linux/security/selinux/avc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the kernel access vector cache (AVC).
   4 *
   5 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   6 *           James Morris <jmorris@redhat.com>
   7 *
   8 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   9 *      Replaced the avc_lock spinlock by RCU.
  10 *
  11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  12 */
  13#include <linux/types.h>
  14#include <linux/stddef.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/fs.h>
  18#include <linux/dcache.h>
  19#include <linux/init.h>
  20#include <linux/skbuff.h>
  21#include <linux/percpu.h>
  22#include <linux/list.h>
  23#include <net/sock.h>
  24#include <linux/un.h>
  25#include <net/af_unix.h>
  26#include <linux/ip.h>
  27#include <linux/audit.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include "avc.h"
  31#include "avc_ss.h"
  32#include "classmap.h"
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/avc.h>
  36
  37#define AVC_CACHE_SLOTS                 512
  38#define AVC_DEF_CACHE_THRESHOLD         512
  39#define AVC_CACHE_RECLAIM               16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)     this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)     do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48        u32                     ssid;
  49        u32                     tsid;
  50        u16                     tclass;
  51        struct av_decision      avd;
  52        struct avc_xperms_node  *xp_node;
  53};
  54
  55struct avc_node {
  56        struct avc_entry        ae;
  57        struct hlist_node       list; /* anchored in avc_cache->slots[i] */
  58        struct rcu_head         rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62        struct extended_perms_decision xpd;
  63        struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67        struct extended_perms xp;
  68        struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72        struct hlist_head       slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73        spinlock_t              slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74        atomic_t                lru_hint;       /* LRU hint for reclaim scan */
  75        atomic_t                active_nodes;
  76        u32                     latest_notif;   /* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80        int (*callback) (u32 event);
  81        u32 events;
  82        struct avc_callback_node *next;
  83};
  84
  85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  87#endif
  88
  89struct selinux_avc {
  90        unsigned int avc_cache_threshold;
  91        struct avc_cache avc_cache;
  92};
  93
  94static struct selinux_avc selinux_avc;
  95
  96void selinux_avc_init(struct selinux_avc **avc)
  97{
  98        int i;
  99
 100        selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 101        for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 102                INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 103                spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 104        }
 105        atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 106        atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 107        *avc = &selinux_avc;
 108}
 109
 110unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 111{
 112        return avc->avc_cache_threshold;
 113}
 114
 115void avc_set_cache_threshold(struct selinux_avc *avc,
 116                             unsigned int cache_threshold)
 117{
 118        avc->avc_cache_threshold = cache_threshold;
 119}
 120
 121static struct avc_callback_node *avc_callbacks __ro_after_init;
 122static struct kmem_cache *avc_node_cachep __ro_after_init;
 123static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
 124static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
 125static struct kmem_cache *avc_xperms_cachep __ro_after_init;
 126
 127static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 128{
 129        return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 130}
 131
 132/**
 133 * avc_init - Initialize the AVC.
 134 *
 135 * Initialize the access vector cache.
 136 */
 137void __init avc_init(void)
 138{
 139        avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 140                                        0, SLAB_PANIC, NULL);
 141        avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 142                                        sizeof(struct avc_xperms_node),
 143                                        0, SLAB_PANIC, NULL);
 144        avc_xperms_decision_cachep = kmem_cache_create(
 145                                        "avc_xperms_decision_node",
 146                                        sizeof(struct avc_xperms_decision_node),
 147                                        0, SLAB_PANIC, NULL);
 148        avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 149                                        sizeof(struct extended_perms_data),
 150                                        0, SLAB_PANIC, NULL);
 151}
 152
 153int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 154{
 155        int i, chain_len, max_chain_len, slots_used;
 156        struct avc_node *node;
 157        struct hlist_head *head;
 158
 159        rcu_read_lock();
 160
 161        slots_used = 0;
 162        max_chain_len = 0;
 163        for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 164                head = &avc->avc_cache.slots[i];
 165                if (!hlist_empty(head)) {
 166                        slots_used++;
 167                        chain_len = 0;
