched_data {
200 struct tcf_proto __rcu *filter_list;
201 struct tcf_block *block;
202 struct cake_tin_data *tins;
203
204 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
205 u16 overflow_timeout;
206
207 u16 tin_cnt;
208 u8 tin_mode;
209 u8 flow_mode;
210 u8 ack_filter;
211 u8 atm_mode;
212
213 u32 fwmark_mask;
214 u16 fwmark_shft;
215
216
217 u16 rate_shft;
218 ktime_t time_next_packet;
219 ktime_t failsafe_next_packet;
220 u64 rate_ns;
221 u64 rate_bps;
222 u16 rate_flags;
223 s16 rate_overhead;
224 u16 rate_mpu;
225 u64 interval;
226 u64 target;
227
228
229 u32 buffer_used;
230 u32 buffer_max_used;
231 u32 buffer_limit;
232 u32 buffer_config_limit;
233
234
235 u16 cur_tin;
236 u16 cur_flow;
237
238 struct qdisc_watchdog watchdog;
239 const u8 *tin_index;
240 const u8 *tin_order;
241
242
243 ktime_t last_packet_time;
244 ktime_t avg_window_begin;
245 u64 avg_packet_interval;
246 u64 avg_window_bytes;
247 u64 avg_peak_bandwidth;
248 ktime_t last_reconfig_time;
249
250
251 u32 avg_netoff;
252 u16 max_netlen;
253 u16 max_adjlen;
254 u16 min_netlen;
255 u16 min_adjlen;
256};
257
258enum {
259 CAKE_FLAG_OVERHEAD = BIT(0),
260 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
261 CAKE_FLAG_INGRESS = BIT(2),
262 CAKE_FLAG_WASH = BIT(3),
263 CAKE_FLAG_SPLIT_GSO = BIT(4)
264};
265
266
267
268
269
270
271
272struct cobalt_skb_cb {
273 ktime_t enqueue_time;
274 u32 adjusted_len;
275};
276
277static u64 us_to_ns(u64 us)
278{
279 return us * NSEC_PER_USEC;
280}
281
282static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
283{
284 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
285 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
286}
287
288static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
289{
290 return get_cobalt_cb(skb)->enqueue_time;
291}
292
293static void cobalt_set_enqueue_time(struct sk_buff *skb,
294 ktime_t now)
295{
296 get_cobalt_cb(skb)->enqueue_time = now;
297}
298
299static u16 quantum_div[CAKE_QUEUES + 1] = {0};
300
301
302
303static const u8 precedence[] = {
304 0, 0, 0, 0, 0, 0, 0, 0,
305 1, 1, 1, 1, 1, 1, 1, 1,
306 2, 2, 2, 2, 2, 2, 2, 2,
307 3, 3, 3, 3, 3, 3, 3, 3,
308 4, 4, 4, 4, 4, 4, 4, 4,
309 5, 5, 5, 5, 5, 5, 5, 5,
310 6, 6, 6, 6, 6, 6, 6, 6,
311 7, 7, 7, 7, 7, 7, 7, 7,
312};
313
314static const u8 diffserv8[] = {
315 2, 0, 1, 2, 4, 2, 2, 2,
316 1, 2, 1, 2, 1, 2, 1, 2,
317 5, 2, 4, 2, 4, 2, 4, 2,
318 3, 2, 3, 2, 3, 2, 3, 2,
319 6, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 2, 2, 6, 2, 6, 2,
321 7, 2, 2, 2, 2, 2, 2, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
323};
324
325static const u8 diffserv4[] = {
326 0, 1, 0, 0, 2, 0, 0, 0,
327 1, 0, 0, 0, 0, 0, 0, 0,
328 2, 0, 2, 0, 2, 0, 2, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 3, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 0, 0, 3, 0, 3, 0,
332 3, 0, 0, 0, 0, 0, 0, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
334};
335
336static const u8 diffserv3[] = {
337 0, 1, 0, 0, 2, 0, 0, 0,
338 1, 0, 0, 0, 0, 0, 0, 0,
339 0, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 2, 0, 2, 0,
343 2, 0, 0, 0, 0, 0, 0, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
345};
346
347static const u8 besteffort[] = {
348 0, 0, 0, 0, 0, 0, 0, 0,
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
356};
357
358
359
360static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
361static const u8 bulk_order[] = {1, 0, 2, 3};
362
363#define REC_INV_SQRT_CACHE (16)
364static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
365
366
367
368
369
370
371
372static void cobalt_newton_step(struct cobalt_vars *vars)
373{
374 u32 invsqrt, invsqrt2;
375 u64 val;
376
377 invsqrt = vars->rec_inv_sqrt;
378 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
379 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
380
381 val >>= 2;
382 val = (val * invsqrt) >> (32 - 2 + 1);
383
384 vars->rec_inv_sqrt = val;
385}
386
387static void cobalt_invsqrt(struct cobalt_vars *vars)
388{
389 if (vars->count < REC_INV_SQRT_CACHE)
390 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
391 else
392 cobalt_newton_step(vars);
393}
394
395
396
397
398
399
400
401
402
403
404
405static void cobalt_cache_init(void)
406{
407 struct cobalt_vars v;
408
409 memset(&v, 0, sizeof(v));
410 v.rec_inv_sqrt = ~0U;
411 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
412
413 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
414 cobalt_newton_step(&v);
415 cobalt_newton_step(&v);
416 cobalt_newton_step(&v);
417 cobalt_newton_step(&v);
418
419 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
420 }
421}
422
423static void cobalt_vars_init(struct cobalt_vars *vars)
424{
425 memset(vars, 0, sizeof(*vars));
426
427 if (!cobalt_rec_inv_sqrt_cache[0]) {
428 cobalt_cache_init();
429 cobalt_rec_inv_sqrt_cache[0] = ~0;
430 }
431}
432
433
434
435
436
437static ktime_t cobalt_control(ktime_t t,
438 u64 interval,
439 u32 rec_inv_sqrt)
440{
441 return ktime_add_ns(t, reciprocal_scale(interval,
442 rec_inv_sqrt));
443}
444
445
446
447
448static bool cobalt_queue_full(struct cobalt_vars *vars,
449 struct cobalt_params *p,
450 ktime_t now)
451{
452 bool up = false;
453
454 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
455 up = !vars->p_drop;
456 vars->p_drop += p->p_inc;
457 if (vars->p_drop < p->p_inc)
458 vars->p_drop = ~0;
459 vars->blue_timer = now;
460 }
461 vars->dropping = true;
462 vars->drop_next = now;
463 if (!vars->count)
464 vars->count = 1;
465
466 return up;
467}
468
469
470
471
472static bool cobalt_queue_empty(struct cobalt_vars *vars,
473 struct cobalt_params *p,
474 ktime_t now)
475{
476 bool down = false;
477
478 if (vars->p_drop &&
479 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
480 if (vars->p_drop < p->p_dec)
481 vars->p_drop = 0;
482 else
483 vars->p_drop -= p->p_dec;
484 vars->blue_timer = now;
485 down = !vars->p_drop;
486 }
487 vars->dropping = false;
488
489 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
490 vars->count--;
491 cobalt_invsqrt(vars);
492 vars->drop_next = cobalt_control(vars->drop_next,
493 p->interval,
494 vars->rec_inv_sqrt);
495 }
496
497 return down;
498}
499
500
501
502
503static bool cobalt_should_drop(struct cobalt_vars *vars,
504 struct cobalt_params *p,
505 ktime_t now,
506 struct sk_buff *skb,
507 u32 bulk_flows)
508{
509 bool next_due, over_target, drop = false;
510 ktime_t schedule;
511 u64 sojourn;
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
529 schedule = ktime_sub(now, vars->drop_next);
530 over_target = sojourn > p->target &&
531 sojourn > p->mtu_time * bulk_flows * 2 &&
532 sojourn > p->mtu_time * 4;
533 next_due = vars->count && ktime_to_ns(schedule) >= 0;
534
535 vars->ecn_marked = false;
536
537 if (over_target) {
538 if (!vars->dropping) {
539 vars->dropping = true;
540 vars->drop_next = cobalt_control(now,
541 p->interval,
542 vars->rec_inv_sqrt);
543 }
544 if (!vars->count)
545 vars->count = 1;
546 } else if (vars->dropping) {
547 vars->dropping = false;
548 }
549
550 if (next_due && vars->dropping) {
551
552 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
553
554 vars->count++;
555 if (!vars->count)
556 vars->count--;
557 cobalt_invsqrt(vars);
558 vars->drop_next = cobalt_control(vars->drop_next,
559 p->interval,
560 vars->rec_inv_sqrt);
561 schedule = ktime_sub(now, vars->drop_next);
562 } else {
563 while (next_due) {
564 vars->count--;
565 cobalt_invsqrt(vars);
566 vars->drop_next = cobalt_control(vars->drop_next,
567 p->interval,
568 vars->rec_inv_sqrt);
569 schedule = ktime_sub(now, vars->drop_next);
570 next_due = vars->count && ktime_to_ns(schedule) >= 0;
571 }
572 }
573
574
575 if (vars->p_drop)
576 drop |= (prandom_u32() < vars->p_drop);
577
578
579 if (!vars->count)
580 vars->drop_next = ktime_add_ns(now, p->interval);
581 else if (ktime_to_ns(schedule) > 0 && !drop)
582 vars->drop_next = now;
583
584 return drop;
585}
586
587static bool cake_update_flowkeys(struct flow_keys *keys,
588 const struct sk_buff *skb)
589{
590#if IS_ENABLED(CONFIG_NF_CONNTRACK)
591 struct nf_conntrack_tuple tuple = {};
592 bool rev = !skb->_nfct, upd = false;
593 __be32 ip;
594
595 if (skb_protocol(skb, true) != htons(ETH_P_IP))
596 return false;
597
598 if (!nf_ct_get_tuple_skb(&tuple, skb))
599 return false;
600
601 ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
602 if (ip != keys->addrs.v4addrs.src) {
603 keys->addrs.v4addrs.src = ip;
604 upd = true;
605 }
606 ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
607 if (ip != keys->addrs.v4addrs.dst) {
608 keys->addrs.v4addrs.dst = ip;
609 upd = true;
610 }
611
612 if (keys->ports.ports) {
613 __be16 port;
614
615 port = rev ? tuple.dst.u.all : tuple.src.u.all;
616 if (port != keys->ports.src) {
617 keys->ports.src = port;
618 upd = true;
619 }
620 port = rev ? tuple.src.u.all : tuple.dst.u.all;
