linux/tools/lib/traceevent/kbuffer-parse.c
<<
>>
Prefs
   1// SPDX-License-Identifier: LGPL-2.1
   2/*
   3 * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
   4 *
   5 */
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9
  10#include "kbuffer.h"
  11
  12#define MISSING_EVENTS (1UL << 31)
  13#define MISSING_STORED (1UL << 30)
  14
  15#define COMMIT_MASK ((1 << 27) - 1)
  16
  17enum {
  18        KBUFFER_FL_HOST_BIG_ENDIAN      = (1<<0),
  19        KBUFFER_FL_BIG_ENDIAN           = (1<<1),
  20        KBUFFER_FL_LONG_8               = (1<<2),
  21        KBUFFER_FL_OLD_FORMAT           = (1<<3),
  22};
  23
  24#define ENDIAN_MASK (KBUFFER_FL_HOST_BIG_ENDIAN | KBUFFER_FL_BIG_ENDIAN)
  25
  26/** kbuffer
  27 * @timestamp           - timestamp of current event
  28 * @lost_events         - # of lost events between this subbuffer and previous
  29 * @flags               - special flags of the kbuffer
  30 * @subbuffer           - pointer to the sub-buffer page
  31 * @data                - pointer to the start of data on the sub-buffer page
  32 * @index               - index from @data to the @curr event data
  33 * @curr                - offset from @data to the start of current event
  34 *                         (includes metadata)
  35 * @next                - offset from @data to the start of next event
  36 * @size                - The size of data on @data
  37 * @start               - The offset from @subbuffer where @data lives
  38 *
  39 * @read_4              - Function to read 4 raw bytes (may swap)
  40 * @read_8              - Function to read 8 raw bytes (may swap)
  41 * @read_long           - Function to read a long word (4 or 8 bytes with needed swap)
  42 */
  43struct kbuffer {
  44        unsigned long long      timestamp;
  45        long long               lost_events;
  46        unsigned long           flags;
  47        void                    *subbuffer;
  48        void                    *data;
  49        unsigned int            index;
  50        unsigned int            curr;
  51        unsigned int            next;
  52        unsigned int            size;
  53        unsigned int            start;
  54
  55        unsigned int (*read_4)(void *ptr);
  56        unsigned long long (*read_8)(void *ptr);
  57        unsigned long long (*read_long)(struct kbuffer *kbuf, void *ptr);
  58        int (*next_event)(struct kbuffer *kbuf);
  59};
  60
  61static void *zmalloc(size_t size)
  62{
  63        return calloc(1, size);
  64}
  65
  66static int host_is_bigendian(void)
  67{
  68        unsigned char str[] = { 0x1, 0x2, 0x3, 0x4 };
  69        unsigned int *ptr;
  70
  71        ptr = (unsigned int *)str;
  72        return *ptr == 0x01020304;
  73}
  74
  75static int do_swap(struct kbuffer *kbuf)
  76{
  77        return ((kbuf->flags & KBUFFER_FL_HOST_BIG_ENDIAN) + kbuf->flags) &
  78                ENDIAN_MASK;
  79}
  80
  81static unsigned long long __read_8(void *ptr)
  82{
  83        unsigned long long data = *(unsigned long long *)ptr;
  84
  85        return data;
  86}
  87
  88static unsigned long long __read_8_sw(void *ptr)
  89{
  90        unsigned long long data = *(unsigned long long *)ptr;
  91        unsigned long long swap;
  92
  93        swap = ((data & 0xffULL) << 56) |
  94                ((data & (0xffULL << 8)) << 40) |
  95                ((data & (0xffULL << 16)) << 24) |
  96                ((data & (0xffULL << 24)) << 8) |
  97                ((data & (0xffULL << 32)) >> 8) |