 168                        hlist_for_each_entry_rcu(node, head, list)
 169                                chain_len++;
 170                        if (chain_len > max_chain_len)
 171                                max_chain_len = chain_len;
 172                }
 173        }
 174
 175        rcu_read_unlock();
 176
 177        return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 178                         "longest chain: %d\n",
 179                         atomic_read(&avc->avc_cache.active_nodes),
 180                         slots_used, AVC_CACHE_SLOTS, max_chain_len);
 181}
 182
 183/*
 184 * using a linked list for extended_perms_decision lookup because the list is
 185 * always small. i.e. less than 5, typically 1
 186 */
 187static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 188                                        struct avc_xperms_node *xp_node)
 189{
 190        struct avc_xperms_decision_node *xpd_node;
 191
 192        list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 193                if (xpd_node->xpd.driver == driver)
 194                        return &xpd_node->xpd;
 195        }
 196        return NULL;
 197}
 198
 199static inline unsigned int
 200avc_xperms_has_perm(struct extended_perms_decision *xpd,
 201                                        u8 perm, u8 which)
 202{
 203        unsigned int rc = 0;
 204
 205        if ((which == XPERMS_ALLOWED) &&
 206                        (xpd->used & XPERMS_ALLOWED))
 207                rc = security_xperm_test(xpd->allowed->p, perm);
 208        else if ((which == XPERMS_AUDITALLOW) &&
 209                        (xpd->used & XPERMS_AUDITALLOW))
 210                rc = security_xperm_test(xpd->auditallow->p, perm);
 211        else if ((which == XPERMS_DONTAUDIT) &&
 212                        (xpd->used & XPERMS_DONTAUDIT))
 213                rc = security_xperm_test(xpd->dontaudit->p, perm);
 214        return rc;
 215}
 216
 217static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 218                                u8 driver, u8 perm)
 219{
 220        struct extended_perms_decision *xpd;
 221        security_xperm_set(xp_node->xp.drivers.p, driver);
 222        xpd = avc_xperms_decision_lookup(driver, xp_node);
 223        if (xpd && xpd->allowed)
 224                security_xperm_set(xpd->allowed->p, perm);
 225}
 226
 227static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 228{
 229        struct extended_perms_decision *xpd;
 230
 231        xpd = &xpd_node->xpd;
 232        if (xpd->allowed)
 233                kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 234        if (xpd->auditallow)
 235                kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 236        if (xpd->dontaudit)
 237                kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 238        kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 239}
 240
 241static void avc_xperms_free(struct avc_xperms_node *xp_node)
 242{
 243        struct avc_xperms_decision_node *xpd_node, *tmp;
 244
 245        if (!xp_node)
 246                return;
 247
 248        list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 249                list_del(&xpd_node->xpd_list);
 250                avc_xperms_decision_free(xpd_node);
 251        }
 252        kmem_cache_free(avc_xperms_cachep, xp_node);
 253}
 254
 255static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 256                                        struct extended_perms_decision *src)
 257{
 258        dest->driver = src->driver;
 259        dest->used = src->used;
 260        if (dest->used & XPERMS_ALLOWED)
 261                memcpy(dest->allowed->p, src->allowed->p,
 262                                sizeof(src->allowed->p));
 263        if (dest->used & XPERMS_AUDITALLOW)
 264                memcpy(dest->auditallow->p, src->auditallow->p,
 265                                sizeof(src->auditallow->p));
 266        if (dest->used & XPERMS_DONTAUDIT)
 267                memcpy(dest->dontaudit->p, src->dontaudit->p,
 268                                sizeof(src->dontaudit->p));
 269}
 270
 271/*
 272 * similar to avc_copy_xperms_decision, but only copy decision
 273 * information relevant to this perm
 274 */
 275static inline void avc_quick_copy_xperms_decision(u8 perm,
 276                        struct extended_perms_decision *dest,
 277                        struct extended_perms_decision *src)
 278{
 279        /*
 280         * compute index of the u32 of the 256 bits (8 u32s) that contain this
 281         * command permission
 282         */
 283        u8 i = perm >> 5;
 284
 285        dest->used = src->used;
 286        if (dest->used & XPERMS_ALLOWED)
 287                dest->allowed->p[i] = src->allowed->p[i];
 288        if (dest->used & XPERMS_AUDITALLOW)
 289                dest->auditallow->p[i] = src->auditallow->p[i];
 290        if (dest->used & XPERMS_DONTAUDIT)
 291                dest->dontaudit->p[i] = src->dontaudit->p[i];
 292}
 293
 294static struct avc_xperms_decision_node
 295                *avc_xperms_decision_alloc(u8 which)
 296{
 297        struct avc_xperms_decision_node *xpd_node;
 298        struct extended_perms_decision *xpd;
 299
 300        xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
 301                                     GFP_NOWAIT | __GFP_NOWARN);
 302        if (!xpd_node)
 303                return NULL;
 304
 305        xpd = &xpd_node->xpd;
 306        if (which & XPERMS_ALLOWED) {
 307                xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 308                                                GFP_NOWAIT | __GFP_NOWARN);
