linux/arch/alpha/kernel/time.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/arch/alpha/kernel/time.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
   6 *
   7 * This file contains the clocksource time handling.
   8 * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
   9 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  10 * 1997-01-09    Adrian Sun
  11 *      use interval timer if CONFIG_RTC=y
  12 * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
  13 *      fixed tick loss calculation in timer_interrupt
  14 *      (round system clock to nearest tick instead of truncating)
  15 *      fixed algorithm in time_init for getting time from CMOS clock
  16 * 1999-04-16   Thorsten Kranzkowski (dl8bcu@gmx.net)
  17 *      fixed algorithm in do_gettimeofday() for calculating the precise time
  18 *      from processor cycle counter (now taking lost_ticks into account)
  19 * 2003-06-03   R. Scott Bailey <scott.bailey@eds.com>
  20 *      Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
  21 */
  22#include <linux/errno.h>
  23#include <linux/module.h>
  24#include <linux/sched.h>
  25#include <linux/kernel.h>
  26#include <linux/param.h>
  27#include <linux/string.h>
  28#include <linux/mm.h>
  29#include <linux/delay.h>
  30#include <linux/ioport.h>
  31#include <linux/irq.h>
  32#include <linux/interrupt.h>
  33#include <linux/init.h>
  34#include <linux/bcd.h>
  35#include <linux/profile.h>
  36#include <linux/irq_work.h>
  37
  38#include <linux/uaccess.h>
  39#include <asm/io.h>
  40#include <asm/hwrpb.h>
  41
  42#include <linux/mc146818rtc.h>
  43#include <linux/time.h>
  44#include <linux/timex.h>
  45#include <linux/clocksource.h>
  46#include <linux/clockchips.h>
  47
  48#include "proto.h"
  49#include "irq_impl.h"
  50
  51DEFINE_SPINLOCK(rtc_lock);
  52EXPORT_SYMBOL(rtc_lock);
  53
  54unsigned long est_cycle_freq;
  55
  56#ifdef CONFIG_IRQ_WORK
  57
  58DEFINE_PER_CPU(u8, irq_work_pending);
  59
  60#define set_irq_work_pending_flag()  __this_cpu_write(irq_work_pending, 1)
  61#define test_irq_work_pending()      __this_cpu_read(irq_work_pending)
  62#define clear_irq_work_pending()     __this_cpu_write(irq_work_pending, 0)
  63
  64void arch_irq_work_raise(void)
  65{
  66        set_irq_work_pending_flag();
  67}
  68
  69#else  /* CONFIG_IRQ_WORK */
  70
  71#define test_irq_work_pending()      0
  72#define clear_irq_work_pending()
  73
  74#endif /* CONFIG_IRQ_WORK */
  75
  76
  77static inline __u32 rpcc(void)
  78{
  79        return __builtin_alpha_rpcc();
  80}
  81
  82
  83
  84/*
  85 * The RTC as a clock_event_device primitive.
  86 */
  87
  88static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
  89
  90irqreturn_t
  91rtc_timer_interrupt(int irq, void *dev)
  92{
  93        int cpu = smp_processor_id();
  94        struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
  95
  96        /* Don't run the hook for UNUSED or SHUTDOWN.  */
  97        if (likely(clockevent_state_periodic(ce)))
  98                ce->event_handler(ce);
  99
 100        if (test_irq_work_pending()) {
 101                clear_irq_work_pending();
 102                irq_work_run();
 103        }
 104
 105        return IRQ_HANDLED;
 106}
 107
 108static int
 109rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
 110{
 111        /* This hook is for oneshot mode, which we don't support.  */
 112        return -EINVAL;
 113}
 114
 115static void __init
 116init_rtc_clockevent(void)
 117{
 118        int cpu = smp_processor_id();
 119        struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
 120
 121        *ce = (struct clock_event_device){
 122                .name = "rtc",
 123                .features = CLOCK_EVT_FEAT_PERIODIC,
 124                .rating = 100,
 125                .cpumask = cpumask_of(cpu),
 126                .set_next_event = rtc_ce_set_next_event,
 127        };
 128
 129        clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
 130}
 131
 132
 133/*
 134 * The QEMU clock as a clocksource primitive.