  98                ((data & (0xffULL << 40)) >> 24) |
  99                ((data & (0xffULL << 48)) >> 40) |
 100                ((data & (0xffULL << 56)) >> 56);
 101
 102        return swap;
 103}
 104
 105static unsigned int __read_4(void *ptr)
 106{
 107        unsigned int data = *(unsigned int *)ptr;
 108
 109        return data;
 110}
 111
 112static unsigned int __read_4_sw(void *ptr)
 113{
 114        unsigned int data = *(unsigned int *)ptr;
 115        unsigned int swap;
 116
 117        swap = ((data & 0xffULL) << 24) |
 118                ((data & (0xffULL << 8)) << 8) |
 119                ((data & (0xffULL << 16)) >> 8) |
 120                ((data & (0xffULL << 24)) >> 24);
 121
 122        return swap;
 123}
 124
 125static unsigned long long read_8(struct kbuffer *kbuf, void *ptr)
 126{
 127        return kbuf->read_8(ptr);
 128}
 129
 130static unsigned int read_4(struct kbuffer *kbuf, void *ptr)
 131{
 132        return kbuf->read_4(ptr);
 133}
 134
 135static unsigned long long __read_long_8(struct kbuffer *kbuf, void *ptr)
 136{
 137        return kbuf->read_8(ptr);
 138}
 139
 140static unsigned long long __read_long_4(struct kbuffer *kbuf, void *ptr)
 141{
 142        return kbuf->read_4(ptr);
 143}
 144
 145static unsigned long long read_long(struct kbuffer *kbuf, void *ptr)
 146{
 147        return kbuf->read_long(kbuf, ptr);
 148}
 149
 150static int calc_index(struct kbuffer *kbuf, void *ptr)
 151{
 152        return (unsigned long)ptr - (unsigned long)kbuf->data;
 153}
 154
 155static int __next_event(struct kbuffer *kbuf);
 156
 157/**
 158 * kbuffer_alloc - allocat a new kbuffer
 159 * @size;       enum to denote size of word
 160 * @endian:     enum to denote endianness
 161 *
 162 * Allocates and returns a new kbuffer.
 163 */
 164struct kbuffer *
 165kbuffer_alloc(enum kbuffer_long_size size, enum kbuffer_endian endian)
 166{
 167        struct kbuffer *kbuf;
 168        int flags = 0;
 169
 170        switch (size) {
 171        case KBUFFER_LSIZE_4:
 172                break;
 173        case KBUFFER_LSIZE_8:
 174                flags |= KBUFFER_FL_LONG_8;
 175                break;
 176        default:
 177                return NULL;
 178        }
 179
 180        switch (endian) {
 181        case KBUFFER_ENDIAN_LITTLE:
 182                break;
 183        case KBUFFER_ENDIAN_BIG:
 184                flags |= KBUFFER_FL_BIG_ENDIAN;
 185                break;
 186        default:
 187                return NULL;
 188        }
 189
 190        kbuf = zmalloc(sizeof(*kbuf));
 191        if (!kbuf)
 192                return NULL;
 193
 194        kbuf->flags = flags;
 195
 196        if (host_is_bigendian())
 197                kbuf->flags |= KBUFFER_FL_HOST_BIG_ENDIAN;
 198
 199        if (do_swap(kbuf)) {
 200                kbuf->read_8 = __read_8_sw;
 201                kbuf->read_4 = __read_4_sw;
 202        } else {
 203                kbuf->read_8 = __read_8;
 204                kbuf->read_4 = __read_4;
 205        }
 206
 207        if (kbuf->flags & KBUFFER_FL_LONG_8)
 208                kbuf->read_long = __read_long_8;
 209        else
 210                kbuf->read_long = __read_long_4;
 211
 212        /* May be changed by kbuffer_set_old_format() */
 213        kbuf->next_event = __next_event;
 214
 215        return kbuf;
 216}
 217
 218/** kbuffer_free - free an allocated kbuffer
 219 * @kbuf:       The kbuffer to free
 220 *
 221 * Can take NULL as a parameter.