 309                if (!xpd->allowed)
 310                        goto error;
 311        }
 312        if (which & XPERMS_AUDITALLOW) {
 313                xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 314                                                GFP_NOWAIT | __GFP_NOWARN);
 315                if (!xpd->auditallow)
 316                        goto error;
 317        }
 318        if (which & XPERMS_DONTAUDIT) {
 319                xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 320                                                GFP_NOWAIT | __GFP_NOWARN);
 321                if (!xpd->dontaudit)
 322                        goto error;
 323        }
 324        return xpd_node;
 325error:
 326        avc_xperms_decision_free(xpd_node);
 327        return NULL;
 328}
 329
 330static int avc_add_xperms_decision(struct avc_node *node,
 331                        struct extended_perms_decision *src)
 332{
 333        struct avc_xperms_decision_node *dest_xpd;
 334
 335        node->ae.xp_node->xp.len++;
 336        dest_xpd = avc_xperms_decision_alloc(src->used);
 337        if (!dest_xpd)
 338                return -ENOMEM;
 339        avc_copy_xperms_decision(&dest_xpd->xpd, src);
 340        list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 341        return 0;
 342}
 343
 344static struct avc_xperms_node *avc_xperms_alloc(void)
 345{
 346        struct avc_xperms_node *xp_node;
 347
 348        xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
 349        if (!xp_node)
 350                return xp_node;
 351        INIT_LIST_HEAD(&xp_node->xpd_head);
 352        return xp_node;
 353}
 354
 355static int avc_xperms_populate(struct avc_node *node,
 356                                struct avc_xperms_node *src)
 357{
 358        struct avc_xperms_node *dest;
 359        struct avc_xperms_decision_node *dest_xpd;
 360        struct avc_xperms_decision_node *src_xpd;
 361
 362        if (src->xp.len == 0)
 363                return 0;
 364        dest = avc_xperms_alloc();
 365        if (!dest)
 366                return -ENOMEM;
 367
 368        memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 369        dest->xp.len = src->xp.len;
 370
 371        /* for each source xpd allocate a destination xpd and copy */
 372        list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 373                dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 374                if (!dest_xpd)
 375                        goto error;
 376                avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 377                list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 378        }
 379        node->ae.xp_node = dest;
 380        return 0;
 381error:
 382        avc_xperms_free(dest);
 383        return -ENOMEM;
 384
 385}
 386
 387static inline u32 avc_xperms_audit_required(u32 requested,
 388                                        struct av_decision *avd,
 389                                        struct extended_perms_decision *xpd,
 390                                        u8 perm,
 391                                        int result,
 392                                        u32 *deniedp)
 393{
 394        u32 denied, audited;
 395
 396        denied = requested & ~avd->allowed;
 397        if (unlikely(denied)) {
 398                audited = denied & avd->auditdeny;
 399                if (audited && xpd) {
 400                        if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 401                                audited &= ~requested;
 402                }
 403        } else if (result) {
 404                audited = denied = requested;
 405        } else {
 406                audited = requested & avd->auditallow;
 407                if (audited && xpd) {
 408                        if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 409                                audited &= ~requested;
 410                }
 411        }
 412
 413        *deniedp = denied;
 414        return audited;
 415}
 416
 417static inline int avc_xperms_audit(struct selinux_state *state,
 418                                   u32 ssid, u32 tsid, u16 tclass,
 419                                   u32 requested, struct av_decision *avd,
 420                                   struct extended_perms_decision *xpd,
 421                                   u8 perm, int result,
 422                                   struct common_audit_data *ad)
 423{
 424        u32 audited, denied;
 425
 426        audited = avc_xperms_audit_required(
 427                        requested, avd, xpd, perm, result, &denied);
 428        if (likely(!audited))
 429                return 0;
 430        return slow_avc_audit(state, ssid, tsid, tclass, requested,
 431                        audited, denied, result, ad);
 432}
 433
 434static void avc_node_free(struct rcu_head *rhead)
 435{
 436        struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 437        avc_xperms_free(node->ae.xp_node);
 438        kmem_cache_free(avc_node_cachep, node);
 439        avc_cache_stats_incr(frees);
 440}
 441
 442static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 443{
 444        hlist_del_rcu(&node->list);
 445        call_rcu(&node->rhead, avc_node_free);
 446        atomic_dec(&avc->avc_cache.active_nodes);
 447}
 448
 449static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 450{
 451        avc_xperms_free(node->ae.xp_node);
 452        kmem_cache_free(avc_node_cachep, node);
 453        avc_cache_stats_incr(frees);
 454        atomic_dec(&avc->avc_cache.active_nodes);
 455}
 456
