linux/arch/arm/mm/dma-mapping.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
   7 *  DMA uncached mapping support.
   8 */
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-map-ops.h>
  19#include <linux/highmem.h>
  20#include <linux/memblock.h>
  21#include <linux/slab.h>
  22#include <linux/iommu.h>
  23#include <linux/io.h>
  24#include <linux/vmalloc.h>
  25#include <linux/sizes.h>
  26#include <linux/cma.h>
  27
  28#include <asm/memory.h>
  29#include <asm/highmem.h>
  30#include <asm/cacheflush.h>
  31#include <asm/tlbflush.h>
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <xen/swiotlb-xen.h>
  37
  38#include "dma.h"
  39#include "mm.h"
  40
  41struct arm_dma_alloc_args {
  42        struct device *dev;
  43        size_t size;
  44        gfp_t gfp;
  45        pgprot_t prot;
  46        const void *caller;
  47        bool want_vaddr;
  48        int coherent_flag;
  49};
  50
  51struct arm_dma_free_args {
  52        struct device *dev;
  53        size_t size;
  54        void *cpu_addr;
  55        struct page *page;
  56        bool want_vaddr;
  57};
  58
  59#define NORMAL      0
  60#define COHERENT    1
  61
  62struct arm_dma_allocator {
  63        void *(*alloc)(struct arm_dma_alloc_args *args,
  64                       struct page **ret_page);
  65        void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69        struct list_head list;
  70        void *virt;
  71        struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79        struct arm_dma_buffer *buf, *found = NULL;
  80        unsigned long flags;
  81
  82        spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83        list_for_each_entry(buf, &arm_dma_bufs, list) {
  84                if (buf->virt == virt) {
  85                        list_del(&buf->list);
  86                        found = buf;
  87                        break;
  88                }
  89        }
  90        spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91        return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 107                size_t, enum dma_data_direction);
 108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 109                size_t, enum dma_data_direction);
 110
 111/**
 112 * arm_dma_map_page - map a portion of a page for streaming DMA
 113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 114 * @page: page that buffer resides in
 115 * @offset: offset into page for start of buffer
 116 * @size: size of buffer to map
 117 * @dir: DMA transfer direction
 118 *
 119 * Ensure that any data held in the cache is appropriately discarded
 120 * or written back.
 121 *
 122 * The device owns this memory once this call has completed.  The CPU
 123 * can regain ownership by calling dma_unmap_page().
 124 */
 125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 126             unsigned long offset, size_t size, enum dma_data_direction dir,
 127             unsigned long attrs)
 128{
 129        if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 130                __dma_page_cpu_to_dev(page, offset, size, dir);
 131        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 132}
 133
 134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 135             unsigned long offset, size_t size, enum dma_data_direction dir,
 136             unsigned long attrs)
 137{
 138        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 139}
 140
 141/**
 142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 144 * @handle: DMA address of buffer
 145 * @size: size of buffer (same as passed to dma_map_page)
 146 * @dir: DMA transfer direction (same as passed to dma_map_page)
 147 *
 148 * Unmap a page streaming mode DMA translation.  The handle and size
 149 * must match what was provided in the previous dma_map_page() call.
 150 * All other usages are undefined.
 151 *
 152 * After this call, reads by the CPU to the buffer are guaranteed to see
 153 * whatever the device wrote there.
 154 */
 155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 156                size_t size, enum dma_data_direction dir, unsigned long attrs)
 157{
 158        if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 159                __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 160                                      handle & ~PAGE_MASK, size, dir);
 161}
 162
 163static void arm_dma_sync_single_for_cpu(struct device *dev,
 164                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 165{
 166        unsigned int offset = handle & (PAGE_SIZE - 1);
 167        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 168        __dma_page_dev_to_cpu(page, offset, size, dir);
 169}
 170
 171static void arm_dma_sync_single_for_device(struct device *dev,
 172                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 173{
 174        unsigned int offset = handle & (PAGE_SIZE - 1);
 175        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 176        __dma_page_cpu_to_dev(page, offset, size, dir);
 177}
 178
 179/*
 180 * Return whether the given device DMA address mask can be supported
 181 * properly.  For example, if your device can only drive the low 24-bits
 182 * during bus mastering, then you would pass 0x00ffffff as the mask
 183 * to this function.
