linux/arch/alpha/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/arch/alpha/kernel/process.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the architecture-dependent parts of process handling.
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/module.h>
  14#include <linux/sched.h>
  15#include <linux/sched/debug.h>
  16#include <linux/sched/task.h>
  17#include <linux/sched/task_stack.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/smp.h>
  21#include <linux/stddef.h>
  22#include <linux/unistd.h>
  23#include <linux/ptrace.h>
  24#include <linux/user.h>
  25#include <linux/time.h>
  26#include <linux/major.h>
  27#include <linux/stat.h>
  28#include <linux/vt.h>
  29#include <linux/mman.h>
  30#include <linux/elfcore.h>
  31#include <linux/reboot.h>
  32#include <linux/tty.h>
  33#include <linux/console.h>
  34#include <linux/slab.h>
  35#include <linux/rcupdate.h>
  36
  37#include <asm/reg.h>
  38#include <linux/uaccess.h>
  39#include <asm/io.h>
  40#include <asm/hwrpb.h>
  41#include <asm/fpu.h>
  42
  43#include "proto.h"
  44#include "pci_impl.h"
  45
  46/*
  47 * Power off function, if any
  48 */
  49void (*pm_power_off)(void) = machine_power_off;
  50EXPORT_SYMBOL(pm_power_off);
  51
  52#ifdef CONFIG_ALPHA_WTINT
  53/*
  54 * Sleep the CPU.
  55 * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
  56 */
  57void arch_cpu_idle(void)
  58{
  59        wtint(0);
  60        raw_local_irq_enable();
  61}
  62
  63void arch_cpu_idle_dead(void)
  64{
  65        wtint(INT_MAX);
  66}
  67#endif /* ALPHA_WTINT */
  68
  69struct halt_info {
  70        int mode;
  71        char *restart_cmd;
  72};
  73
  74static void
  75common_shutdown_1(void *generic_ptr)
  76{
  77        struct halt_info *how = (struct halt_info *)generic_ptr;
  78        struct percpu_struct *cpup;
  79        unsigned long *pflags, flags;
  80        int cpuid = smp_processor_id();
  81
  82        /* No point in taking interrupts anymore. */
  83        local_irq_disable();
  84
  85        cpup = (struct percpu_struct *)
  86                        ((unsigned long)hwrpb + hwrpb->processor_offset
  87                         + hwrpb->processor_size * cpuid);
  88        pflags = &cpup->flags;
  89        flags = *pflags;
  90
  91        /* Clear reason to "default"; clear "bootstrap in progress". */
  92        flags &= ~0x00ff0001UL;
  93
  94#ifdef CONFIG_SMP
  95        /* Secondaries halt here. */
  96        if (cpuid != boot_cpuid) {
  97                flags |= 0x00040000UL; /* "remain halted" */
  98                *pflags = flags;
  99                set_cpu_present(cpuid, false);
 100                set_cpu_possible(cpuid, false);
 101                halt();
 102        }
 103#endif
 104
 105        if (how->mode == LINUX_REBOOT_CMD_RESTART) {
 106                if (!how->restart_cmd) {
 107                        flags |= 0x00020000UL; /* "cold bootstrap" */
 108                } else {
 109                        /* For SRM, we could probably set environment
 110                           variables to get this to work.  We'd have to
 111                           delay this until after srm_paging_stop unless
 112                           we ever got srm_fixup working.
