linux/arch/arm/common/mcpm_entry.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
   4 *
   5 * Created by:  Nicolas Pitre, March 2012
   6 * Copyright:   (C) 2012-2013  Linaro Limited
   7 */
   8
   9#include <linux/export.h>
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/irqflags.h>
  13#include <linux/cpu_pm.h>
  14
  15#include <asm/mcpm.h>
  16#include <asm/cacheflush.h>
  17#include <asm/idmap.h>
  18#include <asm/cputype.h>
  19#include <asm/suspend.h>
  20
  21/*
  22 * The public API for this code is documented in arch/arm/include/asm/mcpm.h.
  23 * For a comprehensive description of the main algorithm used here, please
  24 * see Documentation/arm/cluster-pm-race-avoidance.rst.
  25 */
  26
  27struct sync_struct mcpm_sync;
  28
  29/*
  30 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
  31 *    This must be called at the point of committing to teardown of a CPU.
  32 *    The CPU cache (SCTRL.C bit) is expected to still be active.
  33 */
  34static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
  35{
  36        mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
  37        sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
  38}
  39
  40/*
  41 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
  42 *    cluster can be torn down without disrupting this CPU.
  43 *    To avoid deadlocks, this must be called before a CPU is powered down.
  44 *    The CPU cache (SCTRL.C bit) is expected to be off.
  45 *    However L2 cache might or might not be active.
  46 */
  47static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
  48{
  49        dmb();
  50        mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
  51        sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
  52        sev();
  53}
  54
  55/*
  56 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
  57 * @state: the final state of the cluster:
  58 *     CLUSTER_UP: no destructive teardown was done and the cluster has been
  59 *         restored to the previous state (CPU cache still active); or
  60 *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
  61 *         (CPU cache disabled, L2 cache either enabled or disabled).
  62 */
  63static void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
  64{
  65        dmb();
  66        mcpm_sync.clusters[cluster].cluster = state;
  67        sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
  68        sev();
  69}
  70
  71/*
  72 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
  73 * This function should be called by the last man, after local CPU teardown
  74 * is complete.  CPU cache expected to be active.
  75 *
  76 * Returns:
  77 *     false: the critical section was not entered because an inbound CPU was
  78 *         observed, or the cluster is already being set up;
  79 *     true: the critical section was entered: it is now safe to tear down the
  80 *         cluster.
  81 */
  82static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
  83{
  84        unsigned int i;
  85        struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
  86
  87        /* Warn inbound CPUs that the cluster is being torn down: */
  88        c->cluster = CLUSTER_GOING_DOWN;
  89        sync_cache_w(&c->cluster);
  90
  91        /* Back out if the inbound cluster is already in the critical region: */
  92        sync_cache_r(&c->inbound);
  93        if (c->inbound == INBOUND_COMING_UP)
  94                goto abort;
  95
  96        /*
  97         * Wait for all CPUs to get out of the GOING_DOWN state, so that local
  98         * teardown is complete on each CPU before tearing down the cluster.
  99         *
 100         * If any CPU has been woken up again from the DOWN state, then we
 101         * shouldn't be taking the cluster down at all: abort in that case.
 102         */
 103        sync_cache_r(&c->cpus);
 104        for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
 105                int cpustate;
 106
 107                if (i == cpu)
 108                        continue;
 109
 110                while (1) {
 111                        cpustate = c->cpus[i].cpu;
 112                        if (cpustate != CPU_GOING_DOWN)
 113                                break;
 114
 115                        wfe();
 116                        sync_cache_r(&c->cpus[i].cpu);
 117                }
 118
 119                switch (cpustate) {
 120                case CPU_DOWN:
 121                        continue;
 122
 123                default:
 124                        goto abort;
 125                }
 126        }
 127
 128        return true;
 129
 130abort:
 131        __mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
 132        return false;
 133}
 134
 135static int __mcpm_cluster_state(unsigned int cluster)
 136{
 137        sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
 138        return mcpm_sync.clusters[cluster].cluster;
 139}
 140
 141extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
 142
 143void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
 144{
 145        unsigned long val = ptr ? __pa_symbol(ptr) : 0;
 146        mcpm_entry_vectors[cluster][cpu] = val;
 147        sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
 148}
 149
 150extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
 151
 152void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
 153                         unsigned long poke_phys_addr, unsigned long poke_val)
 154{
 155        unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
 156        poke[0] = poke_phys_addr;
 157        poke[1] = poke_val;
 158        __sync_cache_range_w(poke, 2 * sizeof(*poke));
 159}
 160
 161static const struct mcpm_platform_ops *platform_ops;
 162
 163int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
 164{
 165        if (platform_ops)
 166                return -EBUSY;
 167        platform_ops = ops;
 168        return 0;
 169}
 170
 171bool mcpm_is_available(void)
 172{
 173        return (platform_ops) ? true : false;
 174}
 175EXPORT_SYMBOL_GPL(mcpm_is_available);
 176
 177/*
 178 * We can't use regular spinlocks. In the switcher case, it is possible
 179 * for an outbound CPU to call power_down() after its inbound counterpart
 180 * is already live using the same logical CPU number which trips lockdep
 181 * debugging.