621 if (port != keys->ports.dst) {
622 port = keys->ports.dst;
623 upd = true;
624 }
625 }
626 return upd;
627#else
628 return false;
629#endif
630}
631
632
633
634
635
636static bool cake_dsrc(int flow_mode)
637{
638 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
639}
640
641static bool cake_ddst(int flow_mode)
642{
643 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
644}
645
646static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
647 int flow_mode, u16 flow_override, u16 host_override)
648{
649 bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
650 bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
651 bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
652 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
653 u16 reduced_hash, srchost_idx, dsthost_idx;
654 struct flow_keys keys, host_keys;
655 bool use_skbhash = skb->l4_hash;
656
657 if (unlikely(flow_mode == CAKE_FLOW_NONE))
658 return 0;
659
660
661
662
663
664 if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
665 goto skip_hash;
666
667 skb_flow_dissect_flow_keys(skb, &keys,
668 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
669
670
671 if (nat_enabled && cake_update_flowkeys(&keys, skb))
672 use_skbhash = false;
673
674
675
676
677 if (use_skbhash && !hash_hosts)
678 goto skip_hash;
679
680
681
682
683
684 host_keys = keys;
685 host_keys.ports.ports = 0;
686 host_keys.basic.ip_proto = 0;
687 host_keys.keyid.keyid = 0;
688 host_keys.tags.flow_label = 0;
689
690 switch (host_keys.control.addr_type) {
691 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
692 host_keys.addrs.v4addrs.src = 0;
693 dsthost_hash = flow_hash_from_keys(&host_keys);
694 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
695 host_keys.addrs.v4addrs.dst = 0;
696 srchost_hash = flow_hash_from_keys(&host_keys);
697 break;
698
699 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
700 memset(&host_keys.addrs.v6addrs.src, 0,
701 sizeof(host_keys.addrs.v6addrs.src));
702 dsthost_hash = flow_hash_from_keys(&host_keys);
703 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
704 memset(&host_keys.addrs.v6addrs.dst, 0,
705 sizeof(host_keys.addrs.v6addrs.dst));
706 srchost_hash = flow_hash_from_keys(&host_keys);
707 break;
708
709 default:
710 dsthost_hash = 0;
711 srchost_hash = 0;
712 }
713
714
715
716
717 if (hash_flows && !use_skbhash)
718 flow_hash = flow_hash_from_keys(&keys);
719
720skip_hash:
721 if (flow_override)
722 flow_hash = flow_override - 1;
723 else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
724 flow_hash = skb->hash;
725 if (host_override) {
726 dsthost_hash = host_override - 1;
727 srchost_hash = host_override - 1;
728 }
729
730 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
731 if (flow_mode & CAKE_FLOW_SRC_IP)
732 flow_hash ^= srchost_hash;
733
734 if (flow_mode & CAKE_FLOW_DST_IP)
735 flow_hash ^= dsthost_hash;
736 }
737
738 reduced_hash = flow_hash % CAKE_QUEUES;
739
740
741
742 if (likely(q->tags[reduced_hash] == flow_hash &&
743 q->flows[reduced_hash].set)) {
744 q->way_directs++;
745 } else {
746 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
747 u32 outer_hash = reduced_hash - inner_hash;
748 bool allocate_src = false;
749 bool allocate_dst = false;
750 u32 i, k;
751
752
753
754
755 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
756 i++, k = (k + 1) % CAKE_SET_WAYS) {
757 if (q->tags[outer_hash + k] == flow_hash) {
758 if (i)
759 q->way_hits++;
760
761 if (!q->flows[outer_hash + k].set) {
762
763 allocate_src = cake_dsrc(flow_mode);
764 allocate_dst = cake_ddst(flow_mode);
765 }
766
767 goto found;
768 }
769 }
770
771
772
773
774 for (i = 0; i < CAKE_SET_WAYS;
775 i++, k = (k + 1) % CAKE_SET_WAYS) {
776 if (!q->flows[outer_hash + k].set) {
777 q->way_misses++;
778 allocate_src = cake_dsrc(flow_mode);
779 allocate_dst = cake_ddst(flow_mode);
780 goto found;
781 }
782 }
783
784
785
786
787 q->way_collisions++;
788 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
789 q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
790 q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
791 }
792 allocate_src = cake_dsrc(flow_mode);
793 allocate_dst = cake_ddst(flow_mode);
794found:
795
796 reduced_hash = outer_hash + k;
797 q->tags[reduced_hash] = flow_hash;
798
799 if (allocate_src) {
800 srchost_idx = srchost_hash % CAKE_QUEUES;
801 inner_hash = srchost_idx % CAKE_SET_WAYS;
802 outer_hash = srchost_idx - inner_hash;
803 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
804 i++, k = (k + 1) % CAKE_SET_WAYS) {
805 if (q->hosts[outer_hash + k].srchost_tag ==
806 srchost_hash)
807 goto found_src;
808 }
809 for (i = 0; i < CAKE_SET_WAYS;
810 i++, k = (k + 1) % CAKE_SET_WAYS) {
811 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
812 break;
813 }
814 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
815found_src:
816 srchost_idx = outer_hash + k;
817 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
818 q->hosts[srchost_idx].srchost_bulk_flow_count++;
819 q->flows[reduced_hash].srchost = srchost_idx;
820 }
821
822 if (allocate_dst) {
823 dsthost_idx = dsthost_hash % CAKE_QUEUES;
824 inner_hash = dsthost_idx % CAKE_SET_WAYS;
825 outer_hash = dsthost_idx - inner_hash;
826 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
827 i++, k = (k + 1) % CAKE_SET_WAYS) {
828 if (q->hosts[outer_hash + k].dsthost_tag ==
829 dsthost_hash)
830 goto found_dst;
831 }
832 for (i = 0; i < CAKE_SET_WAYS;
833 i++, k = (k + 1) % CAKE_SET_WAYS) {
834 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
835 break;
836 }
837 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
838found_dst:
839 dsthost_idx = outer_hash + k;
840 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
841 q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
842 q->flows[reduced_hash].dsthost = dsthost_idx;
843 }
844 }
845
846 return reduced_hash;
847}
848
849
850
851
852static struct sk_buff *dequeue_head(struct cake_flow *flow)
853{
854 struct sk_buff *skb = flow->head;
855
856 if (skb) {
857 flow->head = skb->next;
858 skb_mark_not_on_list(skb);
859 }
860
861 return skb;
862}
863
864
865
866static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
867{
868 if (!flow->head)
869 flow->head = skb;
870 else
871 flow->tail->next = skb;
872 flow->tail = skb;
873 skb->next = NULL;
874}
875
876static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
877 struct ipv6hdr *buf)
878{
879 unsigned int offset = skb_network_offset(skb);
880 struct iphdr *iph;
881
882 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
883
884 if (!iph)
885 return NULL;
886
887 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
888 return skb_header_pointer(skb, offset + iph->ihl * 4,
889 sizeof(struct ipv6hdr), buf);
890
891 else if (iph->version == 4)
892 return iph;
893
894 else if (iph->version == 6)
895 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
896 buf);
897
898 return NULL;
899}
900
901static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
902 void *buf, unsigned int bufsize)
903{
904 unsigned int offset = skb_network_offset(skb);
905 const struct ipv6hdr *ipv6h;
906 const struct tcphdr *tcph;
907 const struct iphdr *iph;
908 struct ipv6hdr _ipv6h;
909 struct tcphdr _tcph;
910
911 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
912
913 if (!ipv6h)
914 return NULL;
915
916 if (ipv6h->version == 4) {
917 iph = (struct iphdr *)ipv6h;
918 offset += iph->ihl * 4;
919
920
921
922
923 if (iph->protocol == IPPROTO_IPV6) {
924 ipv6h = skb_header_pointer(skb, offset,
925 sizeof(_ipv6h), &_ipv6h);
926
927 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
928 return NULL;
929
930 offset += sizeof(struct ipv6hdr);
931
932 } else if (iph->protocol != IPPROTO_TCP) {
933 return NULL;
934 }
935
936 } else if (ipv6h->version == 6) {
937 if (ipv6h->nexthdr != IPPROTO_TCP)
938 return NULL;
939
940 offset += sizeof(struct ipv6hdr);
941 } else {
942 return NULL;
943 }
944
945 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
946 if (!tcph || tcph->doff < 5)
947 return NULL;
948
949 return skb_header_pointer(skb, offset,
950 min(__tcp_hdrlen(tcph), bufsize), buf);
951}
952
953static const void *cake_get_tcpopt(const struct tcphdr *tcph,
954 int code, int *oplen)
955{
956
957 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
958 const u8 *ptr = (const u8 *)(tcph + 1);
959
960 while (length > 0) {
961 int opcode = *ptr++;
962 int opsize;
963
964 if (opcode == TCPOPT_EOL)
965 break;
966 if (opcode == TCPOPT_NOP) {
967 length--;
968 continue;
969 }
970 if (length < 2)
971 break;
972 opsize = *ptr++;
973 if (opsize < 2 || opsize > length)
974 break;
975
976 if (opcode == code) {
977 *oplen = opsize;
978 return ptr;
979 }
980
981 ptr += opsize - 2;
982 length -= opsize;
983 }
984
985 return NULL;
986}
987
988
989
990