 457static void avc_node_replace(struct selinux_avc *avc,
 458                             struct avc_node *new, struct avc_node *old)
 459{
 460        hlist_replace_rcu(&old->list, &new->list);
 461        call_rcu(&old->rhead, avc_node_free);
 462        atomic_dec(&avc->avc_cache.active_nodes);
 463}
 464
 465static inline int avc_reclaim_node(struct selinux_avc *avc)
 466{
 467        struct avc_node *node;
 468        int hvalue, try, ecx;
 469        unsigned long flags;
 470        struct hlist_head *head;
 471        spinlock_t *lock;
 472
 473        for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 474                hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 475                        (AVC_CACHE_SLOTS - 1);
 476                head = &avc->avc_cache.slots[hvalue];
 477                lock = &avc->avc_cache.slots_lock[hvalue];
 478
 479                if (!spin_trylock_irqsave(lock, flags))
 480                        continue;
 481
 482                rcu_read_lock();
 483                hlist_for_each_entry(node, head, list) {
 484                        avc_node_delete(avc, node);
 485                        avc_cache_stats_incr(reclaims);
 486                        ecx++;
 487                        if (ecx >= AVC_CACHE_RECLAIM) {
 488                                rcu_read_unlock();
 489                                spin_unlock_irqrestore(lock, flags);
 490                                goto out;
 491                        }
 492                }
 493                rcu_read_unlock();
 494                spin_unlock_irqrestore(lock, flags);
 495        }
 496out:
 497        return ecx;
 498}
 499
 500static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 501{
 502        struct avc_node *node;
 503
 504        node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
 505        if (!node)
 506                goto out;
 507
 508        INIT_HLIST_NODE(&node->list);
 509        avc_cache_stats_incr(allocations);
 510
 511        if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 512            avc->avc_cache_threshold)
 513                avc_reclaim_node(avc);
 514
 515out:
 516        return node;
 517}
 518
 519static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 520{
 521        node->ae.ssid = ssid;
 522        node->ae.tsid = tsid;
 523        node->ae.tclass = tclass;
 524        memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 525}
 526
 527static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 528                                               u32 ssid, u32 tsid, u16 tclass)
 529{
 530        struct avc_node *node, *ret = NULL;
 531        int hvalue;
 532        struct hlist_head *head;
 533
 534        hvalue = avc_hash(ssid, tsid, tclass);
 535        head = &avc->avc_cache.slots[hvalue];
 536        hlist_for_each_entry_rcu(node, head, list) {
 537                if (ssid == node->ae.ssid &&
 538                    tclass == node->ae.tclass &&
 539                    tsid == node->ae.tsid) {
 540                        ret = node;
 541                        break;
 542                }
 543        }
 544
 545        return ret;
 546}
 547
 548/**
 549 * avc_lookup - Look up an AVC entry.
 550 * @ssid: source security identifier
 551 * @tsid: target security identifier
 552 * @tclass: target security class
 553 *
 554 * Look up an AVC entry that is valid for the
 555 * (@ssid, @tsid), interpreting the permissions
 556 * based on @tclass.  If a valid AVC entry exists,
 557 * then this function returns the avc_node.
 558 * Otherwise, this function returns NULL.
 559 */
 560static struct avc_node *avc_lookup(struct selinux_avc *avc,
 561                                   u32 ssid, u32 tsid, u16 tclass)
 562{
 563        struct avc_node *node;
 564
 565        avc_cache_stats_incr(lookups);
 566        node = avc_search_node(avc, ssid, tsid, tclass);
 567
 568        if (node)
 569                return node;
 570
 571        avc_cache_stats_incr(misses);
 572        return NULL;
 573}
 574
 575static int avc_latest_notif_update(struct selinux_avc *avc,
 576                                   int seqno, int is_insert)
 577{
 578        int ret = 0;
 579        static DEFINE_SPINLOCK(notif_lock);
 580        unsigned long flag;
 581
 582        spin_lock_irqsave(&notif_lock, flag);
 583        if (is_insert) {
 584                if (seqno < avc->avc_cache.latest_notif) {
 585                        pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
 586                               seqno, avc->avc_cache.latest_notif);
 587                        ret = -EAGAIN;
 588                }
 589        } else {
 590                if (seqno > avc->avc_cache.latest_notif)
 591                        avc->avc_cache.latest_notif = seqno;
 592        }
 593        spin_unlock_irqrestore(&notif_lock, flag);
 594
 595        return ret;
 596}
 597
 598/**
 599 * avc_insert - Insert an AVC entry.
 600 * @ssid: source security identifier
 601 * @tsid: target security identifier
 602 * @tclass: target security class
 603 * @avd: resulting av decision
 604 * @xp_node: resulting extended permissions
 605 *
 606 * Insert an AVC entry for the SID pair
 607 * (@ssid, @tsid) and class @tclass.
 608 * The access vectors and the sequence number are
 609 * normally provided by the security server in
 610 * response to a security_compute_av() call.  If the
 611 * sequence number @avd->seqno is not less than the latest
 612 * revocation notification, then the function copies
 613 * the access vectors into a cache entry, returns
 614 * avc_node inserted. Otherwise, this function returns NULL.