 222 */
 223void kbuffer_free(struct kbuffer *kbuf)
 224{
 225        free(kbuf);
 226}
 227
 228static unsigned int type4host(struct kbuffer *kbuf,
 229                              unsigned int type_len_ts)
 230{
 231        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 232                return (type_len_ts >> 29) & 3;
 233        else
 234                return type_len_ts & 3;
 235}
 236
 237static unsigned int len4host(struct kbuffer *kbuf,
 238                             unsigned int type_len_ts)
 239{
 240        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 241                return (type_len_ts >> 27) & 7;
 242        else
 243                return (type_len_ts >> 2) & 7;
 244}
 245
 246static unsigned int type_len4host(struct kbuffer *kbuf,
 247                                  unsigned int type_len_ts)
 248{
 249        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 250                return (type_len_ts >> 27) & ((1 << 5) - 1);
 251        else
 252                return type_len_ts & ((1 << 5) - 1);
 253}
 254
 255static unsigned int ts4host(struct kbuffer *kbuf,
 256                            unsigned int type_len_ts)
 257{
 258        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 259                return type_len_ts & ((1 << 27) - 1);
 260        else
 261                return type_len_ts >> 5;
 262}
 263
 264/*
 265 * Linux 2.6.30 and earlier (not much ealier) had a different
 266 * ring buffer format. It should be obsolete, but we handle it anyway.
 267 */
 268enum old_ring_buffer_type {
 269        OLD_RINGBUF_TYPE_PADDING,
 270        OLD_RINGBUF_TYPE_TIME_EXTEND,
 271        OLD_RINGBUF_TYPE_TIME_STAMP,
 272        OLD_RINGBUF_TYPE_DATA,
 273};
 274
 275static unsigned int old_update_pointers(struct kbuffer *kbuf)
 276{
 277        unsigned long long extend;
 278        unsigned int type_len_ts;
 279        unsigned int type;
 280        unsigned int len;
 281        unsigned int delta;
 282        unsigned int length;
 283        void *ptr = kbuf->data + kbuf->curr;
 284
 285        type_len_ts = read_4(kbuf, ptr);
 286        ptr += 4;
 287
 288        type = type4host(kbuf, type_len_ts);
 289        len = len4host(kbuf, type_len_ts);
 290        delta = ts4host(kbuf, type_len_ts);
 291
 292        switch (type) {
 293        case OLD_RINGBUF_TYPE_PADDING:
 294                kbuf->next = kbuf->size;
 295                return 0;
 296
 297        case OLD_RINGBUF_TYPE_TIME_EXTEND:
 298                extend = read_4(kbuf, ptr);
 299                extend <<= TS_SHIFT;
 300                extend += delta;
 301                delta = extend;
 302                ptr += 4;
 303                length = 0;
 304                break;
 305
 306        case OLD_RINGBUF_TYPE_TIME_STAMP:
 307                /* should never happen! */
 308                kbuf->curr = kbuf->size;
 309                kbuf->next = kbuf->size;
 310                kbuf->index = kbuf->size;
 311                return -1;
 312        default:
 313                if (len)
 314                        length = len * 4;
 315                else {
 316                        length = read_4(kbuf, ptr);
 317                        length -= 4;
 318                        ptr += 4;
 319                }
 320                break;
 321        }
 322
 323        kbuf->timestamp += delta;
 324        kbuf->index = calc_index(kbuf, ptr);
 325        kbuf->next = kbuf->index + length;
 326
 327        return type;
 328}
 329
 330static int __old_next_event(struct kbuffer *kbuf)
 331{
 332        int type;
 333
 334        do {
 335                kbuf->curr = kbuf->next;
 336                if (kbuf->next >= kbuf->size)
 337                        return -1;
 338                type = old_update_pointers(kbuf);
 339        } while (type == OLD_RINGBUF_TYPE_TIME_EXTEND || type == OLD_RINGBUF_TYPE_PADDING);
 340
 341        return 0;
 342}
 343
 344static unsigned int
 345translate_data(struct kbuffer *kbuf, void *data, void **rptr,
 346               unsigned long long *delta, int *length)
 347{
 348        unsigned long long extend;