991
992
993
994
995static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
996 const struct tcphdr *tcph_b)
997{
998 const struct tcp_sack_block_wire *sack_a, *sack_b;
999 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
1000 u32 bytes_a = 0, bytes_b = 0;
1001 int oplen_a, oplen_b;
1002 bool first = true;
1003
1004 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
1005 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
1006
1007
1008 oplen_a -= TCPOLEN_SACK_BASE;
1009 oplen_b -= TCPOLEN_SACK_BASE;
1010
1011 if (sack_a && oplen_a >= sizeof(*sack_a) &&
1012 (!sack_b || oplen_b < sizeof(*sack_b)))
1013 return -1;
1014 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
1015 (!sack_a || oplen_a < sizeof(*sack_a)))
1016 return 1;
1017 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
1018 (!sack_b || oplen_b < sizeof(*sack_b)))
1019 return 0;
1020
1021 while (oplen_a >= sizeof(*sack_a)) {
1022 const struct tcp_sack_block_wire *sack_tmp = sack_b;
1023 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
1024 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
1025 int oplen_tmp = oplen_b;
1026 bool found = false;
1027
1028
1029 if (before(start_a, ack_seq_a))
1030 return -1;
1031
1032 bytes_a += end_a - start_a;
1033
1034 while (oplen_tmp >= sizeof(*sack_tmp)) {
1035 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
1036 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
1037
1038
1039 if (first)
1040 bytes_b += end_b - start_b;
1041
1042 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1043 found = true;
1044 if (!first)
1045 break;
1046 }
1047 oplen_tmp -= sizeof(*sack_tmp);
1048 sack_tmp++;
1049 }
1050
1051 if (!found)
1052 return -1;
1053
1054 oplen_a -= sizeof(*sack_a);
1055 sack_a++;
1056 first = false;
1057 }
1058
1059
1060
1061
1062 return bytes_b > bytes_a ? 1 : 0;
1063}
1064
1065static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1066 u32 *tsval, u32 *tsecr)
1067{
1068 const u8 *ptr;
1069 int opsize;
1070
1071 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1072
1073 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1074 *tsval = get_unaligned_be32(ptr);
1075 *tsecr = get_unaligned_be32(ptr + 4);
1076 }
1077}
1078
1079static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1080 u32 tstamp_new, u32 tsecr_new)
1081{
1082
1083 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1084 const u8 *ptr = (const u8 *)(tcph + 1);
1085 u32 tstamp, tsecr;
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095 if (((tcp_flag_word(tcph) &
1096 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1097 return false;
1098
1099 while (length > 0) {
1100 int opcode = *ptr++;
1101 int opsize;
1102
1103 if (opcode == TCPOPT_EOL)
1104 break;
1105 if (opcode == TCPOPT_NOP) {
1106 length--;
1107 continue;
1108 }
1109 if (length < 2)
1110 break;
1111 opsize = *ptr++;
1112 if (opsize < 2 || opsize > length)
1113 break;
1114
1115 switch (opcode) {
1116 case TCPOPT_MD5SIG:
1117 break;
1118
1119 case TCPOPT_SACK:
1120 if (opsize % 8 != 2)
1121 return false;
1122 break;
1123
1124 case TCPOPT_TIMESTAMP:
1125
1126 if (opsize != TCPOLEN_TIMESTAMP)
1127 return false;
1128 tstamp = get_unaligned_be32(ptr);
1129 tsecr = get_unaligned_be32(ptr + 4);
1130 if (after(tstamp, tstamp_new) ||
1131 after(tsecr, tsecr_new))
1132 return false;
1133 break;
1134
1135 case TCPOPT_MSS:
1136 case TCPOPT_WINDOW:
1137 case TCPOPT_SACK_PERM:
1138 case TCPOPT_FASTOPEN:
1139 case TCPOPT_EXP:
1140 default:
1141 return false;
1142 }
1143
1144 ptr += opsize - 2;
1145 length -= opsize;
1146 }
1147
1148 return true;
1149}
1150
1151static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1152 struct cake_flow *flow)
1153{
1154 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1155 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1156 struct sk_buff *skb_check, *skb_prev = NULL;
1157 const struct ipv6hdr *ipv6h, *ipv6h_check;
1158 unsigned char _tcph[64], _tcph_check[64];
1159 const struct tcphdr *tcph, *tcph_check;
1160 const struct iphdr *iph, *iph_check;
1161 struct ipv6hdr _iph, _iph_check;
1162 const struct sk_buff *skb;
1163 int seglen, num_found = 0;
1164 u32 tstamp = 0, tsecr = 0;
1165 __be32 elig_flags = 0;
1166 int sack_comp;
1167
1168
1169 if (flow->head == flow->tail)
1170 return NULL;
1171
1172 skb = flow->tail;
1173 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1174 iph = cake_get_iphdr(skb, &_iph);
1175 if (!tcph)
1176 return NULL;
1177
1178 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1179
1180
1181
1182
1183 if ((tcp_flag_word(tcph) &
1184 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1185 return NULL;
1186
1187
1188
1189
1190
1191
1192 for (skb_check = flow->head;
1193 skb_check && skb_check != skb;
1194 skb_prev = skb_check, skb_check = skb_check->next) {
1195 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1196 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1197 sizeof(_tcph_check));
1198
1199
1200
1201
1202 if (!tcph_check || iph->version != iph_check->version ||
1203 tcph_check->source != tcph->source ||
1204 tcph_check->dest != tcph->dest)
1205 continue;
1206
1207 if (iph_check->version == 4) {
1208 if (iph_check->saddr != iph->saddr ||
1209 iph_check->daddr != iph->daddr)
1210 continue;
1211
1212 seglen = ntohs(iph_check->tot_len) -
1213 (4 * iph_check->ihl);
1214 } else if (iph_check->version == 6) {
1215 ipv6h = (struct ipv6hdr *)iph;
1216 ipv6h_check = (struct ipv6hdr *)iph_check;
1217
1218 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1219 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1220 continue;
1221
1222 seglen = ntohs(ipv6h_check->payload_len);
1223 } else {
1224 WARN_ON(1);
1225 continue;
1226 }
1227
1228
1229
1230
1231
1232 if (elig_ack && (tcp_flag_word(tcph_check) &
1233 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1234 elig_ack = NULL;
1235 elig_ack_prev = NULL;
1236 num_found--;
1237 }
1238
1239
1240
1241
1242
1243
1244
1245 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1246 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1247 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1248 continue;
1249
1250
1251
1252
1253
1254
1255
1256 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1257
1258 if (sack_comp < 0 ||
1259 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1260 sack_comp == 0))
1261 continue;
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272 if (!elig_ack) {
1273 elig_ack = skb_check;
1274 elig_ack_prev = skb_prev;
1275 elig_flags = (tcp_flag_word(tcph_check)
1276 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1277 }
1278
1279 if (num_found++ > 0)
1280 goto found;
1281 }
1282
1283
1284
1285
1286
1287
1288
1289 if (elig_ack && aggressive && elig_ack->next == skb &&
1290 (elig_flags == (tcp_flag_word(tcph) &
1291 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1292 goto found;
1293
1294 return NULL;
1295
1296found:
1297 if (elig_ack_prev)
1298 elig_ack_prev->next = elig_ack->next;
1299 else
1300 flow->head = elig_ack->next;
1301
1302 skb_mark_not_on_list(elig_ack);
1303
1304 return elig_ack;
1305}
1306
1307static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1308{
1309 avg -= avg >> shift;
1310 avg += sample >> shift;
1311 return avg;
1312}
1313
1314static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1315{
1316 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1317 len -= off;
1318
1319 if (q->max_netlen < len)
1320 q->max_netlen = len;
1321 if (q->min_netlen > len)
1322 q->min_netlen = len;
1323
1324 len += q->rate_overhead;
1325
1326 if (len < q->rate_mpu)
1327 len = q->rate_mpu;
1328
1329 if (q->atm_mode == CAKE_ATM_ATM) {
1330 len += 47;
1331 len /= 48;
1332 len *= 53;
1333 } else if (q->atm_mode == CAKE_ATM_PTM) {
1334
1335
1336
1337
1338 len += (len + 63) / 64;
1339 }
1340
1341 if (q->max_adjlen < len)
1342 q->max_adjlen = len;
1343 if (q->min_adjlen > len)
1344 q->min_adjlen = len;
1345
1346 return len;
1347}
1348
1349static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1350{
1351 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1352 unsigned int hdr_len, last_len = 0;
1353 u32 off = skb_network_offset(skb);
1354 u32 len = qdisc_pkt_len(skb);
1355 u16 segs = 1;
1356
1357 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1358
1359 if (!shinfo->gso_size)
1360 return cake_calc_overhead(q, len, off);
1361
1362
1363 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1364
1365
1366 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1367 SKB_GSO_TCPV6))) {
1368 const struct tcphdr *th;
1369 struct tcphdr _tcphdr;
1370
1371 th = skb_header_pointer(skb, skb_transport_offset(skb),
1372 sizeof(_tcphdr), &_tcphdr);
1373 if (likely(th))
1374 hdr_len += __tcp_hdrlen(th);
1375 } else {
1376 struct udphdr _udphdr;
1377
1378 if (skb_header_pointer(skb, skb_transport_offset(skb),