 615 */
 616static struct avc_node *avc_insert(struct selinux_avc *avc,
 617                                   u32 ssid, u32 tsid, u16 tclass,
 618                                   struct av_decision *avd,
 619                                   struct avc_xperms_node *xp_node)
 620{
 621        struct avc_node *pos, *node = NULL;
 622        int hvalue;
 623        unsigned long flag;
 624        spinlock_t *lock;
 625        struct hlist_head *head;
 626
 627        if (avc_latest_notif_update(avc, avd->seqno, 1))
 628                return NULL;
 629
 630        node = avc_alloc_node(avc);
 631        if (!node)
 632                return NULL;
 633
 634        avc_node_populate(node, ssid, tsid, tclass, avd);
 635        if (avc_xperms_populate(node, xp_node)) {
 636                avc_node_kill(avc, node);
 637                return NULL;
 638        }
 639
 640        hvalue = avc_hash(ssid, tsid, tclass);
 641        head = &avc->avc_cache.slots[hvalue];
 642        lock = &avc->avc_cache.slots_lock[hvalue];
 643        spin_lock_irqsave(lock, flag);
 644        hlist_for_each_entry(pos, head, list) {
 645                if (pos->ae.ssid == ssid &&
 646                        pos->ae.tsid == tsid &&
 647                        pos->ae.tclass == tclass) {
 648                        avc_node_replace(avc, node, pos);
 649                        goto found;
 650                }
 651        }
 652        hlist_add_head_rcu(&node->list, head);
 653found:
 654        spin_unlock_irqrestore(lock, flag);
 655        return node;
 656}
 657
 658/**
 659 * avc_audit_pre_callback - SELinux specific information
 660 * will be called by generic audit code
 661 * @ab: the audit buffer
 662 * @a: audit_data
 663 */
 664static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 665{
 666        struct common_audit_data *ad = a;
 667        struct selinux_audit_data *sad = ad->selinux_audit_data;
 668        u32 av = sad->audited;
 669        const char **perms;
 670        int i, perm;
 671
 672        audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
 673
 674        if (av == 0) {
 675                audit_log_format(ab, " null");
 676                return;
 677        }
 678
 679        perms = secclass_map[sad->tclass-1].perms;
 680
 681        audit_log_format(ab, " {");
 682        i = 0;
 683        perm = 1;
 684        while (i < (sizeof(av) * 8)) {
 685                if ((perm & av) && perms[i]) {
 686                        audit_log_format(ab, " %s", perms[i]);
 687                        av &= ~perm;
 688                }
 689                i++;
 690                perm <<= 1;
 691        }
 692
 693        if (av)
 694                audit_log_format(ab, " 0x%x", av);
 695
 696        audit_log_format(ab, " } for ");
 697}
 698
 699/**
 700 * avc_audit_post_callback - SELinux specific information
 701 * will be called by generic audit code
 702 * @ab: the audit buffer
 703 * @a: audit_data
 704 */
 705static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 706{
 707        struct common_audit_data *ad = a;
 708        struct selinux_audit_data *sad = ad->selinux_audit_data;
 709        char *scontext = NULL;
 710        char *tcontext = NULL;
 711        const char *tclass = NULL;
 712        u32 scontext_len;
 713        u32 tcontext_len;
 714        int rc;
 715
 716        rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
 717                                     &scontext_len);
 718        if (rc)
 719                audit_log_format(ab, " ssid=%d", sad->ssid);
 720        else
 721                audit_log_format(ab, " scontext=%s", scontext);
 722
 723        rc = security_sid_to_context(sad->state, sad->tsid, &tcontext,
 724                                     &tcontext_len);
 725        if (rc)
 726                audit_log_format(ab, " tsid=%d", sad->tsid);
 727        else
 728                audit_log_format(ab, " tcontext=%s", tcontext);
 729
 730        tclass = secclass_map[sad->tclass-1].name;
 731        audit_log_format(ab, " tclass=%s", tclass);
 732
 733        if (sad->denied)
 734                audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
 735
 736        trace_selinux_audited(sad, scontext, tcontext, tclass);
 737        kfree(tcontext);
 738        kfree(scontext);
 739
 740        /* in case of invalid context report also the actual context string */
 741        rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
 742                                           &scontext_len);
 743        if (!rc && scontext) {
 744                if (scontext_len && scontext[scontext_len - 1] == '\0')
 745                        scontext_len--;
 746                audit_log_format(ab, " srawcon=");
 747                audit_log_n_untrustedstring(ab, scontext, scontext_len);
 748                kfree(scontext);
 749        }
 750
 751        rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
 752                                           &scontext_len);
 753        if (!rc && scontext) {
 754                if (scontext_len && scontext[scontext_len - 1] == '\0')
 755                        scontext_len--;
 756                audit_log_format(ab, " trawcon=");
 757                audit_log_n_untrustedstring(ab, scontext, scontext_len);
 758                kfree(scontext);
 759        }
 760}
 761
 762/*
 763 * This is the slow part of avc audit with big stack footprint.
 764 * Note that it is non-blocking and can be called from under
 765 * rcu_read_lock().