 184 */
 185static int arm_dma_supported(struct device *dev, u64 mask)
 186{
 187        unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
 188
 189        /*
 190         * Translate the device's DMA mask to a PFN limit.  This
 191         * PFN number includes the page which we can DMA to.
 192         */
 193        return dma_to_pfn(dev, mask) >= max_dma_pfn;
 194}
 195
 196const struct dma_map_ops arm_dma_ops = {
 197        .alloc                  = arm_dma_alloc,
 198        .free                   = arm_dma_free,
 199        .alloc_pages            = dma_direct_alloc_pages,
 200        .free_pages             = dma_direct_free_pages,
 201        .mmap                   = arm_dma_mmap,
 202        .get_sgtable            = arm_dma_get_sgtable,
 203        .map_page               = arm_dma_map_page,
 204        .unmap_page             = arm_dma_unmap_page,
 205        .map_sg                 = arm_dma_map_sg,
 206        .unmap_sg               = arm_dma_unmap_sg,
 207        .map_resource           = dma_direct_map_resource,
 208        .sync_single_for_cpu    = arm_dma_sync_single_for_cpu,
 209        .sync_single_for_device = arm_dma_sync_single_for_device,
 210        .sync_sg_for_cpu        = arm_dma_sync_sg_for_cpu,
 211        .sync_sg_for_device     = arm_dma_sync_sg_for_device,
 212        .dma_supported          = arm_dma_supported,
 213        .get_required_mask      = dma_direct_get_required_mask,
 214};
 215EXPORT_SYMBOL(arm_dma_ops);
 216
 217static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 218        dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
 219static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 220                                  dma_addr_t handle, unsigned long attrs);
 221static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 222                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 223                 unsigned long attrs);
 224
 225const struct dma_map_ops arm_coherent_dma_ops = {
 226        .alloc                  = arm_coherent_dma_alloc,
 227        .free                   = arm_coherent_dma_free,
 228        .alloc_pages            = dma_direct_alloc_pages,
 229        .free_pages             = dma_direct_free_pages,
 230        .mmap                   = arm_coherent_dma_mmap,
 231        .get_sgtable            = arm_dma_get_sgtable,
 232        .map_page               = arm_coherent_dma_map_page,
 233        .map_sg                 = arm_dma_map_sg,
 234        .map_resource           = dma_direct_map_resource,
 235        .dma_supported          = arm_dma_supported,
 236        .get_required_mask      = dma_direct_get_required_mask,
 237};
 238EXPORT_SYMBOL(arm_coherent_dma_ops);
 239
 240static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 241{
 242        /*
 243         * Ensure that the allocated pages are zeroed, and that any data
 244         * lurking in the kernel direct-mapped region is invalidated.
 245         */
 246        if (PageHighMem(page)) {
 247                phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 248                phys_addr_t end = base + size;
 249                while (size > 0) {
 250                        void *ptr = kmap_atomic(page);
 251                        memset(ptr, 0, PAGE_SIZE);
 252                        if (coherent_flag != COHERENT)
 253                                dmac_flush_range(ptr, ptr + PAGE_SIZE);
 254                        kunmap_atomic(ptr);
 255                        page++;
 256                        size -= PAGE_SIZE;
 257                }
 258                if (coherent_flag != COHERENT)
 259                        outer_flush_range(base, end);
 260        } else {
 261                void *ptr = page_address(page);
 262                memset(ptr, 0, size);
 263                if (coherent_flag != COHERENT) {
 264                        dmac_flush_range(ptr, ptr + size);
 265                        outer_flush_range(__pa(ptr), __pa(ptr) + size);
 266                }
 267        }
 268}
 269
 270/*
 271 * Allocate a DMA buffer for 'dev' of size 'size' using the
 272 * specified gfp mask.  Note that 'size' must be page aligned.