1379 sizeof(_udphdr), &_udphdr))
1380 hdr_len += sizeof(struct udphdr);
1381 }
1382
1383 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1384 segs = DIV_ROUND_UP(skb->len - hdr_len,
1385 shinfo->gso_size);
1386 else
1387 segs = shinfo->gso_segs;
1388
1389 len = shinfo->gso_size + hdr_len;
1390 last_len = skb->len - shinfo->gso_size * (segs - 1);
1391
1392 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1393 cake_calc_overhead(q, last_len, off));
1394}
1395
1396static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1397{
1398 struct cake_heap_entry ii = q->overflow_heap[i];
1399 struct cake_heap_entry jj = q->overflow_heap[j];
1400
1401 q->overflow_heap[i] = jj;
1402 q->overflow_heap[j] = ii;
1403
1404 q->tins[ii.t].overflow_idx[ii.b] = j;
1405 q->tins[jj.t].overflow_idx[jj.b] = i;
1406}
1407
1408static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1409{
1410 struct cake_heap_entry ii = q->overflow_heap[i];
1411
1412 return q->tins[ii.t].backlogs[ii.b];
1413}
1414
1415static void cake_heapify(struct cake_sched_data *q, u16 i)
1416{
1417 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1418 u32 mb = cake_heap_get_backlog(q, i);
1419 u32 m = i;
1420
1421 while (m < a) {
1422 u32 l = m + m + 1;
1423 u32 r = l + 1;
1424
1425 if (l < a) {
1426 u32 lb = cake_heap_get_backlog(q, l);
1427
1428 if (lb > mb) {
1429 m = l;
1430 mb = lb;
1431 }
1432 }
1433
1434 if (r < a) {
1435 u32 rb = cake_heap_get_backlog(q, r);
1436
1437 if (rb > mb) {
1438 m = r;
1439 mb = rb;
1440 }
1441 }
1442
1443 if (m != i) {
1444 cake_heap_swap(q, i, m);
1445 i = m;
1446 } else {
1447 break;
1448 }
1449 }
1450}
1451
1452static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1453{
1454 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1455 u16 p = (i - 1) >> 1;
1456 u32 ib = cake_heap_get_backlog(q, i);
1457 u32 pb = cake_heap_get_backlog(q, p);
1458
1459 if (ib > pb) {
1460 cake_heap_swap(q, i, p);
1461 i = p;
1462 } else {
1463 break;
1464 }
1465 }
1466}
1467
1468static int cake_advance_shaper(struct cake_sched_data *q,
1469 struct cake_tin_data *b,
1470 struct sk_buff *skb,
1471 ktime_t now, bool drop)
1472{
1473 u32 len = get_cobalt_cb(skb)->adjusted_len;
1474
1475
1476
1477
1478 if (q->rate_ns) {
1479 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1480 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1481 u64 failsafe_dur = global_dur + (global_dur >> 1);
1482
1483 if (ktime_before(b->time_next_packet, now))
1484 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1485 tin_dur);
1486
1487 else if (ktime_before(b->time_next_packet,
1488 ktime_add_ns(now, tin_dur)))
1489 b->time_next_packet = ktime_add_ns(now, tin_dur);
1490
1491 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1492 global_dur);
1493 if (!drop)
1494 q->failsafe_next_packet = \
1495 ktime_add_ns(q->failsafe_next_packet,
1496 failsafe_dur);
1497 }
1498 return len;
1499}
1500
1501static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1502{
1503 struct cake_sched_data *q = qdisc_priv(sch);
1504 ktime_t now = ktime_get();
1505 u32 idx = 0, tin = 0, len;
1506 struct cake_heap_entry qq;
1507 struct cake_tin_data *b;
1508 struct cake_flow *flow;
1509 struct sk_buff *skb;
1510
1511 if (!q->overflow_timeout) {
1512 int i;
1513
1514 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1515 cake_heapify(q, i);
1516 }
1517 q->overflow_timeout = 65535;
1518
1519
1520 qq = q->overflow_heap[0];
1521 tin = qq.t;
1522 idx = qq.b;
1523
1524 b = &q->tins[tin];
1525 flow = &b->flows[idx];
1526 skb = dequeue_head(flow);
1527 if (unlikely(!skb)) {
1528
1529 q->overflow_timeout = 0;
1530 return idx + (tin << 16);
1531 }
1532
1533 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1534 b->unresponsive_flow_count++;
1535
1536 len = qdisc_pkt_len(skb);
1537 q->buffer_used -= skb->truesize;
1538 b->backlogs[idx] -= len;
1539 b->tin_backlog -= len;
1540 sch->qstats.backlog -= len;
1541 qdisc_tree_reduce_backlog(sch, 1, len);
1542
1543 flow->dropped++;
1544 b->tin_dropped++;
1545 sch->qstats.drops++;
1546
1547 if (q->rate_flags & CAKE_FLAG_INGRESS)
1548 cake_advance_shaper(q, b, skb, now, true);
1549
1550 __qdisc_drop(skb, to_free);
1551 sch->q.qlen--;
1552
1553 cake_heapify(q, 0);
1554
1555 return idx + (tin << 16);
1556}
1557
1558static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1559{
1560 const int offset = skb_network_offset(skb);
1561 u16 *buf, buf_;
1562 u8 dscp;
1563
1564 switch (skb_protocol(skb, true)) {
1565 case htons(ETH_P_IP):
1566 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1567 if (unlikely(!buf))
1568 return 0;
1569
1570
1571 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1572
1573 if (wash && dscp) {
1574 const int wlen = offset + sizeof(struct iphdr);
1575
1576 if (!pskb_may_pull(skb, wlen) ||
1577 skb_try_make_writable(skb, wlen))
1578 return 0;
1579
1580 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1581 }
1582
1583 return dscp;
1584
1585 case htons(ETH_P_IPV6):
1586 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1587 if (unlikely(!buf))
1588 return 0;
1589
1590
1591 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1592
1593 if (wash && dscp) {
1594 const int wlen = offset + sizeof(struct ipv6hdr);
1595
1596 if (!pskb_may_pull(skb, wlen) ||
1597 skb_try_make_writable(skb, wlen))
1598 return 0;
1599
1600 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1601 }
1602
1603 return dscp;
1604
1605 case htons(ETH_P_ARP):
1606 return 0x38;
1607
1608 default:
1609
1610 return 0;
1611 }
1612}
1613
1614static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1615 struct sk_buff *skb)
1616{
1617 struct cake_sched_data *q = qdisc_priv(sch);
1618 u32 tin, mark;
1619 bool wash;
1620 u8 dscp;
1621
1622
1623
1624
1625
1626 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1627 wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1628 if (wash)
1629 dscp = cake_handle_diffserv(skb, wash);
1630
1631 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1632 tin = 0;
1633
1634 else if (mark && mark <= q->tin_cnt)
1635 tin = q->tin_order[mark - 1];
1636
1637 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1638 TC_H_MIN(skb->priority) > 0 &&
1639 TC_H_MIN(skb->priority) <= q->tin_cnt)
1640 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1641
1642 else {
1643 if (!wash)
1644 dscp = cake_handle_diffserv(skb, wash);
1645 tin = q->tin_index[dscp];
1646
1647 if (unlikely(tin >= q->tin_cnt))
1648 tin = 0;
1649 }
1650
1651 return &q->tins[tin];
1652}
1653
1654static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1655 struct sk_buff *skb, int flow_mode, int *qerr)
1656{
1657 struct cake_sched_data *q = qdisc_priv(sch);
1658 struct tcf_proto *filter;
1659 struct tcf_result res;
1660 u16 flow = 0, host = 0;
1661 int result;
1662
1663 filter = rcu_dereference_bh(q->filter_list);
1664 if (!filter)
1665 goto hash;
1666
1667 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1668 result = tcf_classify(skb, NULL, filter, &res, false);
1669
1670 if (result >= 0) {
1671#ifdef CONFIG_NET_CLS_ACT
1672 switch (result) {
1673 case TC_ACT_STOLEN:
1674 case TC_ACT_QUEUED:
1675 case TC_ACT_TRAP:
1676 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1677 fallthrough;
1678 case TC_ACT_SHOT:
1679 return 0;
1680 }
1681#endif
1682 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1683 flow = TC_H_MIN(res.classid);
1684 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1685 host = TC_H_MAJ(res.classid) >> 16;
1686 }
1687hash:
1688 *t = cake_select_tin(sch, skb);
1689 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1690}
1691
1692static void cake_reconfigure(struct Qdisc *sch);
1693
1694static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1695 struct sk_buff **to_free)
1696{
1697 struct cake_sched_data *q = qdisc_priv(sch);
1698 int len = qdisc_pkt_len(skb);
1699 int ret;
1700 struct sk_buff *ack = NULL;
1701 ktime_t now = ktime_get();
1702 struct cake_tin_data *b;
1703 struct cake_flow *flow;
1704 u32 idx;
1705
1706
1707 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1708 if (idx == 0) {
1709 if (ret & __NET_XMIT_BYPASS)
1710 qdisc_qstats_drop(sch);
1711 __qdisc_drop(skb, to_free);
1712 return ret;
1713 }
1714 idx--;
1715 flow = &b->flows[idx];
1716
1717
1718 if (!b->tin_backlog) {
1719 if (ktime_before(b->time_next_packet, now))
1720 b->time_next_packet = now;
1721
1722 if (!sch->q.qlen) {
1723 if (ktime_before(q->time_next_packet, now)) {
1724 q->failsafe_next_packet = now;
1725 q->time_next_packet = now;
1726 } else if (ktime_after(q->time_next_packet, now) &&
1727 ktime_after(q->failsafe_next_packet, now)) {
1728 u64 next = \
1729 min(ktime_to_ns(q->time_next_packet),
1730 ktime_to_ns(
1731 q->failsafe_next_packet));
1732 sch->qstats.overlimits++;
1733 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1734 }