 766 */
 767noinline int slow_avc_audit(struct selinux_state *state,
 768                            u32 ssid, u32 tsid, u16 tclass,
 769                            u32 requested, u32 audited, u32 denied, int result,
 770                            struct common_audit_data *a)
 771{
 772        struct common_audit_data stack_data;
 773        struct selinux_audit_data sad;
 774
 775        if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
 776                return -EINVAL;
 777
 778        if (!a) {
 779                a = &stack_data;
 780                a->type = LSM_AUDIT_DATA_NONE;
 781        }
 782
 783        sad.tclass = tclass;
 784        sad.requested = requested;
 785        sad.ssid = ssid;
 786        sad.tsid = tsid;
 787        sad.audited = audited;
 788        sad.denied = denied;
 789        sad.result = result;
 790        sad.state = state;
 791
 792        a->selinux_audit_data = &sad;
 793
 794        common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 795        return 0;
 796}
 797
 798/**
 799 * avc_add_callback - Register a callback for security events.
 800 * @callback: callback function
 801 * @events: security events
 802 *
 803 * Register a callback function for events in the set @events.
 804 * Returns %0 on success or -%ENOMEM if insufficient memory
 805 * exists to add the callback.
 806 */
 807int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 808{
 809        struct avc_callback_node *c;
 810        int rc = 0;
 811
 812        c = kmalloc(sizeof(*c), GFP_KERNEL);
 813        if (!c) {
 814                rc = -ENOMEM;
 815                goto out;
 816        }
 817
 818        c->callback = callback;
 819        c->events = events;
 820        c->next = avc_callbacks;
 821        avc_callbacks = c;
 822out:
 823        return rc;
 824}
 825
 826/**
 827 * avc_update_node - Update an AVC entry
 828 * @event : Updating event
 829 * @perms : Permission mask bits
 830 * @ssid,@tsid,@tclass : identifier of an AVC entry
 831 * @seqno : sequence number when decision was made
 832 * @xpd: extended_perms_decision to be added to the node
 833 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
 834 *
 835 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 836 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 837 * otherwise, this function updates the AVC entry. The original AVC-entry object
 838 * will release later by RCU.
 839 */
 840static int avc_update_node(struct selinux_avc *avc,
 841                           u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 842                           u32 tsid, u16 tclass, u32 seqno,
 843                           struct extended_perms_decision *xpd,
 844                           u32 flags)
 845{
 846        int hvalue, rc = 0;
 847        unsigned long flag;
 848        struct avc_node *pos, *node, *orig = NULL;
 849        struct hlist_head *head;
 850        spinlock_t *lock;
 851
 852        node = avc_alloc_node(avc);
 853        if (!node) {
 854                rc = -ENOMEM;
 855                goto out;
 856        }
 857
 858        /* Lock the target slot */
 859        hvalue = avc_hash(ssid, tsid, tclass);
 860
 861        head = &avc->avc_cache.slots[hvalue];
 862        lock = &avc->avc_cache.slots_lock[hvalue];
 863
 864        spin_lock_irqsave(lock, flag);
 865
 866        hlist_for_each_entry(pos, head, list) {
 867                if (ssid == pos->ae.ssid &&
 868                    tsid == pos->ae.tsid &&
 869                    tclass == pos->ae.tclass &&
 870                    seqno == pos->ae.avd.seqno){
 871                        orig = pos;
 872                        break;
 873                }
 874        }
 875
 876        if (!orig) {
 877                rc = -ENOENT;
 878                avc_node_kill(avc, node);
 879                goto out_unlock;
 880        }
 881
 882        /*
 883         * Copy and replace original node.
 884         */
 885
 886        avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 887
 888        if (orig->ae.xp_node) {
 889                rc = avc_xperms_populate(node, orig->ae.xp_node);
 890                if (rc) {
 891                        avc_node_kill(avc, node);
 892                        goto out_unlock;
 893                }
 894        }
 895
 896        switch (event) {
 897        case AVC_CALLBACK_GRANT:
 898                node->ae.avd.allowed |= perms;
 899                if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 900                        avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 901                break;
 902        case AVC_CALLBACK_TRY_REVOKE:
 903        case AVC_CALLBACK_REVOKE:
 904                node->ae.avd.allowed &= ~perms;
 905                break;
 906        case AVC_CALLBACK_AUDITALLOW_ENABLE:
 907                node->ae.avd.auditallow |= perms;
 908                break;
 909        case AVC_CALLBACK_AUDITALLOW_DISABLE:
 910                node->ae.avd.auditallow &= ~perms;
 911                break;
 912        case AVC_CALLBACK_AUDITDENY_ENABLE:
 913                node->ae.avd.auditdeny |= perms;
 914                break;
 915        case AVC_CALLBACK_AUDITDENY_DISABLE:
 916                node->ae.avd.auditdeny &= ~perms;
 917                break;
 918        case AVC_CALLBACK_ADD_XPERMS:
 919                avc_add_xperms_decision(node, xpd);
 920                break;
 921        }
 922        avc_node_replace(avc, node, orig);
 923out_unlock:
 924        spin_unlock_irqrestore(lock, flag);
 925out:
 926        return rc;
 927}
 928
 929/**
 930 * avc_flush - Flush the cache
 931 */
 932static void avc_flush(struct selinux_avc *avc)
 933{
 934        struct hlist_head *head;
 935        struct avc_node *node;
 936        spinlock_t *lock;
 937        unsigned long flag;
 938        int i;
 939
 940        for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 941                head = &avc->avc_cache.slots[i];
 942                lock = &avc->avc_cache.slots_lock[i];
 943
 944                spin_lock_irqsave(lock, flag);
 945                /*
 946                 * With preemptable RCU, the outer spinlock does not
 947                 * prevent RCU grace periods from ending.