 182 */
 183static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 184
 185static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
 186
 187static inline bool mcpm_cluster_unused(unsigned int cluster)
 188{
 189        int i, cnt;
 190        for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
 191                cnt |= mcpm_cpu_use_count[cluster][i];
 192        return !cnt;
 193}
 194
 195int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
 196{
 197        bool cpu_is_down, cluster_is_down;
 198        int ret = 0;
 199
 200        pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
 201        if (!platform_ops)
 202                return -EUNATCH; /* try not to shadow power_up errors */
 203        might_sleep();
 204
 205        /*
 206         * Since this is called with IRQs enabled, and no arch_spin_lock_irq
 207         * variant exists, we need to disable IRQs manually here.
 208         */
 209        local_irq_disable();
 210        arch_spin_lock(&mcpm_lock);
 211
 212        cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
 213        cluster_is_down = mcpm_cluster_unused(cluster);
 214
 215        mcpm_cpu_use_count[cluster][cpu]++;
 216        /*
 217         * The only possible values are:
 218         * 0 = CPU down
 219         * 1 = CPU (still) up
 220         * 2 = CPU requested to be up before it had a chance
 221         *     to actually make itself down.
 222         * Any other value is a bug.
 223         */
 224        BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
 225               mcpm_cpu_use_count[cluster][cpu] != 2);
 226
 227        if (cluster_is_down)
 228                ret = platform_ops->cluster_powerup(cluster);
 229        if (cpu_is_down && !ret)
 230                ret = platform_ops->cpu_powerup(cpu, cluster);
 231
 232        arch_spin_unlock(&mcpm_lock);
 233        local_irq_enable();
 234        return ret;
 235}
 236
 237typedef typeof(cpu_reset) phys_reset_t;
 238
 239void mcpm_cpu_power_down(void)
 240{
 241        unsigned int mpidr, cpu, cluster;
 242        bool cpu_going_down, last_man;
 243        phys_reset_t phys_reset;
 244
 245        mpidr = read_cpuid_mpidr();
 246        cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 247        cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 248        pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
 249        if (WARN_ON_ONCE(!platform_ops))
 250               return;
 251        BUG_ON(!irqs_disabled());
 252
 253        setup_mm_for_reboot();
 254
 255        __mcpm_cpu_going_down(cpu, cluster);
 256        arch_spin_lock(&mcpm_lock);
 257        BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
 258
 259        mcpm_cpu_use_count[cluster][cpu]--;
 260        BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
 261               mcpm_cpu_use_count[cluster][cpu] != 1);
 262        cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
 263        last_man = mcpm_cluster_unused(cluster);
 264
 265        if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
 266                platform_ops->cpu_powerdown_prepare(cpu, cluster);
 267                platform_ops->cluster_powerdown_prepare(cluster);
 268                arch_spin_unlock(&mcpm_lock);
 269                platform_ops->cluster_cache_disable();
 270                __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
 271        } else {
 272                if (cpu_going_down)
 273                        platform_ops->cpu_powerdown_prepare(cpu, cluster);
 274                arch_spin_unlock(&mcpm_lock);
 275                /*
 276                 * If cpu_going_down is false here, that means a power_up
 277                 * request raced ahead of us.  Even if we do not want to
 278                 * shut this CPU down, the caller still expects execution
 279                 * to return through the system resume entry path, like
 280                 * when the WFI is aborted due to a new IRQ or the like..
 281                 * So let's continue with cache cleaning in all cases.
 282                 */
 283                platform_ops->cpu_cache_disable();
 284        }
 285
 286        __mcpm_cpu_down(cpu, cluster);
 287
 288        /* Now we are prepared for power-down, do it: */
 289        if (cpu_going_down)
 290                wfi();
 291
 292        /*
 293         * It is possible for a power_up request to happen concurrently
 294         * with a power_down request for the same CPU. In this case the
 295         * CPU might not be able to actually enter a powered down state
 296         * with the WFI instruction if the power_up request has removed
 297         * the required reset condition.  We must perform a re-entry in
 298         * the kernel as if the power_up method just had deasserted reset
 299         * on the CPU.