 135 */
 136
 137static u64
 138qemu_cs_read(struct clocksource *cs)
 139{
 140        return qemu_get_vmtime();
 141}
 142
 143static struct clocksource qemu_cs = {
 144        .name                   = "qemu",
 145        .rating                 = 400,
 146        .read                   = qemu_cs_read,
 147        .mask                   = CLOCKSOURCE_MASK(64),
 148        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
 149        .max_idle_ns            = LONG_MAX
 150};
 151
 152
 153/*
 154 * The QEMU alarm as a clock_event_device primitive.
 155 */
 156
 157static int qemu_ce_shutdown(struct clock_event_device *ce)
 158{
 159        /* The mode member of CE is updated for us in generic code.
 160           Just make sure that the event is disabled.  */
 161        qemu_set_alarm_abs(0);
 162        return 0;
 163}
 164
 165static int
 166qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
 167{
 168        qemu_set_alarm_rel(evt);
 169        return 0;
 170}
 171
 172static irqreturn_t
 173qemu_timer_interrupt(int irq, void *dev)
 174{
 175        int cpu = smp_processor_id();
 176        struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
 177
 178        ce->event_handler(ce);
 179        return IRQ_HANDLED;
 180}
 181
 182static void __init
 183init_qemu_clockevent(void)
 184{
 185        int cpu = smp_processor_id();
 186        struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
 187
 188        *ce = (struct clock_event_device){
 189                .name = "qemu",
 190                .features = CLOCK_EVT_FEAT_ONESHOT,
 191                .rating = 400,
 192                .cpumask = cpumask_of(cpu),
 193                .set_state_shutdown = qemu_ce_shutdown,
 194                .set_state_oneshot = qemu_ce_shutdown,
 195                .tick_resume = qemu_ce_shutdown,
 196                .set_next_event = qemu_ce_set_next_event,
 197        };
 198
 199        clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
 200}
 201
 202
 203void __init
 204common_init_rtc(void)
 205{
 206        unsigned char x, sel = 0;
 207
 208        /* Reset periodic interrupt frequency.  */
 209#if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
 210        x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
 211        /* Test includes known working values on various platforms
 212           where 0x26 is wrong; we refuse to change those. */
 213        if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
 214                sel = RTC_REF_CLCK_32KHZ + 6;
 215        }
 216#elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
 217        sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
 218#else
 219# error "Unknown HZ from arch/alpha/Kconfig"
 220#endif
 221        if (sel) {
 222                printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
 223                       CONFIG_HZ, sel);
 224                CMOS_WRITE(sel, RTC_FREQ_SELECT);
 225        }
 226
 227        /* Turn on periodic interrupts.  */
 228        x = CMOS_READ(RTC_CONTROL);
 229        if (!(x & RTC_PIE)) {
 230                printk("Turning on RTC interrupts.\n");
 231                x |= RTC_PIE;
 232                x &= ~(RTC_AIE | RTC_UIE);
 233                CMOS_WRITE(x, RTC_CONTROL);
 234        }
 235        (void) CMOS_READ(RTC_INTR_FLAGS);
 236
 237        outb(0x36, 0x43);       /* pit counter 0: system timer */
 238        outb(0x00, 0x40);
 239        outb(0x00, 0x40);
 240
 241        outb(0xb6, 0x43);       /* pit counter 2: speaker */
 242        outb(0x31, 0x42);
 243        outb(0x13, 0x42);
 244
 245        init_rtc_irq(NULL);
 246}
 247
 248
 249#ifndef CONFIG_ALPHA_WTINT
 250/*
 251 * The RPCC as a clocksource primitive.