 273 */
 274static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 275                                       gfp_t gfp, int coherent_flag)
 276{
 277        unsigned long order = get_order(size);
 278        struct page *page, *p, *e;
 279
 280        page = alloc_pages(gfp, order);
 281        if (!page)
 282                return NULL;
 283
 284        /*
 285         * Now split the huge page and free the excess pages
 286         */
 287        split_page(page, order);
 288        for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 289                __free_page(p);
 290
 291        __dma_clear_buffer(page, size, coherent_flag);
 292
 293        return page;
 294}
 295
 296/*
 297 * Free a DMA buffer.  'size' must be page aligned.
 298 */
 299static void __dma_free_buffer(struct page *page, size_t size)
 300{
 301        struct page *e = page + (size >> PAGE_SHIFT);
 302
 303        while (page < e) {
 304                __free_page(page);
 305                page++;
 306        }
 307}
 308
 309static void *__alloc_from_contiguous(struct device *dev, size_t size,
 310                                     pgprot_t prot, struct page **ret_page,
 311                                     const void *caller, bool want_vaddr,
 312                                     int coherent_flag, gfp_t gfp);
 313
 314static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 315                                 pgprot_t prot, struct page **ret_page,
 316                                 const void *caller, bool want_vaddr);
 317
 318#define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
 319static struct gen_pool *atomic_pool __ro_after_init;
 320
 321static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 322
 323static int __init early_coherent_pool(char *p)
 324{
 325        atomic_pool_size = memparse(p, &p);
 326        return 0;
 327}
 328early_param("coherent_pool", early_coherent_pool);
 329
 330/*
 331 * Initialise the coherent pool for atomic allocations.
 332 */
 333static int __init atomic_pool_init(void)
 334{
 335        pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 336        gfp_t gfp = GFP_KERNEL | GFP_DMA;
 337        struct page *page;
 338        void *ptr;
 339
 340        atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 341        if (!atomic_pool)
 342                goto out;
 343        /*
 344         * The atomic pool is only used for non-coherent allocations
 345         * so we must pass NORMAL for coherent_flag.
 346         */
 347        if (dev_get_cma_area(NULL))
 348                ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 349                                      &page, atomic_pool_init, true, NORMAL,
 350                                      GFP_KERNEL);
 351        else
 352                ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 353                                           &page, atomic_pool_init, true);
 354        if (ptr) {
 355                int ret;
 356
 357                ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 358                                        page_to_phys(page),
 359                                        atomic_pool_size, -1);
 360                if (ret)
 361                        goto destroy_genpool;
 362
 363                gen_pool_set_algo(atomic_pool,
 364                                gen_pool_first_fit_order_align,
 365                                NULL);
 366                pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 367                       atomic_pool_size / 1024);
 368                return 0;
 369        }
 370
 371destroy_genpool:
 372        gen_pool_destroy(atomic_pool);
 373        atomic_pool = NULL;
 374out:
 375        pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 376               atomic_pool_size / 1024);
 377        return -ENOMEM;
 378}
 379/*
 380 * CMA is activated by core_initcall, so we must be called after it.
 381 */
 382postcore_initcall(atomic_pool_init);
 383
 384struct dma_contig_early_reserve {
 385        phys_addr_t base;
 386        unsigned long size;
 387};
 388
 389static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 390
 391static int dma_mmu_remap_num __initdata;
 392
 393void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 394{
 395        dma_mmu_remap[dma_mmu_remap_num].base = base;
 396        dma_mmu_remap[dma_mmu_remap_num].size = size;
 397        dma_mmu_remap_num++;
 398}
 399
 400void __init dma_contiguous_remap(void)
 401{
 402        int i;
 403        for (i = 0; i < dma_mmu_remap_num; i++) {
 404                phys_addr_t start = dma_mmu_remap[i].base;
 405                phys_addr_t end = start + dma_mmu_remap[i].size;
 406                struct map_desc map;
 407                unsigned long addr;
 408
 409                if (end > arm_lowmem_limit)
 410                        end = arm_lowmem_limit;
 411                if (start >= end)
 412                        continue;
 413
 414                map.pfn = __phys_to_pfn(start);
 415                map.virtual = __phys_to_virt(start);
 416                map.length = end - start;
 417                map.type = MT_MEMORY_DMA_READY;
 418
 419                /*
 420                 * Clear previous low-memory mapping to ensure that the
 421                 * TLB does not see any conflicting entries, then flush
 422                 * the TLB of the old entries before creating new mappings.