 948                 */
 949                rcu_read_lock();
 950                hlist_for_each_entry(node, head, list)
 951                        avc_node_delete(avc, node);
 952                rcu_read_unlock();
 953                spin_unlock_irqrestore(lock, flag);
 954        }
 955}
 956
 957/**
 958 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 959 * @seqno: policy sequence number
 960 */
 961int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 962{
 963        struct avc_callback_node *c;
 964        int rc = 0, tmprc;
 965
 966        avc_flush(avc);
 967
 968        for (c = avc_callbacks; c; c = c->next) {
 969                if (c->events & AVC_CALLBACK_RESET) {
 970                        tmprc = c->callback(AVC_CALLBACK_RESET);
 971                        /* save the first error encountered for the return
 972                           value and continue processing the callbacks */
 973                        if (!rc)
 974                                rc = tmprc;
 975                }
 976        }
 977
 978        avc_latest_notif_update(avc, seqno, 0);
 979        return rc;
 980}
 981
 982/*
 983 * Slow-path helper function for avc_has_perm_noaudit,
 984 * when the avc_node lookup fails. We get called with
 985 * the RCU read lock held, and need to return with it
 986 * still held, but drop if for the security compute.
 987 *
 988 * Don't inline this, since it's the slow-path and just
 989 * results in a bigger stack frame.
 990 */
 991static noinline
 992struct avc_node *avc_compute_av(struct selinux_state *state,
 993                                u32 ssid, u32 tsid,
 994                                u16 tclass, struct av_decision *avd,
 995                                struct avc_xperms_node *xp_node)
 996{
 997        rcu_read_unlock();
 998        INIT_LIST_HEAD(&xp_node->xpd_head);
 999        security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1000        rcu_read_lock();
1001        return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1002}
1003
1004static noinline int avc_denied(struct selinux_state *state,
1005                               u32 ssid, u32 tsid,
1006                               u16 tclass, u32 requested,
1007                               u8 driver, u8 xperm, unsigned int flags,
1008                               struct av_decision *avd)
1009{
1010        if (flags & AVC_STRICT)
1011                return -EACCES;
1012
1013        if (enforcing_enabled(state) &&
1014            !(avd->flags & AVD_FLAGS_PERMISSIVE))
1015                return -EACCES;
1016
1017        avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1018                        xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1019        return 0;
1020}
1021
1022/*
1023 * The avc extended permissions logic adds an additional 256 bits of
1024 * permissions to an avc node when extended permissions for that node are
1025 * specified in the avtab. If the additional 256 permissions is not adequate,
1026 * as-is the case with ioctls, then multiple may be chained together and the
1027 * driver field is used to specify which set contains the permission.
1028 */
1029int avc_has_extended_perms(struct selinux_state *state,
1030                           u32 ssid, u32 tsid, u16 tclass, u32 requested,
1031                           u8 driver, u8 xperm, struct common_audit_data *ad)
1032{
1033        struct avc_node *node;
1034        struct av_decision avd;
1035        u32 denied;
1036        struct extended_perms_decision local_xpd;
1037        struct extended_perms_decision *xpd = NULL;
1038        struct extended_perms_data allowed;
1039        struct extended_perms_data auditallow;
1040        struct extended_perms_data dontaudit;
1041        struct avc_xperms_node local_xp_node;
1042        struct avc_xperms_node *xp_node;
1043        int rc = 0, rc2;
1044
1045        xp_node = &local_xp_node;
1046        if (WARN_ON(!requested))
1047                return -EACCES;
1048
1049        rcu_read_lock();
1050
1051        node = avc_lookup(state->avc, ssid, tsid, tclass);
1052        if (unlikely(!node)) {
1053                node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1054        } else {
1055                memcpy(&avd, &node->ae.avd, sizeof(avd));
1056                xp_node = node->ae.xp_node;
1057        }
1058        /* if extended permissions are not defined, only consider av_decision */
1059        if (!xp_node || !xp_node->xp.len)
1060                goto decision;
1061
1062        local_xpd.allowed = &allowed;
1063        local_xpd.auditallow = &auditallow;
1064        local_xpd.dontaudit = &dontaudit;
1065
1066        xpd = avc_xperms_decision_lookup(driver, xp_node);
1067        if (unlikely(!xpd)) {
1068                /*
1069                 * Compute the extended_perms_decision only if the driver
1070                 * is flagged
1071                 */
1072                if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1073                        avd.allowed &= ~requested;
1074                        goto decision;
1075                }
1076                rcu_read_unlock();
1077                security_compute_xperms_decision(state, ssid, tsid, tclass,
1078                                                 driver, &local_xpd);
1079                rcu_read_lock();
1080                avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1081                                driver, xperm, ssid, tsid, tclass, avd.seqno,