1735 }
1736 }
1737
1738 if (unlikely(len > b->max_skblen))
1739 b->max_skblen = len;
1740
1741 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1742 struct sk_buff *segs, *nskb;
1743 netdev_features_t features = netif_skb_features(skb);
1744 unsigned int slen = 0, numsegs = 0;
1745
1746 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1747 if (IS_ERR_OR_NULL(segs))
1748 return qdisc_drop(skb, sch, to_free);
1749
1750 skb_list_walk_safe(segs, segs, nskb) {
1751 skb_mark_not_on_list(segs);
1752 qdisc_skb_cb(segs)->pkt_len = segs->len;
1753 cobalt_set_enqueue_time(segs, now);
1754 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1755 segs);
1756 flow_queue_add(flow, segs);
1757
1758 sch->q.qlen++;
1759 numsegs++;
1760 slen += segs->len;
1761 q->buffer_used += segs->truesize;
1762 b->packets++;
1763 }
1764
1765
1766 b->bytes += slen;
1767 b->backlogs[idx] += slen;
1768 b->tin_backlog += slen;
1769 sch->qstats.backlog += slen;
1770 q->avg_window_bytes += slen;
1771
1772 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1773 consume_skb(skb);
1774 } else {
1775
1776 cobalt_set_enqueue_time(skb, now);
1777 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1778 flow_queue_add(flow, skb);
1779
1780 if (q->ack_filter)
1781 ack = cake_ack_filter(q, flow);
1782
1783 if (ack) {
1784 b->ack_drops++;
1785 sch->qstats.drops++;
1786 b->bytes += qdisc_pkt_len(ack);
1787 len -= qdisc_pkt_len(ack);
1788 q->buffer_used += skb->truesize - ack->truesize;
1789 if (q->rate_flags & CAKE_FLAG_INGRESS)
1790 cake_advance_shaper(q, b, ack, now, true);
1791
1792 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1793 consume_skb(ack);
1794 } else {
1795 sch->q.qlen++;
1796 q->buffer_used += skb->truesize;
1797 }
1798
1799
1800 b->packets++;
1801 b->bytes += len;
1802 b->backlogs[idx] += len;
1803 b->tin_backlog += len;
1804 sch->qstats.backlog += len;
1805 q->avg_window_bytes += len;
1806 }
1807
1808 if (q->overflow_timeout)
1809 cake_heapify_up(q, b->overflow_idx[idx]);
1810
1811
1812 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1813 u64 packet_interval = \
1814 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1815
1816 if (packet_interval > NSEC_PER_SEC)
1817 packet_interval = NSEC_PER_SEC;
1818
1819
1820 q->avg_packet_interval = \
1821 cake_ewma(q->avg_packet_interval,
1822 packet_interval,
1823 (packet_interval > q->avg_packet_interval ?
1824 2 : 8));
1825
1826 q->last_packet_time = now;
1827
1828 if (packet_interval > q->avg_packet_interval) {
1829 u64 window_interval = \
1830 ktime_to_ns(ktime_sub(now,
1831 q->avg_window_begin));
1832 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1833
1834 b = div64_u64(b, window_interval);
1835 q->avg_peak_bandwidth =
1836 cake_ewma(q->avg_peak_bandwidth, b,
1837 b > q->avg_peak_bandwidth ? 2 : 8);
1838 q->avg_window_bytes = 0;
1839 q->avg_window_begin = now;
1840
1841 if (ktime_after(now,
1842 ktime_add_ms(q->last_reconfig_time,
1843 250))) {
1844 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1845 cake_reconfigure(sch);
1846 }
1847 }
1848 } else {
1849 q->avg_window_bytes = 0;
1850 q->last_packet_time = now;
1851 }
1852
1853
1854 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1855 struct cake_host *srchost = &b->hosts[flow->srchost];
1856 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1857 u16 host_load = 1;
1858
1859 if (!flow->set) {
1860 list_add_tail(&flow->flowchain, &b->new_flows);
1861 } else {
1862 b->decaying_flow_count--;
1863 list_move_tail(&flow->flowchain, &b->new_flows);
1864 }
1865 flow->set = CAKE_SET_SPARSE;
1866 b->sparse_flow_count++;
1867
1868 if (cake_dsrc(q->flow_mode))
1869 host_load = max(host_load, srchost->srchost_bulk_flow_count);
1870
1871 if (cake_ddst(q->flow_mode))
1872 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
1873
1874 flow->deficit = (b->flow_quantum *
1875 quantum_div[host_load]) >> 16;
1876 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1877 struct cake_host *srchost = &b->hosts[flow->srchost];
1878 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1879
1880
1881
1882
1883 flow->set = CAKE_SET_BULK;
1884 b->sparse_flow_count--;
1885 b->bulk_flow_count++;
1886
1887 if (cake_dsrc(q->flow_mode))
1888 srchost->srchost_bulk_flow_count++;
1889
1890 if (cake_ddst(q->flow_mode))
1891 dsthost->dsthost_bulk_flow_count++;
1892
1893 }
1894
1895 if (q->buffer_used > q->buffer_max_used)
1896 q->buffer_max_used = q->buffer_used;
1897
1898 if (q->buffer_used > q->buffer_limit) {
1899 u32 dropped = 0;
1900
1901 while (q->buffer_used > q->buffer_limit) {
1902 dropped++;
1903 cake_drop(sch, to_free);
1904 }
1905 b->drop_overlimit += dropped;
1906 }
1907 return NET_XMIT_SUCCESS;
1908}
1909
1910static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1911{
1912 struct cake_sched_data *q = qdisc_priv(sch);
1913 struct cake_tin_data *b = &q->tins[q->cur_tin];
1914 struct cake_flow *flow = &b->flows[q->cur_flow];
1915 struct sk_buff *skb = NULL;
1916 u32 len;
1917
1918 if (flow->head) {
1919 skb = dequeue_head(flow);
1920 len = qdisc_pkt_len(skb);
1921 b->backlogs[q->cur_flow] -= len;
1922 b->tin_backlog -= len;
1923 sch->qstats.backlog -= len;
1924 q->buffer_used -= skb->truesize;
1925 sch->q.qlen--;
1926
1927 if (q->overflow_timeout)
1928 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1929 }
1930 return skb;
1931}
1932
1933
1934static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1935{
1936 struct cake_sched_data *q = qdisc_priv(sch);
1937 struct sk_buff *skb;
1938
1939 q->cur_tin = tin;
1940 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1941 while (!!(skb = cake_dequeue_one(sch)))
1942 kfree_skb(skb);
1943}
1944
1945static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1946{
1947 struct cake_sched_data *q = qdisc_priv(sch);
1948 struct cake_tin_data *b = &q->tins[q->cur_tin];
1949 struct cake_host *srchost, *dsthost;
1950 ktime_t now = ktime_get();
1951 struct cake_flow *flow;
1952 struct list_head *head;
1953 bool first_flow = true;
1954 struct sk_buff *skb;
1955 u16 host_load;
1956 u64 delay;
1957 u32 len;
1958
1959begin:
1960 if (!sch->q.qlen)
1961 return NULL;
1962
1963
1964 if (ktime_after(q->time_next_packet, now) &&
1965 ktime_after(q->failsafe_next_packet, now)) {
1966 u64 next = min(ktime_to_ns(q->time_next_packet),
1967 ktime_to_ns(q->failsafe_next_packet));
1968
1969 sch->qstats.overlimits++;
1970 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1971 return NULL;
1972 }
1973
1974
1975 if (!q->rate_ns) {
1976
1977
1978
1979 bool wrapped = false, empty = true;
1980
1981 while (b->tin_deficit < 0 ||
1982 !(b->sparse_flow_count + b->bulk_flow_count)) {
1983 if (b->tin_deficit <= 0)
1984 b->tin_deficit += b->tin_quantum;
1985 if (b->sparse_flow_count + b->bulk_flow_count)
1986 empty = false;
1987
1988 q->cur_tin++;
1989 b++;
1990 if (q->cur_tin >= q->tin_cnt) {
1991 q->cur_tin = 0;
1992 b = q->tins;
1993
1994 if (wrapped) {
1995
1996
1997
1998
1999 if (empty)
2000 return NULL;
2001 } else {
2002 wrapped = true;
2003 }
2004 }
2005 }
2006 } else {
2007
2008
2009
2010
2011 ktime_t best_time = KTIME_MAX;
2012 int tin, best_tin = 0;
2013
2014 for (tin = 0; tin < q->tin_cnt; tin++) {
2015 b = q->tins + tin;
2016 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
2017 ktime_t time_to_pkt = \
2018 ktime_sub(b->time_next_packet, now);
2019
2020 if (ktime_to_ns(time_to_pkt) <= 0 ||
2021 ktime_compare(time_to_pkt,
2022 best_time) <= 0) {
2023 best_time = time_to_pkt;
2024 best_tin = tin;
2025 }
2026 }
2027 }
2028
2029 q->cur_tin = best_tin;
2030 b = q->tins + best_tin;
2031
2032
2033 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
2034 return NULL;
2035 }
2036
2037retry:
2038
2039 head = &b->decaying_flows;
2040 if (!first_flow || list_empty(head)) {
2041 head = &b->new_flows;
2042 if (list_empty(head)) {
2043 head = &b->old_flows;
2044 if (unlikely(list_empty(head))) {
2045 head = &b->decaying_flows;
2046 if (unlikely(list_empty(head)))
2047 goto begin;
2048 }
2049 }
2050 }
2051 flow = list_first_entry(head, struct cake_flow, flowchain);
2052 q->cur_flow = flow - b->flows;
2053 first_flow = false;
2054
2055
2056 srchost = &b->hosts[flow->srchost];
2057 dsthost = &b->hosts[flow->dsthost];
2058 host_load = 1;
2059
2060
2061 if (flow->deficit <= 0) {
2062
2063
2064
2065
2066 if (flow->set == CAKE_SET_SPARSE) {
2067 if (flow->head) {
2068 b->sparse_flow_count--;
2069 b->bulk_flow_count++;
2070
2071 if (cake_dsrc(q->flow_mode))
2072 srchost->srchost_bulk_flow_count++;
2073
2074 if (cake_ddst(q->flow_mode))
2075 dsthost->dsthost_bulk_flow_count++;
2076
2077 flow->set = CAKE_SET_BULK;
2078 } else {
2079
2080
2081
2082
2083 flow->set = CAKE_SET_SPARSE_WAIT;
2084 }
2085 }
2086
2087 if (cake_dsrc(q->flow_mode))
2088 host_load = max(host_load, srchost->srchost_bulk_flow_count);