 252 *
 253 * While we have free-running timecounters running on all CPUs, and we make
 254 * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
 255 * with the wall clock, that initialization isn't kept up-to-date across
 256 * different time counters in SMP mode.  Therefore we can only use this
 257 * method when there's only one CPU enabled.
 258 *
 259 * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
 260 * or stop altogether, while waiting for the interrupt.  Therefore we cannot
 261 * use this method when WTINT is in use.
 262 */
 263
 264static u64 read_rpcc(struct clocksource *cs)
 265{
 266        return rpcc();
 267}
 268
 269static struct clocksource clocksource_rpcc = {
 270        .name                   = "rpcc",
 271        .rating                 = 300,
 272        .read                   = read_rpcc,
 273        .mask                   = CLOCKSOURCE_MASK(32),
 274        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS
 275};
 276#endif /* ALPHA_WTINT */
 277
 278
 279/* Validate a computed cycle counter result against the known bounds for
 280   the given processor core.  There's too much brokenness in the way of
 281   timing hardware for any one method to work everywhere.  :-(
 282
 283   Return 0 if the result cannot be trusted, otherwise return the argument.  */
 284
 285static unsigned long __init
 286validate_cc_value(unsigned long cc)
 287{
 288        static struct bounds {
 289                unsigned int min, max;
 290        } cpu_hz[] __initdata = {
 291                [EV3_CPU]    = {   50000000,  200000000 },      /* guess */
 292                [EV4_CPU]    = {  100000000,  300000000 },
 293                [LCA4_CPU]   = {  100000000,  300000000 },      /* guess */
 294                [EV45_CPU]   = {  200000000,  300000000 },
 295                [EV5_CPU]    = {  250000000,  433000000 },
 296                [EV56_CPU]   = {  333000000,  667000000 },
 297                [PCA56_CPU]  = {  400000000,  600000000 },      /* guess */
 298                [PCA57_CPU]  = {  500000000,  600000000 },      /* guess */
 299                [EV6_CPU]    = {  466000000,  600000000 },
 300                [EV67_CPU]   = {  600000000,  750000000 },
 301                [EV68AL_CPU] = {  750000000,  940000000 },
 302                [EV68CB_CPU] = { 1000000000, 1333333333 },
 303                /* None of the following are shipping as of 2001-11-01.  */
 304                [EV68CX_CPU] = { 1000000000, 1700000000 },      /* guess */
 305                [EV69_CPU]   = { 1000000000, 1700000000 },      /* guess */
 306                [EV7_CPU]    = {  800000000, 1400000000 },      /* guess */
 307                [EV79_CPU]   = { 1000000000, 2000000000 },      /* guess */
 308        };
 309
 310        /* Allow for some drift in the crystal.  10MHz is more than enough.  */
 311        const unsigned int deviation = 10000000;
 312
 313        struct percpu_struct *cpu;
 314        unsigned int index;
 315
 316        cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
 317        index = cpu->type & 0xffffffff;
 318
 319        /* If index out of bounds, no way to validate.  */
 320        if (index >= ARRAY_SIZE(cpu_hz))
 321                return cc;
 322
 323        /* If index contains no data, no way to validate.  */
 324        if (cpu_hz[index].max == 0)
 325                return cc;
 326
 327        if (cc < cpu_hz[index].min - deviation
 328            || cc > cpu_hz[index].max + deviation)
 329                return 0;
 330
 331        return cc;
 332}
 333
 334
 335/*
 336 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
 337 * arch/i386/time.c.
 338 */
 339
 340#define CALIBRATE_LATCH 0xffff
 341#define TIMEOUT_COUNT   0x100000
 342
 343static unsigned long __init
 344calibrate_cc_with_pit(void)
 345{
 346        int cc, count = 0;
 347
 348        /* Set the Gate high, disable speaker */
 349        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 350
 351        /*
 352         * Now let's take care of CTC channel 2
 353         *
 354         * Set the Gate high, program CTC channel 2 for mode 0,
 355         * (interrupt on terminal count mode), binary count,
 356         * load 5 * LATCH count, (LSB and MSB) to begin countdown.