 423                 *
 424                 * This ensures that any speculatively loaded TLB entries
 425                 * (even though they may be rare) can not cause any problems,
 426                 * and ensures that this code is architecturally compliant.
 427                 */
 428                for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 429                     addr += PMD_SIZE)
 430                        pmd_clear(pmd_off_k(addr));
 431
 432                flush_tlb_kernel_range(__phys_to_virt(start),
 433                                       __phys_to_virt(end));
 434
 435                iotable_init(&map, 1);
 436        }
 437}
 438
 439static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 440{
 441        struct page *page = virt_to_page(addr);
 442        pgprot_t prot = *(pgprot_t *)data;
 443
 444        set_pte_ext(pte, mk_pte(page, prot), 0);
 445        return 0;
 446}
 447
 448static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 449{
 450        unsigned long start = (unsigned long) page_address(page);
 451        unsigned end = start + size;
 452
 453        apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 454        flush_tlb_kernel_range(start, end);
 455}
 456
 457static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 458                                 pgprot_t prot, struct page **ret_page,
 459                                 const void *caller, bool want_vaddr)
 460{
 461        struct page *page;
 462        void *ptr = NULL;
 463        /*
 464         * __alloc_remap_buffer is only called when the device is
 465         * non-coherent
 466         */
 467        page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 468        if (!page)
 469                return NULL;
 470        if (!want_vaddr)
 471                goto out;
 472
 473        ptr = dma_common_contiguous_remap(page, size, prot, caller);
 474        if (!ptr) {
 475                __dma_free_buffer(page, size);
 476                return NULL;
 477        }
 478
 479 out:
 480        *ret_page = page;
 481        return ptr;
 482}
 483
 484static void *__alloc_from_pool(size_t size, struct page **ret_page)
 485{
 486        unsigned long val;
 487        void *ptr = NULL;
 488
 489        if (!atomic_pool) {
 490                WARN(1, "coherent pool not initialised!\n");
 491                return NULL;
 492        }
 493
 494        val = gen_pool_alloc(atomic_pool, size);
 495        if (val) {
 496                phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 497
 498                *ret_page = phys_to_page(phys);
 499                ptr = (void *)val;
 500        }
 501
 502        return ptr;
 503}
 504
 505static bool __in_atomic_pool(void *start, size_t size)
 506{
 507        return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 508}
 509
 510static int __free_from_pool(void *start, size_t size)
 511{
 512        if (!__in_atomic_pool(start, size))
 513                return 0;
 514
 515        gen_pool_free(atomic_pool, (unsigned long)start, size);
 516
 517        return 1;
 518}
 519
 520static void *__alloc_from_contiguous(struct device *dev, size_t size,
 521                                     pgprot_t prot, struct page **ret_page,
 522                                     const void *caller, bool want_vaddr,
 523                                     int coherent_flag, gfp_t gfp)
 524{
 525        unsigned long order = get_order(size);
 526        size_t count = size >> PAGE_SHIFT;
 527        struct page *page;
 528        void *ptr = NULL;
 529
 530        page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 531        if (!page)
 532                return NULL;
 533
 534        __dma_clear_buffer(page, size, coherent_flag);
 535
 536        if (!want_vaddr)
 537                goto out;
 538
 539        if (PageHighMem(page)) {
 540                ptr = dma_common_contiguous_remap(page, size, prot, caller);
 541                if (!ptr) {
 542                        dma_release_from_contiguous(dev, page, count);
 543                        return NULL;
 544                }
 545        } else {
 546                __dma_remap(page, size, prot);
 547                ptr = page_address(page);
 548        }
 549
 550 out:
 551        *ret_page = page;
 552        return ptr;
 553}
 554
 555static void __free_from_contiguous(struct device *dev, struct page *page,
 556                                   void *cpu_addr, size_t size, bool want_vaddr)
 557{
 558        if (want_vaddr) {
 559                if (PageHighMem(page))
 560                        dma_common_free_remap(cpu_addr, size);
 561                else
 562                        __dma_remap(page, size, PAGE_KERNEL);
 563        }
 564        dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 565}
 566
 567static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 568{