 349        unsigned int type_len_ts;
 350        unsigned int type_len;
 351
 352        type_len_ts = read_4(kbuf, data);
 353        data += 4;
 354
 355        type_len = type_len4host(kbuf, type_len_ts);
 356        *delta = ts4host(kbuf, type_len_ts);
 357
 358        switch (type_len) {
 359        case KBUFFER_TYPE_PADDING:
 360                *length = read_4(kbuf, data);
 361                break;
 362
 363        case KBUFFER_TYPE_TIME_EXTEND:
 364        case KBUFFER_TYPE_TIME_STAMP:
 365                extend = read_4(kbuf, data);
 366                data += 4;
 367                extend <<= TS_SHIFT;
 368                extend += *delta;
 369                *delta = extend;
 370                *length = 0;
 371                break;
 372
 373        case 0:
 374                *length = read_4(kbuf, data) - 4;
 375                *length = (*length + 3) & ~3;
 376                data += 4;
 377                break;
 378        default:
 379                *length = type_len * 4;
 380                break;
 381        }
 382
 383        *rptr = data;
 384
 385        return type_len;
 386}
 387
 388static unsigned int update_pointers(struct kbuffer *kbuf)
 389{
 390        unsigned long long delta;
 391        unsigned int type_len;
 392        int length;
 393        void *ptr = kbuf->data + kbuf->curr;
 394
 395        type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
 396
 397        if (type_len == KBUFFER_TYPE_TIME_STAMP)
 398                kbuf->timestamp = delta;
 399        else
 400                kbuf->timestamp += delta;
 401
 402        kbuf->index = calc_index(kbuf, ptr);
 403        kbuf->next = kbuf->index + length;
 404
 405        return type_len;
 406}
 407
 408/**
 409 * kbuffer_translate_data - read raw data to get a record
 410 * @swap:       Set to 1 if bytes in words need to be swapped when read
 411 * @data:       The raw data to read
 412 * @size:       Address to store the size of the event data.
 413 *
 414 * Returns a pointer to the event data. To determine the entire
 415 * record size (record metadata + data) just add the difference between
 416 * @data and the returned value to @size.
 417 */
 418void *kbuffer_translate_data(int swap, void *data, unsigned int *size)
 419{
 420        unsigned long long delta;
 421        struct kbuffer kbuf;
 422        int type_len;
 423        int length;
 424        void *ptr;
 425
 426        if (swap) {
 427                kbuf.read_8 = __read_8_sw;
 428                kbuf.read_4 = __read_4_sw;
 429                kbuf.flags = host_is_bigendian() ? 0 : KBUFFER_FL_BIG_ENDIAN;
 430        } else {
 431                kbuf.read_8 = __read_8;
 432                kbuf.read_4 = __read_4;
 433                kbuf.flags = host_is_bigendian() ? KBUFFER_FL_BIG_ENDIAN: 0;
 434        }
 435
 436        type_len = translate_data(&kbuf, data, &ptr, &delta, &length);
 437        switch (type_len) {
 438        case KBUFFER_TYPE_PADDING:
 439        case KBUFFER_TYPE_TIME_EXTEND:
 440        case KBUFFER_TYPE_TIME_STAMP:
 441                return NULL;
 442        }
 443
 444        *size = length;
 445
 446        return ptr;
 447}
 448
 449static int __next_event(struct kbuffer *kbuf)
 450{
 451        int type;
 452
 453        do {
 454                kbuf->curr = kbuf->next;
 455                if (kbuf->next >= kbuf->size)
 456                        return -1;
 457                type = update_pointers(kbuf);
 458        } while (type == KBUFFER_TYPE_TIME_EXTEND ||
 459                 type == KBUFFER_TYPE_TIME_STAMP ||
 460                 type == KBUFFER_TYPE_PADDING);
 461
 462        return 0;
 463}
 464
 465static int next_event(struct kbuffer *kbuf)
 466{
 467        return kbuf->next_event(kbuf);
 468}
 469
 470/**
 471 * kbuffer_next_event - increment the current pointer
 472 * @kbuf:       The kbuffer to read
 473 * @ts:         Address to store the next record's timestamp (may be NULL to ignore)
 474 *
 475 * Increments the pointers into the subbuffer of the kbuffer to point to the
 476 * next event so that the next kbuffer_read_event() will return a
 477 * new event.