2089
2090 if (cake_ddst(q->flow_mode))
2091 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2092
2093 WARN_ON(host_load > CAKE_QUEUES);
2094
2095
2096
2097
2098 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2099 (prandom_u32() >> 16)) >> 16;
2100 list_move_tail(&flow->flowchain, &b->old_flows);
2101
2102 goto retry;
2103 }
2104
2105
2106 while (1) {
2107 skb = cake_dequeue_one(sch);
2108 if (!skb) {
2109
2110 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2111 b->unresponsive_flow_count--;
2112
2113 if (flow->cvars.p_drop || flow->cvars.count ||
2114 ktime_before(now, flow->cvars.drop_next)) {
2115
2116
2117
2118 list_move_tail(&flow->flowchain,
2119 &b->decaying_flows);
2120 if (flow->set == CAKE_SET_BULK) {
2121 b->bulk_flow_count--;
2122
2123 if (cake_dsrc(q->flow_mode))
2124 srchost->srchost_bulk_flow_count--;
2125
2126 if (cake_ddst(q->flow_mode))
2127 dsthost->dsthost_bulk_flow_count--;
2128
2129 b->decaying_flow_count++;
2130 } else if (flow->set == CAKE_SET_SPARSE ||
2131 flow->set == CAKE_SET_SPARSE_WAIT) {
2132 b->sparse_flow_count--;
2133 b->decaying_flow_count++;
2134 }
2135 flow->set = CAKE_SET_DECAYING;
2136 } else {
2137
2138 list_del_init(&flow->flowchain);
2139 if (flow->set == CAKE_SET_SPARSE ||
2140 flow->set == CAKE_SET_SPARSE_WAIT)
2141 b->sparse_flow_count--;
2142 else if (flow->set == CAKE_SET_BULK) {
2143 b->bulk_flow_count--;
2144
2145 if (cake_dsrc(q->flow_mode))
2146 srchost->srchost_bulk_flow_count--;
2147
2148 if (cake_ddst(q->flow_mode))
2149 dsthost->dsthost_bulk_flow_count--;
2150
2151 } else
2152 b->decaying_flow_count--;
2153
2154 flow->set = CAKE_SET_NONE;
2155 }
2156 goto begin;
2157 }
2158
2159
2160 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2161 (b->bulk_flow_count *
2162 !!(q->rate_flags &
2163 CAKE_FLAG_INGRESS))) ||
2164 !flow->head)
2165 break;
2166
2167
2168 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2169 len = cake_advance_shaper(q, b, skb,
2170 now, true);
2171 flow->deficit -= len;
2172 b->tin_deficit -= len;
2173 }
2174 flow->dropped++;
2175 b->tin_dropped++;
2176 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2177 qdisc_qstats_drop(sch);
2178 kfree_skb(skb);
2179 if (q->rate_flags & CAKE_FLAG_INGRESS)
2180 goto retry;
2181 }
2182
2183 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2184 qdisc_bstats_update(sch, skb);
2185
2186
2187 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2188 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2189 b->peak_delay = cake_ewma(b->peak_delay, delay,
2190 delay > b->peak_delay ? 2 : 8);
2191 b->base_delay = cake_ewma(b->base_delay, delay,
2192 delay < b->base_delay ? 2 : 8);
2193
2194 len = cake_advance_shaper(q, b, skb, now, false);
2195 flow->deficit -= len;
2196 b->tin_deficit -= len;
2197
2198 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2199 u64 next = min(ktime_to_ns(q->time_next_packet),
2200 ktime_to_ns(q->failsafe_next_packet));
2201
2202 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2203 } else if (!sch->q.qlen) {
2204 int i;
2205
2206 for (i = 0; i < q->tin_cnt; i++) {
2207 if (q->tins[i].decaying_flow_count) {
2208 ktime_t next = \
2209 ktime_add_ns(now,
2210 q->tins[i].cparams.target);
2211
2212 qdisc_watchdog_schedule_ns(&q->watchdog,
2213 ktime_to_ns(next));
2214 break;
2215 }
2216 }
2217 }
2218
2219 if (q->overflow_timeout)
2220 q->overflow_timeout--;
2221
2222 return skb;
2223}
2224
2225static void cake_reset(struct Qdisc *sch)
2226{
2227 u32 c;
2228
2229 for (c = 0; c < CAKE_MAX_TINS; c++)
2230 cake_clear_tin(sch, c);
2231}
2232
2233static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2234 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2235 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2236 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2237 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2238 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2239 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2240 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2241 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2242 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2243 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2244 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2245 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2246 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2247 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2248 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2249 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
2250 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
2251};
2252
2253static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2254 u64 target_ns, u64 rtt_est_ns)
2255{
2256
2257
2258
2259 static const u64 MIN_RATE = 64;
2260 u32 byte_target = mtu;
2261 u64 byte_target_ns;
2262 u8 rate_shft = 0;
2263 u64 rate_ns = 0;
2264
2265 b->flow_quantum = 1514;
2266 if (rate) {
2267 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2268 rate_shft = 34;
2269 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2270 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2271 while (!!(rate_ns >> 34)) {
2272 rate_ns >>= 1;
2273 rate_shft--;
2274 }
2275 }
2276
2277 b->tin_rate_bps = rate;
2278 b->tin_rate_ns = rate_ns;
2279 b->tin_rate_shft = rate_shft;
2280
2281 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2282
2283 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2284 b->cparams.interval = max(rtt_est_ns +
2285 b->cparams.target - target_ns,
2286 b->cparams.target * 2);
2287 b->cparams.mtu_time = byte_target_ns;
2288 b->cparams.p_inc = 1 << 24;
2289 b->cparams.p_dec = 1 << 20;
2290}
2291
2292static int cake_config_besteffort(struct Qdisc *sch)
2293{
2294 struct cake_sched_data *q = qdisc_priv(sch);
2295 struct cake_tin_data *b = &q->tins[0];
2296 u32 mtu = psched_mtu(qdisc_dev(sch));
2297 u64 rate = q->rate_bps;
2298
2299 q->tin_cnt = 1;
2300
2301 q->tin_index = besteffort;
2302 q->tin_order = normal_order;
2303
2304 cake_set_rate(b, rate, mtu,
2305 us_to_ns(q->target), us_to_ns(q->interval));
2306 b->tin_quantum = 65535;
2307
2308 return 0;
2309}
2310
2311static int cake_config_precedence(struct Qdisc *sch)
2312{
2313
2314 struct cake_sched_data *q = qdisc_priv(sch);
2315 u32 mtu = psched_mtu(qdisc_dev(sch));
2316 u64 rate = q->rate_bps;
2317 u32 quantum = 256;
2318 u32 i;
2319
2320 q->tin_cnt = 8;
2321 q->tin_index = precedence;
2322 q->tin_order = normal_order;
2323
2324 for (i = 0; i < q->tin_cnt; i++) {
2325 struct cake_tin_data *b = &q->tins[i];
2326
2327 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2328 us_to_ns(q->interval));
2329
2330 b->tin_quantum = max_t(u16, 1U, quantum);
2331
2332
2333 rate *= 7;
2334 rate >>= 3;
2335
2336 quantum *= 7;
2337 quantum >>= 3;
2338 }
2339
2340 return 0;
2341}
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387static int cake_config_diffserv8(struct Qdisc *sch)
2388{
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403 struct cake_sched_data *q = qdisc_priv(sch);
2404 u32 mtu = psched_mtu(qdisc_dev(sch));
2405 u64 rate = q->rate_bps;
2406 u32 quantum = 256;
2407 u32 i;
2408
2409 q->tin_cnt = 8;
2410
2411
2412 q->tin_index = diffserv8;
2413 q->tin_order = normal_order;
2414
2415
2416 for (i = 0; i < q->tin_cnt; i++) {
2417 struct cake_tin_data *b = &q->tins[i];
2418
2419 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2420 us_to_ns(q->interval));
2421
2422 b->tin_quantum = max_t(u16, 1U, quantum);
2423
2424
2425 rate *= 7;
2426 rate >>= 3;
2427
2428 quantum *= 7;
2429 quantum >>= 3;
2430 }
2431
2432 return 0;
2433}
2434
2435static int cake_config_diffserv4(struct Qdisc *sch)
2436{
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447 struct cake_sched_data *q = qdisc_priv(sch);
2448 u32 mtu = psched_mtu(qdisc_dev(sch));
2449 u64 rate = q->rate_bps;
2450 u32 quantum = 1024;
2451
2452 q->tin_cnt = 4;
2453
2454
2455 q->tin_index = diffserv4;
2456 q->tin_order = bulk_order;
2457
2458
2459 cake_set_rate(&q->tins[0], rate, mtu,
2460 us_to_ns(q->target), us_to_ns(q->interval));
2461 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2462 us_to_ns(q->target), us_to_ns(q->interval));
2463 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2464 us_to_ns(q->target), us_to_ns(q->interval));
2465 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2466 us_to_ns(q->target), us_to_ns(q->interval));
2467
2468
2469 q->tins[0].tin_quantum = quantum;
2470 q->tins[1].tin_quantum = quantum >> 4;
2471 q->tins[2].tin_quantum = quantum >> 1;
2472 q->tins[3].tin_quantum = quantum >> 2;
2473
2474 return 0;
2475}
2476
2477static int cake_config_diffserv3(struct Qdisc *sch)
2478{
2479
2480
2481
2482
2483
2484 struct cake_sched_data *q = qdisc_priv(sch);
2485 u32 mtu = psched_mtu(qdisc_dev(sch));