 113
 114                           At the moment, SRM will use the last boot device,
 115                           but the file and flags will be the defaults, when
 116                           doing a "warm" bootstrap.  */
 117                        flags |= 0x00030000UL; /* "warm bootstrap" */
 118                }
 119        } else {
 120                flags |= 0x00040000UL; /* "remain halted" */
 121        }
 122        *pflags = flags;
 123
 124#ifdef CONFIG_SMP
 125        /* Wait for the secondaries to halt. */
 126        set_cpu_present(boot_cpuid, false);
 127        set_cpu_possible(boot_cpuid, false);
 128        while (cpumask_weight(cpu_present_mask))
 129                barrier();
 130#endif
 131
 132        /* If booted from SRM, reset some of the original environment. */
 133        if (alpha_using_srm) {
 134#ifdef CONFIG_DUMMY_CONSOLE
 135                /* If we've gotten here after SysRq-b, leave interrupt
 136                   context before taking over the console. */
 137                if (in_irq())
 138                        irq_exit();
 139                /* This has the effect of resetting the VGA video origin.  */
 140                console_lock();
 141                do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
 142                console_unlock();
 143#endif
 144                pci_restore_srm_config();
 145                set_hae(srm_hae);
 146        }
 147
 148        if (alpha_mv.kill_arch)
 149                alpha_mv.kill_arch(how->mode);
 150
 151        if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
 152                /* Unfortunately, since MILO doesn't currently understand
 153                   the hwrpb bits above, we can't reliably halt the 
 154                   processor and keep it halted.  So just loop.  */
 155                return;
 156        }
 157
 158        if (alpha_using_srm)
 159                srm_paging_stop();
 160
 161        halt();
 162}
 163
 164static void
 165common_shutdown(int mode, char *restart_cmd)
 166{
 167        struct halt_info args;
 168        args.mode = mode;
 169        args.restart_cmd = restart_cmd;
 170        on_each_cpu(common_shutdown_1, &args, 0);
 171}
 172
 173void
 174machine_restart(char *restart_cmd)
 175{
 176        common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
 177}
 178
 179
 180void
 181machine_halt(void)
 182{
 183        common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
 184}
 185
 186
 187void
 188machine_power_off(void)
 189{
 190        common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
 191}
 192
 193
 194/* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
 195   saved in the context it's used.  */
 196
 197void
 198show_regs(struct pt_regs *regs)
 199{
 200        show_regs_print_info(KERN_DEFAULT);
 201        dik_show_regs(regs, NULL);
 202}
 203
 204/*
 205 * Re-start a thread when doing execve()
 206 */
 207void
 208start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
 209{
 210        regs->pc = pc;
 211        regs->ps = 8;
 212        wrusp(sp);
 213}
 214EXPORT_SYMBOL(start_thread);
 215
 216void
 217flush_thread(void)
 218{
 219        /* Arrange for each exec'ed process to start off with a clean slate
 220           with respect to the FPU.  This is all exceptions disabled.  */
 221        current_thread_info()->ieee_state = 0;
 222        wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
 223
 224        /* Clean slate for TLS.  */
 225        current_thread_info()->pcb.unique = 0;
 226}
 227
 228void
 229release_thread(struct task_struct *dead_task)
 230{
 231}
 232
 233/*
 234 * Copy architecture-specific thread state
 235 */
 236int copy_thread(unsigned long clone_flags, unsigned long usp,
 237                unsigned long kthread_arg, struct task_struct *p,
 238                unsigned long tls)
 239{
 240        extern void ret_from_fork(void);
 241        extern void ret_from_kernel_thread(void);
 242
 243        struct thread_info *childti = task_thread_info(p);
 244        struct pt_regs *childregs = task_pt_regs(p);
 245        struct pt_regs *regs = current_pt_regs();
 246        struct switch_stack *childstack, *stack;
 247
 248        childstack = ((struct switch_stack *) childregs) - 1;
 249        childti->pcb.ksp = (unsigned long) childstack;
 250        childti->pcb.flags = 1; /* set FEN, clear everything else */
 251
 252        if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
 253                /* kernel thread */
 254                memset(childstack, 0,
 255                        sizeof(struct switch_stack) + sizeof(struct pt_regs));
 256                childstack->r26 = (unsigned long) ret_from_kernel_thread;
 257                childstack->r9 = usp;   /* function */
 258                childstack->r10 = kthread_arg;
 259                childregs->hae = alpha_mv.hae_cache;
 260                childti->pcb.usp = 0;
 261                return 0;
 262        }
 263        /* Note: if CLONE_SETTLS is not set, then we must inherit the
 264           value from the parent, which will have been set by the block
 265           copy in dup_task_struct.  This is non-intuitive, but is
 266           required for proper operation in the case of a threaded
 267           application calling fork.  */
 268        if (clone_flags & CLONE_SETTLS)
 269                childti->pcb.unique = tls;
 270        else
 271                regs->r20 = 0;  /* OSF/1 has some strange fork() semantics.  */
 272        childti->pcb.usp = usp ?: rdusp();
 273        *childregs = *regs;
 274        childregs->r0 = 0;
 275        childregs->r19 = 0;
 276        childregs->r20 = 1;     /* OSF/1 has some strange fork() semantics.  */
 277        stack = ((struct switch_stack *) regs) - 1;
 278        *childstack = *stack;
 279        childstack->r26 = (unsigned long) ret_from_fork;
 280        return 0;
 281}
 282
 283/*
 284 * Fill in the user structure for a ELF core dump.