 478 *
 479 * Returns the data of the next event if a new event exists on the subbuffer,
 480 * NULL otherwise.
 481 */
 482void *kbuffer_next_event(struct kbuffer *kbuf, unsigned long long *ts)
 483{
 484        int ret;
 485
 486        if (!kbuf || !kbuf->subbuffer)
 487                return NULL;
 488
 489        ret = next_event(kbuf);
 490        if (ret < 0)
 491                return NULL;
 492
 493        if (ts)
 494                *ts = kbuf->timestamp;
 495
 496        return kbuf->data + kbuf->index;
 497}
 498
 499/**
 500 * kbuffer_load_subbuffer - load a new subbuffer into the kbuffer
 501 * @kbuf:       The kbuffer to load
 502 * @subbuffer:  The subbuffer to load into @kbuf.
 503 *
 504 * Load a new subbuffer (page) into @kbuf. This will reset all
 505 * the pointers and update the @kbuf timestamp. The next read will
 506 * return the first event on @subbuffer.
 507 *
 508 * Returns 0 on succes, -1 otherwise.
 509 */
 510int kbuffer_load_subbuffer(struct kbuffer *kbuf, void *subbuffer)
 511{
 512        unsigned long long flags;
 513        void *ptr = subbuffer;
 514
 515        if (!kbuf || !subbuffer)
 516                return -1;
 517
 518        kbuf->subbuffer = subbuffer;
 519
 520        kbuf->timestamp = read_8(kbuf, ptr);
 521        ptr += 8;
 522
 523        kbuf->curr = 0;
 524
 525        if (kbuf->flags & KBUFFER_FL_LONG_8)
 526                kbuf->start = 16;
 527        else
 528                kbuf->start = 12;
 529
 530        kbuf->data = subbuffer + kbuf->start;
 531
 532        flags = read_long(kbuf, ptr);
 533        kbuf->size = (unsigned int)flags & COMMIT_MASK;
 534
 535        if (flags & MISSING_EVENTS) {
 536                if (flags & MISSING_STORED) {
 537                        ptr = kbuf->data + kbuf->size;
 538                        kbuf->lost_events = read_long(kbuf, ptr);
 539                } else
 540                        kbuf->lost_events = -1;
 541        } else
 542                kbuf->lost_events = 0;
 543
 544        kbuf->index = 0;
 545        kbuf->next = 0;
 546
 547        next_event(kbuf);
 548
 549        return 0;
 550}
 551
 552/**
 553 * kbuffer_subbuf_timestamp - read the timestamp from a sub buffer
 554 * @kbuf:      The kbuffer to load
 555 * @subbuf:    The subbuffer to read from.
 556 *
 557 * Return the timestamp from a subbuffer.
 558 */
 559unsigned long long kbuffer_subbuf_timestamp(struct kbuffer *kbuf, void *subbuf)
 560{
 561        return kbuf->read_8(subbuf);
 562}
 563
 564/**
 565 * kbuffer_ptr_delta - read the delta field from a record
 566 * @kbuf:      The kbuffer to load
 567 * @ptr:       The record in the buffe.
 568 *
 569 * Return the timestamp delta from a record
 570 */
 571unsigned int kbuffer_ptr_delta(struct kbuffer *kbuf, void *ptr)
 572{
 573        unsigned int type_len_ts;
 574
 575        type_len_ts = read_4(kbuf, ptr);
 576        return ts4host(kbuf, type_len_ts);
 577}
 578
 579
 580/**
 581 * kbuffer_read_event - read the next event in the kbuffer subbuffer
 582 * @kbuf:       The kbuffer to read from
 583 * @ts:         The address to store the timestamp of the event (may be NULL to ignore)
 584 *
 585 * Returns a pointer to the data part of the current event.