2486 u64 rate = q->rate_bps;
2487 u32 quantum = 1024;
2488
2489 q->tin_cnt = 3;
2490
2491
2492 q->tin_index = diffserv3;
2493 q->tin_order = bulk_order;
2494
2495
2496 cake_set_rate(&q->tins[0], rate, mtu,
2497 us_to_ns(q->target), us_to_ns(q->interval));
2498 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2499 us_to_ns(q->target), us_to_ns(q->interval));
2500 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2501 us_to_ns(q->target), us_to_ns(q->interval));
2502
2503
2504 q->tins[0].tin_quantum = quantum;
2505 q->tins[1].tin_quantum = quantum >> 4;
2506 q->tins[2].tin_quantum = quantum >> 2;
2507
2508 return 0;
2509}
2510
2511static void cake_reconfigure(struct Qdisc *sch)
2512{
2513 struct cake_sched_data *q = qdisc_priv(sch);
2514 int c, ft;
2515
2516 switch (q->tin_mode) {
2517 case CAKE_DIFFSERV_BESTEFFORT:
2518 ft = cake_config_besteffort(sch);
2519 break;
2520
2521 case CAKE_DIFFSERV_PRECEDENCE:
2522 ft = cake_config_precedence(sch);
2523 break;
2524
2525 case CAKE_DIFFSERV_DIFFSERV8:
2526 ft = cake_config_diffserv8(sch);
2527 break;
2528
2529 case CAKE_DIFFSERV_DIFFSERV4:
2530 ft = cake_config_diffserv4(sch);
2531 break;
2532
2533 case CAKE_DIFFSERV_DIFFSERV3:
2534 default:
2535 ft = cake_config_diffserv3(sch);
2536 break;
2537 }
2538
2539 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2540 cake_clear_tin(sch, c);
2541 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2542 }
2543
2544 q->rate_ns = q->tins[ft].tin_rate_ns;
2545 q->rate_shft = q->tins[ft].tin_rate_shft;
2546
2547 if (q->buffer_config_limit) {
2548 q->buffer_limit = q->buffer_config_limit;
2549 } else if (q->rate_bps) {
2550 u64 t = q->rate_bps * q->interval;
2551
2552 do_div(t, USEC_PER_SEC / 4);
2553 q->buffer_limit = max_t(u32, t, 4U << 20);
2554 } else {
2555 q->buffer_limit = ~0;
2556 }
2557
2558 sch->flags &= ~TCQ_F_CAN_BYPASS;
2559
2560 q->buffer_limit = min(q->buffer_limit,
2561 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2562 q->buffer_config_limit));
2563}
2564
2565static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2566 struct netlink_ext_ack *extack)
2567{
2568 struct cake_sched_data *q = qdisc_priv(sch);
2569 struct nlattr *tb[TCA_CAKE_MAX + 1];
2570 int err;
2571
2572 if (!opt)
2573 return -EINVAL;
2574
2575 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2576 extack);
2577 if (err < 0)
2578 return err;
2579
2580 if (tb[TCA_CAKE_NAT]) {
2581#if IS_ENABLED(CONFIG_NF_CONNTRACK)
2582 q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2583 q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2584 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2585#else
2586 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2587 "No conntrack support in kernel");
2588 return -EOPNOTSUPP;
2589#endif
2590 }
2591
2592 if (tb[TCA_CAKE_BASE_RATE64])
2593 q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2594
2595 if (tb[TCA_CAKE_DIFFSERV_MODE])
2596 q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2597
2598 if (tb[TCA_CAKE_WASH]) {
2599 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2600 q->rate_flags |= CAKE_FLAG_WASH;
2601 else
2602 q->rate_flags &= ~CAKE_FLAG_WASH;
2603 }
2604
2605 if (tb[TCA_CAKE_FLOW_MODE])
2606 q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2607 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2608 CAKE_FLOW_MASK));
2609
2610 if (tb[TCA_CAKE_ATM])
2611 q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2612
2613 if (tb[TCA_CAKE_OVERHEAD]) {
2614 q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2615 q->rate_flags |= CAKE_FLAG_OVERHEAD;
2616
2617 q->max_netlen = 0;
2618 q->max_adjlen = 0;
2619 q->min_netlen = ~0;
2620 q->min_adjlen = ~0;
2621 }
2622
2623 if (tb[TCA_CAKE_RAW]) {
2624 q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2625
2626 q->max_netlen = 0;
2627 q->max_adjlen = 0;
2628 q->min_netlen = ~0;
2629 q->min_adjlen = ~0;
2630 }
2631
2632 if (tb[TCA_CAKE_MPU])
2633 q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2634
2635 if (tb[TCA_CAKE_RTT]) {
2636 q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2637
2638 if (!q->interval)
2639 q->interval = 1;
2640 }
2641
2642 if (tb[TCA_CAKE_TARGET]) {
2643 q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2644
2645 if (!q->target)
2646 q->target = 1;
2647 }
2648
2649 if (tb[TCA_CAKE_AUTORATE]) {
2650 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2651 q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2652 else
2653 q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2654 }
2655
2656 if (tb[TCA_CAKE_INGRESS]) {
2657 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2658 q->rate_flags |= CAKE_FLAG_INGRESS;
2659 else
2660 q->rate_flags &= ~CAKE_FLAG_INGRESS;
2661 }
2662
2663 if (tb[TCA_CAKE_ACK_FILTER])
2664 q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2665
2666 if (tb[TCA_CAKE_MEMORY])
2667 q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2668
2669 if (tb[TCA_CAKE_SPLIT_GSO]) {
2670 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2671 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2672 else
2673 q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2674 }
2675
2676 if (tb[TCA_CAKE_FWMARK]) {
2677 q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
2678 q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
2679 }
2680
2681 if (q->tins) {
2682 sch_tree_lock(sch);
2683 cake_reconfigure(sch);
2684 sch_tree_unlock(sch);
2685 }
2686
2687 return 0;
2688}
2689
2690static void cake_destroy(struct Qdisc *sch)
2691{
2692 struct cake_sched_data *q = qdisc_priv(sch);
2693
2694 qdisc_watchdog_cancel(&q->watchdog);
2695 tcf_block_put(q->block);
2696 kvfree(q->tins);
2697}
2698
2699static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2700 struct netlink_ext_ack *extack)
2701{
2702 struct cake_sched_data *q = qdisc_priv(sch);
2703 int i, j, err;
2704
2705 sch->limit = 10240;
2706 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2707 q->flow_mode = CAKE_FLOW_TRIPLE;
2708
2709 q->rate_bps = 0;
2710
2711 q->interval = 100000;
2712 q->target = 5000;
2713
2714
2715 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2716 q->cur_tin = 0;
2717 q->cur_flow = 0;
2718
2719 qdisc_watchdog_init(&q->watchdog, sch);
2720
2721 if (opt) {
2722 err = cake_change(sch, opt, extack);
2723
2724 if (err)
2725 return err;
2726 }
2727
2728 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2729 if (err)
2730 return err;
2731
2732 quantum_div[0] = ~0;
2733 for (i = 1; i <= CAKE_QUEUES; i++)
2734 quantum_div[i] = 65535 / i;
2735
2736 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2737 GFP_KERNEL);
2738 if (!q->tins)
2739 goto nomem;
2740
2741 for (i = 0; i < CAKE_MAX_TINS; i++) {
2742 struct cake_tin_data *b = q->tins + i;
2743
2744 INIT_LIST_HEAD(&b->new_flows);
2745 INIT_LIST_HEAD(&b->old_flows);
2746 INIT_LIST_HEAD(&b->decaying_flows);
2747 b->sparse_flow_count = 0;
2748 b->bulk_flow_count = 0;
2749 b->decaying_flow_count = 0;
2750
2751 for (j = 0; j < CAKE_QUEUES; j++) {
2752 struct cake_flow *flow = b->flows + j;
2753 u32 k = j * CAKE_MAX_TINS + i;
2754
2755 INIT_LIST_HEAD(&flow->flowchain);
2756 cobalt_vars_init(&flow->cvars);
2757
2758 q->overflow_heap[k].t = i;
2759 q->overflow_heap[k].b = j;
2760 b->overflow_idx[j] = k;
2761 }
2762 }
2763
2764 cake_reconfigure(sch);
2765 q->avg_peak_bandwidth = q->rate_bps;
2766 q->min_netlen = ~0;
2767 q->min_adjlen = ~0;
2768 return 0;
2769
2770nomem:
2771 cake_destroy(sch);
2772 return -ENOMEM;
2773}
2774
2775static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2776{
2777 struct cake_sched_data *q = qdisc_priv(sch);
2778 struct nlattr *opts;
2779
2780 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2781 if (!opts)
2782 goto nla_put_failure;
2783
2784 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2785 TCA_CAKE_PAD))
2786 goto nla_put_failure;
2787
2788 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2789 q->flow_mode & CAKE_FLOW_MASK))
2790 goto nla_put_failure;
2791
2792 if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2793 goto nla_put_failure;
2794
2795 if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2796 goto nla_put_failure;
2797
2798 if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2799 goto nla_put_failure;
2800
2801 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2802 !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2803 goto nla_put_failure;
2804
2805 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2806 !!(q->rate_flags & CAKE_FLAG_INGRESS)))
2807 goto nla_put_failure;
2808
2809 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2810 goto nla_put_failure;
2811
2812 if (nla_put_u32(skb, TCA_CAKE_NAT,
2813 !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2814 goto nla_put_failure;
2815
2816 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2817 goto nla_put_failure;