 300         */
 301        phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
 302        phys_reset(__pa_symbol(mcpm_entry_point), false);
 303
 304        /* should never get here */
 305        BUG();
 306}
 307
 308int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
 309{
 310        int ret;
 311
 312        if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
 313                return -EUNATCH;
 314
 315        ret = platform_ops->wait_for_powerdown(cpu, cluster);
 316        if (ret)
 317                pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
 318                        __func__, cpu, cluster, ret);
 319
 320        return ret;
 321}
 322
 323void mcpm_cpu_suspend(void)
 324{
 325        if (WARN_ON_ONCE(!platform_ops))
 326                return;
 327
 328        /* Some platforms might have to enable special resume modes, etc. */
 329        if (platform_ops->cpu_suspend_prepare) {
 330                unsigned int mpidr = read_cpuid_mpidr();
 331                unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 332                unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 
 333                arch_spin_lock(&mcpm_lock);
 334                platform_ops->cpu_suspend_prepare(cpu, cluster);
 335                arch_spin_unlock(&mcpm_lock);
 336        }
 337        mcpm_cpu_power_down();
 338}
 339
 340int mcpm_cpu_powered_up(void)
 341{
 342        unsigned int mpidr, cpu, cluster;
 343        bool cpu_was_down, first_man;
 344        unsigned long flags;
 345
 346        if (!platform_ops)
 347                return -EUNATCH;
 348
 349        mpidr = read_cpuid_mpidr();
 350        cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 351        cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 352        local_irq_save(flags);
 353        arch_spin_lock(&mcpm_lock);
 354
 355        cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
 356        first_man = mcpm_cluster_unused(cluster);
 357
 358        if (first_man && platform_ops->cluster_is_up)
 359                platform_ops->cluster_is_up(cluster);
 360        if (cpu_was_down)
 361                mcpm_cpu_use_count[cluster][cpu] = 1;
 362        if (platform_ops->cpu_is_up)
 363                platform_ops->cpu_is_up(cpu, cluster);
 364
 365        arch_spin_unlock(&mcpm_lock);
 366        local_irq_restore(flags);
 367
 368        return 0;
 369}
 370
 371#ifdef CONFIG_ARM_CPU_SUSPEND
 372
 373static int __init nocache_trampoline(unsigned long _arg)
 374{
 375        void (*cache_disable)(void) = (void *)_arg;
 376        unsigned int mpidr = read_cpuid_mpidr();
 377        unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 378        unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 379        phys_reset_t phys_reset;
 380
 381        mcpm_set_entry_vector(cpu, cluster, cpu_resume_no_hyp);
 382        setup_mm_for_reboot();
 383
 384        __mcpm_cpu_going_down(cpu, cluster);
 385        BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
 386        cache_disable();
 387        __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
 388        __mcpm_cpu_down(cpu, cluster);
 389
 390        phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
 391        phys_reset(__pa_symbol(mcpm_entry_point), false);
 392        BUG();
 393}
 394
 395int __init mcpm_loopback(void (*cache_disable)(void))
 396{
 397        int ret;
 398
 399        /*
 400         * We're going to soft-restart the current CPU through the
 401         * low-level MCPM code by leveraging the suspend/resume
 402         * infrastructure. Let's play it safe by using cpu_pm_enter()
 403         * in case the CPU init code path resets the VFP or similar.
 404         */
 405        local_irq_disable();
 406        local_fiq_disable();
 407        ret = cpu_pm_enter();
 408        if (!ret) {
 409                ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
 410                cpu_pm_exit();
 411        }
 412        local_fiq_enable();
 413        local_irq_enable();
 414        if (ret)
 415                pr_err("%s returned %d\n", __func__, ret);
 416        return ret;
 417}
 418
 419#endif
 420
 421extern unsigned long mcpm_power_up_setup_phys;
 422
 423int __init mcpm_sync_init(
 424        void (*power_up_setup)(unsigned int affinity_level))
 425{
 426        unsigned int i, j, mpidr, this_cluster;
 427
 428        BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
 429        BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
 430
 431        /*
 432         * Set initial CPU and cluster states.
 433         * Only one cluster is assumed to be active at this point.
 434         */
 435        for (i = 0; i < MAX_NR_CLUSTERS; i++) {
 436                mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
 437                mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
 438                for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
 439                        mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
 440        }
 441        mpidr = read_cpuid_mpidr();
 442        this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 443        for_each_online_cpu(i) {
 444                mcpm_cpu_use_count[this_cluster][i] = 1;
 445                mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
 446        }
 447        mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
 448        sync_cache_w(&mcpm_sync);
 449
 450        if (power_up_setup) {
 451                mcpm_power_up_setup_phys = __pa_symbol(power_up_setup);
 452                sync_cache_w(&mcpm_power_up_setup_phys);
 453        }
 454
 455        return 0;
 456}
 457