 569        prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 570                        pgprot_writecombine(prot) :
 571                        pgprot_dmacoherent(prot);
 572        return prot;
 573}
 574
 575static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 576                                   struct page **ret_page)
 577{
 578        struct page *page;
 579        /* __alloc_simple_buffer is only called when the device is coherent */
 580        page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 581        if (!page)
 582                return NULL;
 583
 584        *ret_page = page;
 585        return page_address(page);
 586}
 587
 588static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 589                                    struct page **ret_page)
 590{
 591        return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 592                                     ret_page);
 593}
 594
 595static void simple_allocator_free(struct arm_dma_free_args *args)
 596{
 597        __dma_free_buffer(args->page, args->size);
 598}
 599
 600static struct arm_dma_allocator simple_allocator = {
 601        .alloc = simple_allocator_alloc,
 602        .free = simple_allocator_free,
 603};
 604
 605static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 606                                 struct page **ret_page)
 607{
 608        return __alloc_from_contiguous(args->dev, args->size, args->prot,
 609                                       ret_page, args->caller,
 610                                       args->want_vaddr, args->coherent_flag,
 611                                       args->gfp);
 612}
 613
 614static void cma_allocator_free(struct arm_dma_free_args *args)
 615{
 616        __free_from_contiguous(args->dev, args->page, args->cpu_addr,
 617                               args->size, args->want_vaddr);
 618}
 619
 620static struct arm_dma_allocator cma_allocator = {
 621        .alloc = cma_allocator_alloc,
 622        .free = cma_allocator_free,
 623};
 624
 625static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 626                                  struct page **ret_page)
 627{
 628        return __alloc_from_pool(args->size, ret_page);
 629}
 630
 631static void pool_allocator_free(struct arm_dma_free_args *args)
 632{
 633        __free_from_pool(args->cpu_addr, args->size);
 634}
 635
 636static struct arm_dma_allocator pool_allocator = {
 637        .alloc = pool_allocator_alloc,
 638        .free = pool_allocator_free,
 639};
 640
 641static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 642                                   struct page **ret_page)
 643{
 644        return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 645                                    args->prot, ret_page, args->caller,
 646                                    args->want_vaddr);
 647}
 648
 649static void remap_allocator_free(struct arm_dma_free_args *args)
 650{
 651        if (args->want_vaddr)
 652                dma_common_free_remap(args->cpu_addr, args->size);
 653
 654        __dma_free_buffer(args->page, args->size);
 655}
 656
 657static struct arm_dma_allocator remap_allocator = {
 658        .alloc = remap_allocator_alloc,
 659        .free = remap_allocator_free,
 660};
 661
 662static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 663                         gfp_t gfp, pgprot_t prot, bool is_coherent,
 664                         unsigned long attrs, const void *caller)
 665{
 666        u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 667        struct page *page = NULL;
 668        void *addr;
 669        bool allowblock, cma;
 670        struct arm_dma_buffer *buf;
 671        struct arm_dma_alloc_args args = {
 672                .dev = dev,
 673                .size = PAGE_ALIGN(size),
 674                .gfp = gfp,
 675                .prot = prot,
 676                .caller = caller,
 677                .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 678                .coherent_flag = is_coherent ? COHERENT : NORMAL,
 679        };
 680
 681#ifdef CONFIG_DMA_API_DEBUG
 682        u64 limit = (mask + 1) & ~mask;
 683        if (limit && size >= limit) {
 684                dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 685                        size, mask);
 686                return NULL;
 687        }
 688#endif
 689
 690        buf = kzalloc(sizeof(*buf),
 691                      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 692        if (!buf)
 693                return NULL;
 694
 695        if (mask < 0xffffffffULL)
 696                gfp |= GFP_DMA;
 697
 698        /*
 699         * Following is a work-around (a.k.a. hack) to prevent pages
 700         * with __GFP_COMP being passed to split_page() which cannot
 701         * handle them.  The real problem is that this flag probably
 702         * should be 0 on ARM as it is not supported on this
 703         * platform; see CONFIG_HUGETLBFS.