 285 */
 286void
 287dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
 288{
 289        /* switch stack follows right below pt_regs: */
 290        struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
 291
 292        dest[ 0] = pt->r0;
 293        dest[ 1] = pt->r1;
 294        dest[ 2] = pt->r2;
 295        dest[ 3] = pt->r3;
 296        dest[ 4] = pt->r4;
 297        dest[ 5] = pt->r5;
 298        dest[ 6] = pt->r6;
 299        dest[ 7] = pt->r7;
 300        dest[ 8] = pt->r8;
 301        dest[ 9] = sw->r9;
 302        dest[10] = sw->r10;
 303        dest[11] = sw->r11;
 304        dest[12] = sw->r12;
 305        dest[13] = sw->r13;
 306        dest[14] = sw->r14;
 307        dest[15] = sw->r15;
 308        dest[16] = pt->r16;
 309        dest[17] = pt->r17;
 310        dest[18] = pt->r18;
 311        dest[19] = pt->r19;
 312        dest[20] = pt->r20;
 313        dest[21] = pt->r21;
 314        dest[22] = pt->r22;
 315        dest[23] = pt->r23;
 316        dest[24] = pt->r24;
 317        dest[25] = pt->r25;
 318        dest[26] = pt->r26;
 319        dest[27] = pt->r27;
 320        dest[28] = pt->r28;
 321        dest[29] = pt->gp;
 322        dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
 323        dest[31] = pt->pc;
 324
 325        /* Once upon a time this was the PS value.  Which is stupid
 326           since that is always 8 for usermode.  Usurped for the more
 327           useful value of the thread's UNIQUE field.  */
 328        dest[32] = ti->pcb.unique;
 329}
 330EXPORT_SYMBOL(dump_elf_thread);
 331
 332int
 333dump_elf_task(elf_greg_t *dest, struct task_struct *task)
 334{
 335        dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
 336        return 1;
 337}
 338EXPORT_SYMBOL(dump_elf_task);
 339
 340int
 341dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
 342{
 343        struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
 344        memcpy(dest, sw->fp, 32 * 8);
 345        return 1;
 346}
 347EXPORT_SYMBOL(dump_elf_task_fp);
 348
 349/*
 350 * Return saved PC of a blocked thread.  This assumes the frame
 351 * pointer is the 6th saved long on the kernel stack and that the
 352 * saved return address is the first long in the frame.  This all
 353 * holds provided the thread blocked through a call to schedule() ($15
 354 * is the frame pointer in schedule() and $15 is saved at offset 48 by
 355 * entry.S:do_switch_stack).
 356 *
 357 * Under heavy swap load I've seen this lose in an ugly way.  So do
 358 * some extra sanity checking on the ranges we expect these pointers
 359 * to be in so that we can fail gracefully.  This is just for ps after
 360 * all.  -- r~
 361 */
 362
 363static unsigned long
 364thread_saved_pc(struct task_struct *t)
 365{
 366        unsigned long base = (unsigned long)task_stack_page(t);
 367        unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
 368
 369        if (sp > base && sp+6*8 < base + 16*1024) {
 370                fp = ((unsigned long*)sp)[6];
 371                if (fp > sp && fp < base + 16*1024)
 372                        return *(unsigned long *)fp;
 373        }
 374
 375        return 0;
 376}
 377
 378unsigned long
 379get_wchan(struct task_struct *p)
 380{
 381        unsigned long schedule_frame;
 382        unsigned long pc;
 383        if (!p || p == current || task_is_running(p))
 384                return 0;
 385        /*
 386         * This one depends on the frame size of schedule().  Do a
 387         * "disass schedule" in gdb to find the frame size.  Also, the
 388         * code assumes that sleep_on() follows immediately after
 389         * interruptible_sleep_on() and that add_timer() follows
 390         * immediately after interruptible_sleep().  Ugly, isn't it?
 391         * Maybe adding a wchan field to task_struct would be better,
 392         * after all...
 393         */
 394
 395        pc = thread_saved_pc(p);
 396        if (in_sched_functions(pc)) {
 397                schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
 398                return ((unsigned long *)schedule_frame)[12];
 399        }
 400        return pc;
 401}
 402