 357         */
 358        outb(0xb0, 0x43);               /* binary, mode 0, LSB/MSB, Ch 2 */
 359        outb(CALIBRATE_LATCH & 0xff, 0x42);     /* LSB of count */
 360        outb(CALIBRATE_LATCH >> 8, 0x42);       /* MSB of count */
 361
 362        cc = rpcc();
 363        do {
 364                count++;
 365        } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
 366        cc = rpcc() - cc;
 367
 368        /* Error: ECTCNEVERSET or ECPUTOOFAST.  */
 369        if (count <= 1 || count == TIMEOUT_COUNT)
 370                return 0;
 371
 372        return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
 373}
 374
 375/* The Linux interpretation of the CMOS clock register contents:
 376   When the Update-In-Progress (UIP) flag goes from 1 to 0, the
 377   RTC registers show the second which has precisely just started.
 378   Let's hope other operating systems interpret the RTC the same way.  */
 379
 380static unsigned long __init
 381rpcc_after_update_in_progress(void)
 382{
 383        do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
 384        do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 385
 386        return rpcc();
 387}
 388
 389void __init
 390time_init(void)
 391{
 392        unsigned int cc1, cc2;
 393        unsigned long cycle_freq, tolerance;
 394        long diff;
 395
 396        if (alpha_using_qemu) {
 397                clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
 398                init_qemu_clockevent();
 399                init_rtc_irq(qemu_timer_interrupt);
 400                return;
 401        }
 402
 403        /* Calibrate CPU clock -- attempt #1.  */
 404        if (!est_cycle_freq)
 405                est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
 406
 407        cc1 = rpcc();
 408
 409        /* Calibrate CPU clock -- attempt #2.  */
 410        if (!est_cycle_freq) {
 411                cc1 = rpcc_after_update_in_progress();
 412                cc2 = rpcc_after_update_in_progress();
 413                est_cycle_freq = validate_cc_value(cc2 - cc1);
 414                cc1 = cc2;
 415        }
 416
 417        cycle_freq = hwrpb->cycle_freq;
 418        if (est_cycle_freq) {
 419                /* If the given value is within 250 PPM of what we calculated,
 420                   accept it.  Otherwise, use what we found.  */
 421                tolerance = cycle_freq / 4000;
 422                diff = cycle_freq - est_cycle_freq;
 423                if (diff < 0)
 424                        diff = -diff;
 425                if ((unsigned long)diff > tolerance) {
 426                        cycle_freq = est_cycle_freq;
 427                        printk("HWRPB cycle frequency bogus.  "
 428                               "Estimated %lu Hz\n", cycle_freq);
 429                } else {
 430                        est_cycle_freq = 0;
 431                }
 432        } else if (! validate_cc_value (cycle_freq)) {
 433                printk("HWRPB cycle frequency bogus, "
 434                       "and unable to estimate a proper value!\n");
 435        }
 436
 437        /* See above for restrictions on using clocksource_rpcc.  */
 438#ifndef CONFIG_ALPHA_WTINT
 439        if (hwrpb->nr_processors == 1)
 440                clocksource_register_hz(&clocksource_rpcc, cycle_freq);
 441#endif
 442
 443        /* Startup the timer source. */
 444        alpha_mv.init_rtc();
 445        init_rtc_clockevent();
 446}
 447
 448/* Initialize the clock_event_device for secondary cpus.  */
 449#ifdef CONFIG_SMP
 450void __init
 451init_clockevent(void)
 452{
 453        if (alpha_using_qemu)
 454                init_qemu_clockevent();
 455        else
 456                init_rtc_clockevent();
 457}
 458#endif
 459