 704         */
 705        gfp &= ~(__GFP_COMP);
 706        args.gfp = gfp;
 707
 708        *handle = DMA_MAPPING_ERROR;
 709        allowblock = gfpflags_allow_blocking(gfp);
 710        cma = allowblock ? dev_get_cma_area(dev) : false;
 711
 712        if (cma)
 713                buf->allocator = &cma_allocator;
 714        else if (is_coherent)
 715                buf->allocator = &simple_allocator;
 716        else if (allowblock)
 717                buf->allocator = &remap_allocator;
 718        else
 719                buf->allocator = &pool_allocator;
 720
 721        addr = buf->allocator->alloc(&args, &page);
 722
 723        if (page) {
 724                unsigned long flags;
 725
 726                *handle = pfn_to_dma(dev, page_to_pfn(page));
 727                buf->virt = args.want_vaddr ? addr : page;
 728
 729                spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 730                list_add(&buf->list, &arm_dma_bufs);
 731                spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 732        } else {
 733                kfree(buf);
 734        }
 735
 736        return args.want_vaddr ? addr : page;
 737}
 738
 739/*
 740 * Allocate DMA-coherent memory space and return both the kernel remapped
 741 * virtual and bus address for that space.
 742 */
 743void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 744                    gfp_t gfp, unsigned long attrs)
 745{
 746        pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 747
 748        return __dma_alloc(dev, size, handle, gfp, prot, false,
 749                           attrs, __builtin_return_address(0));
 750}
 751
 752static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 753        dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
 754{
 755        return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 756                           attrs, __builtin_return_address(0));
 757}
 758
 759static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 760                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 761                 unsigned long attrs)
 762{
 763        int ret = -ENXIO;
 764        unsigned long nr_vma_pages = vma_pages(vma);
 765        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 766        unsigned long pfn = dma_to_pfn(dev, dma_addr);
 767        unsigned long off = vma->vm_pgoff;
 768
 769        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 770                return ret;
 771
 772        if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 773                ret = remap_pfn_range(vma, vma->vm_start,
 774                                      pfn + off,
 775                                      vma->vm_end - vma->vm_start,
 776                                      vma->vm_page_prot);
 777        }
 778
 779        return ret;
 780}
 781
 782/*
 783 * Create userspace mapping for the DMA-coherent memory.
 784 */
 785static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 786                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 787                 unsigned long attrs)
 788{
 789        return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 790}
 791
 792int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 793                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 794                 unsigned long attrs)
 795{
 796        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 797        return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 798}
 799
 800/*
 801 * Free a buffer as defined by the above mapping.
 802 */
 803static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 804                           dma_addr_t handle, unsigned long attrs,
 805                           bool is_coherent)
 806{
 807        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 808        struct arm_dma_buffer *buf;
 809        struct arm_dma_free_args args = {
 810                .dev = dev,
 811                .size = PAGE_ALIGN(size),
 812                .cpu_addr = cpu_addr,
 813                .page = page,
 814                .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 815        };
 816
 817        buf = arm_dma_buffer_find(cpu_addr);
 818        if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 819                return;
 820
 821        buf->allocator->free(&args);
 822        kfree(buf);
 823}
 824
 825void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 826                  dma_addr_t handle, unsigned long attrs)
 827{
 828        __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 829}
 830
 831static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 832                                  dma_addr_t handle, unsigned long attrs)
 833{
 834        __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 835}
 836
 837int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 838                 void *cpu_addr, dma_addr_t handle, size_t size,
 839                 unsigned long attrs)
 840{
 841        unsigned long pfn = dma_to_pfn(dev, handle);
 842        struct page *page;
 843        int ret;
 844
 845        /* If the PFN is not valid, we do not have a struct page */
 846        if (!pfn_valid(pfn))
 847                return -ENXIO;
 848
 849        page = pfn_to_page(pfn);
 850
 851        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 852        if (unlikely(ret))
 853                return ret;
 854
 855        sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 856        return 0;
 857}
 858
 859static void dma_cache_maint_page(struct page *page, unsigned long offset,
 860        size_t size, enum dma_data_direction dir,
 861        void (*op)(const void *, size_t, int))
 862{
 863        unsigned long pfn;
 864        size_t left = size;
 865
 866        pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 867        offset %= PAGE_SIZE;
 868
 869        /*
 870         * A single sg entry may refer to multiple physically contiguous
 871         * pages.  But we still need to process highmem pages individually.