 586 * NULL if no event is left on the subbuffer.
 587 */
 588void *kbuffer_read_event(struct kbuffer *kbuf, unsigned long long *ts)
 589{
 590        if (!kbuf || !kbuf->subbuffer)
 591                return NULL;
 592
 593        if (kbuf->curr >= kbuf->size)
 594                return NULL;
 595
 596        if (ts)
 597                *ts = kbuf->timestamp;
 598        return kbuf->data + kbuf->index;
 599}
 600
 601/**
 602 * kbuffer_timestamp - Return the timestamp of the current event
 603 * @kbuf:       The kbuffer to read from
 604 *
 605 * Returns the timestamp of the current (next) event.
 606 */
 607unsigned long long kbuffer_timestamp(struct kbuffer *kbuf)
 608{
 609        return kbuf->timestamp;
 610}
 611
 612/**
 613 * kbuffer_read_at_offset - read the event that is at offset
 614 * @kbuf:       The kbuffer to read from
 615 * @offset:     The offset into the subbuffer
 616 * @ts:         The address to store the timestamp of the event (may be NULL to ignore)
 617 *
 618 * The @offset must be an index from the @kbuf subbuffer beginning.
 619 * If @offset is bigger than the stored subbuffer, NULL will be returned.
 620 *
 621 * Returns the data of the record that is at @offset. Note, @offset does
 622 * not need to be the start of the record, the offset just needs to be
 623 * in the record (or beginning of it).
 624 *
 625 * Note, the kbuf timestamp and pointers are updated to the
 626 * returned record. That is, kbuffer_read_event() will return the same
 627 * data and timestamp, and kbuffer_next_event() will increment from
 628 * this record.
 629 */
 630void *kbuffer_read_at_offset(struct kbuffer *kbuf, int offset,
 631                             unsigned long long *ts)
 632{
 633        void *data;
 634
 635        if (offset < kbuf->start)
 636                offset = 0;
 637        else
 638                offset -= kbuf->start;
 639
 640        /* Reset the buffer */
 641        kbuffer_load_subbuffer(kbuf, kbuf->subbuffer);
 642        data = kbuffer_read_event(kbuf, ts);
 643
 644        while (kbuf->curr < offset) {
 645                data = kbuffer_next_event(kbuf, ts);
 646                if (!data)
 647                        break;
 648        }
 649
 650        return data;
 651}
 652
 653/**
 654 * kbuffer_subbuffer_size - the size of the loaded subbuffer
 655 * @kbuf:       The kbuffer to read from
 656 *
 657 * Returns the size of the subbuffer. Note, this size is
 658 * where the last event resides. The stored subbuffer may actually be
 659 * bigger due to padding and such.
 660 */
 661int kbuffer_subbuffer_size(struct kbuffer *kbuf)
 662{
 663        return kbuf->size;
 664}
 665
 666/**
 667 * kbuffer_curr_index - Return the index of the record
 668 * @kbuf:       The kbuffer to read from
 669 *
 670 * Returns the index from the start of the data part of
 671 * the subbuffer to the current location. Note this is not
 672 * from the start of the subbuffer. An index of zero will
 673 * point to the first record. Use kbuffer_curr_offset() for
 674 * the actually offset (that can be used by kbuffer_read_at_offset())
 675 */
 676int kbuffer_curr_index(struct kbuffer *kbuf)
 677{
 678        return kbuf->curr;
 679}
 680
 681/**
 682 * kbuffer_curr_offset - Return the offset of the record
 683 * @kbuf:       The kbuffer to read from
 684 *
 685 * Returns the offset from the start of the subbuffer to the
 686 * current location.