2818
2819 if (nla_put_u32(skb, TCA_CAKE_WASH,
2820 !!(q->rate_flags & CAKE_FLAG_WASH)))
2821 goto nla_put_failure;
2822
2823 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2824 goto nla_put_failure;
2825
2826 if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2827 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2828 goto nla_put_failure;
2829
2830 if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2831 goto nla_put_failure;
2832
2833 if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2834 goto nla_put_failure;
2835
2836 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2837 !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2838 goto nla_put_failure;
2839
2840 if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
2841 goto nla_put_failure;
2842
2843 return nla_nest_end(skb, opts);
2844
2845nla_put_failure:
2846 return -1;
2847}
2848
2849static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2850{
2851 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2852 struct cake_sched_data *q = qdisc_priv(sch);
2853 struct nlattr *tstats, *ts;
2854 int i;
2855
2856 if (!stats)
2857 return -1;
2858
2859#define PUT_STAT_U32(attr, data) do { \
2860 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2861 goto nla_put_failure; \
2862 } while (0)
2863#define PUT_STAT_U64(attr, data) do { \
2864 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2865 data, TCA_CAKE_STATS_PAD)) \
2866 goto nla_put_failure; \
2867 } while (0)
2868
2869 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2870 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2871 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2872 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2873 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2874 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2875 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2876 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2877
2878#undef PUT_STAT_U32
2879#undef PUT_STAT_U64
2880
2881 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2882 if (!tstats)
2883 goto nla_put_failure;
2884
2885#define PUT_TSTAT_U32(attr, data) do { \
2886 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2887 goto nla_put_failure; \
2888 } while (0)
2889#define PUT_TSTAT_U64(attr, data) do { \
2890 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2891 data, TCA_CAKE_TIN_STATS_PAD)) \
2892 goto nla_put_failure; \
2893 } while (0)
2894
2895 for (i = 0; i < q->tin_cnt; i++) {
2896 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2897
2898 ts = nla_nest_start_noflag(d->skb, i + 1);
2899 if (!ts)
2900 goto nla_put_failure;
2901
2902 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2903 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2904 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2905
2906 PUT_TSTAT_U32(TARGET_US,
2907 ktime_to_us(ns_to_ktime(b->cparams.target)));
2908 PUT_TSTAT_U32(INTERVAL_US,
2909 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2910
2911 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2912 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2913 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2914 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2915
2916 PUT_TSTAT_U32(PEAK_DELAY_US,
2917 ktime_to_us(ns_to_ktime(b->peak_delay)));
2918 PUT_TSTAT_U32(AVG_DELAY_US,
2919 ktime_to_us(ns_to_ktime(b->avge_delay)));
2920 PUT_TSTAT_U32(BASE_DELAY_US,
2921 ktime_to_us(ns_to_ktime(b->base_delay)));
2922
2923 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2924 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2925 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2926
2927 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2928 b->decaying_flow_count);
2929 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2930 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2931 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2932
2933 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2934 nla_nest_end(d->skb, ts);
2935 }
2936
2937#undef PUT_TSTAT_U32
2938#undef PUT_TSTAT_U64
2939
2940 nla_nest_end(d->skb, tstats);
2941 return nla_nest_end(d->skb, stats);
2942
2943nla_put_failure:
2944 nla_nest_cancel(d->skb, stats);
2945 return -1;
2946}
2947
2948static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2949{
2950 return NULL;
2951}
2952
2953static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2954{
2955 return 0;
2956}
2957
2958static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2959 u32 classid)
2960{
2961 return 0;
2962}
2963
2964static void cake_unbind(struct Qdisc *q, unsigned long cl)
2965{
2966}
2967
2968static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2969 struct netlink_ext_ack *extack)
2970{
2971 struct cake_sched_data *q = qdisc_priv(sch);
2972
2973 if (cl)
2974 return NULL;
2975 return q->block;
2976}
2977
2978static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2979 struct sk_buff *skb, struct tcmsg *tcm)
2980{
2981 tcm->tcm_handle |= TC_H_MIN(cl);
2982 return 0;
2983}
2984
2985static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2986 struct gnet_dump *d)
2987{
2988 struct cake_sched_data *q = qdisc_priv(sch);
2989 const struct cake_flow *flow = NULL;
2990 struct gnet_stats_queue qs = { 0 };
2991 struct nlattr *stats;
2992 u32 idx = cl - 1;
2993
2994 if (idx < CAKE_QUEUES * q->tin_cnt) {
2995 const struct cake_tin_data *b = \
2996 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
2997 const struct sk_buff *skb;
2998
2999 flow = &b->flows[idx % CAKE_QUEUES];
3000
3001 if (flow->head) {
3002 sch_tree_lock(sch);
3003 skb = flow->head;
3004 while (skb) {
3005 qs.qlen++;
3006 skb = skb->next;
3007 }
3008 sch_tree_unlock(sch);
3009 }
3010 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
3011 qs.drops = flow->dropped;
3012 }
3013 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
3014 return -1;
3015 if (flow) {
3016 ktime_t now = ktime_get();
3017
3018 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
3019 if (!stats)
3020 return -1;
3021
3022#define PUT_STAT_U32(attr, data) do { \
3023 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3024 goto nla_put_failure; \
3025 } while (0)
3026#define PUT_STAT_S32(attr, data) do { \
3027 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3028 goto nla_put_failure; \
3029 } while (0)
3030
3031 PUT_STAT_S32(DEFICIT, flow->deficit);
3032 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
3033 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
3034 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
3035 if (flow->cvars.p_drop) {
3036 PUT_STAT_S32(BLUE_TIMER_US,
3037 ktime_to_us(
3038 ktime_sub(now,
3039 flow->cvars.blue_timer)));
3040 }
3041 if (flow->cvars.dropping) {
3042 PUT_STAT_S32(DROP_NEXT_US,
3043 ktime_to_us(
3044 ktime_sub(now,
3045 flow->cvars.drop_next)));
3046 }
3047
3048 if (nla_nest_end(d->skb, stats) < 0)
3049 return -1;
3050 }
3051
3052 return 0;
3053
3054nla_put_failure:
3055 nla_nest_cancel(d->skb, stats);
3056 return -1;
3057}
3058
3059static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3060{
3061 struct cake_sched_data *q = qdisc_priv(sch);
3062 unsigned int i, j;
3063
3064 if (arg->stop)
3065 return;
3066
3067 for (i = 0; i < q->tin_cnt; i++) {
3068 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3069
3070 for (j = 0; j < CAKE_QUEUES; j++) {
3071 if (list_empty(&b->flows[j].flowchain) ||
3072 arg->count < arg->skip) {
3073 arg->count++;
3074 continue;
3075 }
3076 if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
3077 arg->stop = 1;
3078 break;
3079 }
3080 arg->count++;
3081 }
3082 }
3083}
3084
3085static const struct Qdisc_class_ops cake_class_ops = {
3086 .leaf = cake_leaf,
3087 .find = cake_find,
3088 .tcf_block = cake_tcf_block,
3089 .bind_tcf = cake_bind,
3090 .unbind_tcf = cake_unbind,
3091 .dump = cake_dump_class,
3092 .dump_stats = cake_dump_class_stats,
3093 .walk = cake_walk,
3094};
3095
3096static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3097 .cl_ops = &cake_class_ops,
3098 .id = "cake",
3099 .priv_size = sizeof(struct cake_sched_data),
3100 .enqueue = cake_enqueue,
3101 .dequeue = cake_dequeue,
3102 .peek = qdisc_peek_dequeued,
3103 .init = cake_init,
3104 .reset = cake_reset,
3105 .destroy = cake_destroy,
3106 .change = cake_change,
3107 .dump = cake_dump,
3108 .dump_stats = cake_dump_stats,
3109 .owner = THIS_MODULE,
3110};
3111
3112static int __init cake_module_init(void)
3113{
3114 return register_qdisc(&cake_qdisc_ops);
3115}
3116
3117static void __exit cake_module_exit(void)
3118{
3119 unregister_qdisc(&cake_qdisc_ops);
3120}
3121
3122module_init(cake_module_init)
3123module_exit(cake_module_exit)
3124MODULE_AUTHOR("Jonathan Morton");
3125MODULE_LICENSE("Dual BSD/GPL");
3126MODULE_DESCRIPTION("The CAKE shaper.");
3127