1082                                &local_xpd, 0);
1083        } else {
1084                avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1085        }
1086        xpd = &local_xpd;
1087
1088        if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1089                avd.allowed &= ~requested;
1090
1091decision:
1092        denied = requested & ~(avd.allowed);
1093        if (unlikely(denied))
1094                rc = avc_denied(state, ssid, tsid, tclass, requested,
1095                                driver, xperm, AVC_EXTENDED_PERMS, &avd);
1096
1097        rcu_read_unlock();
1098
1099        rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1100                        &avd, xpd, xperm, rc, ad);
1101        if (rc2)
1102                return rc2;
1103        return rc;
1104}
1105
1106/**
1107 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1108 * @ssid: source security identifier
1109 * @tsid: target security identifier
1110 * @tclass: target security class
1111 * @requested: requested permissions, interpreted based on @tclass
1112 * @flags:  AVC_STRICT or 0
1113 * @avd: access vector decisions
1114 *
1115 * Check the AVC to determine whether the @requested permissions are granted
1116 * for the SID pair (@ssid, @tsid), interpreting the permissions
1117 * based on @tclass, and call the security server on a cache miss to obtain
1118 * a new decision and add it to the cache.  Return a copy of the decisions
1119 * in @avd.  Return %0 if all @requested permissions are granted,
1120 * -%EACCES if any permissions are denied, or another -errno upon
1121 * other errors.  This function is typically called by avc_has_perm(),
1122 * but may also be called directly to separate permission checking from
1123 * auditing, e.g. in cases where a lock must be held for the check but
1124 * should be released for the auditing.
1125 */
1126inline int avc_has_perm_noaudit(struct selinux_state *state,
1127                                u32 ssid, u32 tsid,
1128                                u16 tclass, u32 requested,
1129                                unsigned int flags,
1130                                struct av_decision *avd)
1131{
1132        struct avc_node *node;
1133        struct avc_xperms_node xp_node;
1134        int rc = 0;
1135        u32 denied;
1136
1137        if (WARN_ON(!requested))
1138                return -EACCES;
1139
1140        rcu_read_lock();
1141
1142        node = avc_lookup(state->avc, ssid, tsid, tclass);
1143        if (unlikely(!node))
1144                node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1145        else
1146                memcpy(avd, &node->ae.avd, sizeof(*avd));
1147
1148        denied = requested & ~(avd->allowed);
1149        if (unlikely(denied))
1150                rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1151                                flags, avd);
1152
1153        rcu_read_unlock();
1154        return rc;
1155}
1156
1157/**
1158 * avc_has_perm - Check permissions and perform any appropriate auditing.
1159 * @ssid: source security identifier
1160 * @tsid: target security identifier
1161 * @tclass: target security class
1162 * @requested: requested permissions, interpreted based on @tclass
1163 * @auditdata: auxiliary audit data
1164 *
1165 * Check the AVC to determine whether the @requested permissions are granted
1166 * for the SID pair (@ssid, @tsid), interpreting the permissions
1167 * based on @tclass, and call the security server on a cache miss to obtain
1168 * a new decision and add it to the cache.  Audit the granting or denial of
1169 * permissions in accordance with the policy.  Return %0 if all @requested
1170 * permissions are granted, -%EACCES if any permissions are denied, or
1171 * another -errno upon other errors.
1172 */
1173int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1174                 u32 requested, struct common_audit_data *auditdata)
1175{
1176        struct av_decision avd;
1177        int rc, rc2;
1178
1179        rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1180                                  &avd);
1181
1182        rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1183                        auditdata);
1184        if (rc2)
1185                return rc2;
1186        return rc;
1187}
1188
1189u32 avc_policy_seqno(struct selinux_state *state)
1190{
1191        return state->avc->avc_cache.latest_notif;
1192}
1193
1194void avc_disable(void)
1195{
1196        /*
1197         * If you are looking at this because you have realized that we are
1198         * not destroying the avc_node_cachep it might be easy to fix, but
1199         * I don't know the memory barrier semantics well enough to know.  It's
1200         * possible that some other task dereferenced security_ops when
1201         * it still pointed to selinux operations.  If that is the case it's
1202         * possible that it is about to use the avc and is about to need the
1203         * avc_node_cachep.  I know I could wrap the security.c security_ops call
1204         * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1205         * the cache and get that memory back.
1206         */
1207        if (avc_node_cachep) {
1208                avc_flush(selinux_state.avc);
1209                /* kmem_cache_destroy(avc_node_cachep); */
1210        }
1211}
1212