 687 */
 688int kbuffer_curr_offset(struct kbuffer *kbuf)
 689{
 690        return kbuf->curr + kbuf->start;
 691}
 692
 693/**
 694 * kbuffer_event_size - return the size of the event data
 695 * @kbuf:       The kbuffer to read
 696 *
 697 * Returns the size of the event data (the payload not counting
 698 * the meta data of the record) of the current event.
 699 */
 700int kbuffer_event_size(struct kbuffer *kbuf)
 701{
 702        return kbuf->next - kbuf->index;
 703}
 704
 705/**
 706 * kbuffer_curr_size - return the size of the entire record
 707 * @kbuf:       The kbuffer to read
 708 *
 709 * Returns the size of the entire record (meta data and payload)
 710 * of the current event.
 711 */
 712int kbuffer_curr_size(struct kbuffer *kbuf)
 713{
 714        return kbuf->next - kbuf->curr;
 715}
 716
 717/**
 718 * kbuffer_missed_events - return the # of missed events from last event.
 719 * @kbuf:       The kbuffer to read from
 720 *
 721 * Returns the # of missed events (if recorded) before the current
 722 * event. Note, only events on the beginning of a subbuffer can
 723 * have missed events, all other events within the buffer will be
 724 * zero.
 725 */
 726int kbuffer_missed_events(struct kbuffer *kbuf)
 727{
 728        /* Only the first event can have missed events */
 729        if (kbuf->curr)
 730                return 0;
 731
 732        return kbuf->lost_events;
 733}
 734
 735/**
 736 * kbuffer_set_old_forma - set the kbuffer to use the old format parsing
 737 * @kbuf:       The kbuffer to set
 738 *
 739 * This is obsolete (or should be). The first kernels to use the
 740 * new ring buffer had a slightly different ring buffer format
 741 * (2.6.30 and earlier). It is still somewhat supported by kbuffer,
 742 * but should not be counted on in the future.
 743 */
 744void kbuffer_set_old_format(struct kbuffer *kbuf)
 745{
 746        kbuf->flags |= KBUFFER_FL_OLD_FORMAT;
 747
 748        kbuf->next_event = __old_next_event;
 749}
 750
 751/**
 752 * kbuffer_start_of_data - return offset of where data starts on subbuffer
 753 * @kbuf:       The kbuffer
 754 *
 755 * Returns the location on the subbuffer where the data starts.
 756 */
 757int kbuffer_start_of_data(struct kbuffer *kbuf)
 758{
 759        return kbuf->start;
 760}
 761
 762/**
 763 * kbuffer_raw_get - get raw buffer info
 764 * @kbuf:       The kbuffer
 765 * @subbuf:     Start of mapped subbuffer
 766 * @info:       Info descriptor to fill in
 767 *
 768 * For debugging. This can return internals of the ring buffer.
 769 * Expects to have info->next set to what it will read.
 770 * The type, length and timestamp delta will be filled in, and
 771 * @info->next will be updated to the next element.
 772 * The @subbuf is used to know if the info is passed the end of
 773 * data and NULL will be returned if it is.
 774 */
 775struct kbuffer_raw_info *
 776kbuffer_raw_get(struct kbuffer *kbuf, void *subbuf, struct kbuffer_raw_info *info)
 777{
 778        unsigned long long flags;
 779        unsigned long long delta;
 780        unsigned int type_len;
 781        unsigned int size;
 782        int start;
 783        int length;
 784        void *ptr = info->next;
 785
 786        if (!kbuf || !subbuf)
 787                return NULL;
 788
 789        if (kbuf->flags & KBUFFER_FL_LONG_8)
 790                start = 16;
 791        else
 792                start = 12;
 793
 794        flags = read_long(kbuf, subbuf + 8);
 795        size = (unsigned int)flags & COMMIT_MASK;
 796
 797        if (ptr < subbuf || ptr >= subbuf + start + size)
 798                return NULL;
 799
 800        type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
 801
 802        info->next = ptr + length;
 803
 804        info->type = type_len;
 805        info->delta = delta;
 806        info->length = length;
 807
 808        return info;
 809}
 810