 872         * If highmem is not configured then the bulk of this loop gets
 873         * optimized out.
 874         */
 875        do {
 876                size_t len = left;
 877                void *vaddr;
 878
 879                page = pfn_to_page(pfn);
 880
 881                if (PageHighMem(page)) {
 882                        if (len + offset > PAGE_SIZE)
 883                                len = PAGE_SIZE - offset;
 884
 885                        if (cache_is_vipt_nonaliasing()) {
 886                                vaddr = kmap_atomic(page);
 887                                op(vaddr + offset, len, dir);
 888                                kunmap_atomic(vaddr);
 889                        } else {
 890                                vaddr = kmap_high_get(page);
 891                                if (vaddr) {
 892                                        op(vaddr + offset, len, dir);
 893                                        kunmap_high(page);
 894                                }
 895                        }
 896                } else {
 897                        vaddr = page_address(page) + offset;
 898                        op(vaddr, len, dir);
 899                }
 900                offset = 0;
 901                pfn++;
 902                left -= len;
 903        } while (left);
 904}
 905
 906/*
 907 * Make an area consistent for devices.
 908 * Note: Drivers should NOT use this function directly, as it will break
 909 * platforms with CONFIG_DMABOUNCE.
 910 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 911 */
 912static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 913        size_t size, enum dma_data_direction dir)
 914{
 915        phys_addr_t paddr;
 916
 917        dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 918
 919        paddr = page_to_phys(page) + off;
 920        if (dir == DMA_FROM_DEVICE) {
 921                outer_inv_range(paddr, paddr + size);
 922        } else {
 923                outer_clean_range(paddr, paddr + size);
 924        }
 925        /* FIXME: non-speculating: flush on bidirectional mappings? */
 926}
 927
 928static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 929        size_t size, enum dma_data_direction dir)
 930{
 931        phys_addr_t paddr = page_to_phys(page) + off;
 932
 933        /* FIXME: non-speculating: not required */
 934        /* in any case, don't bother invalidating if DMA to device */
 935        if (dir != DMA_TO_DEVICE) {
 936                outer_inv_range(paddr, paddr + size);
 937
 938                dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 939        }
 940
 941        /*
 942         * Mark the D-cache clean for these pages to avoid extra flushing.
 943         */
 944        if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 945                unsigned long pfn;
 946                size_t left = size;
 947
 948                pfn = page_to_pfn(page) + off / PAGE_SIZE;
 949                off %= PAGE_SIZE;
 950                if (off) {
 951                        pfn++;
 952                        left -= PAGE_SIZE - off;
 953                }
 954                while (left >= PAGE_SIZE) {
 955                        page = pfn_to_page(pfn++);
 956                        set_bit(PG_dcache_clean, &page->flags);
 957                        left -= PAGE_SIZE;
 958                }
 959        }
 960}
 961
 962/**
 963 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 964 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 965 * @sg: list of buffers
 966 * @nents: number of buffers to map
 967 * @dir: DMA transfer direction
 968 *
 969 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 970 * This is the scatter-gather version of the dma_map_single interface.
 971 * Here the scatter gather list elements are each tagged with the
 972 * appropriate dma address and length.  They are obtained via
 973 * sg_dma_{address,length}.
 974 *
 975 * Device ownership issues as mentioned for dma_map_single are the same
 976 * here.
 977 */
 978int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 979                enum dma_data_direction dir, unsigned long attrs)
 980{
 981        const struct dma_map_ops *ops = get_dma_ops(dev);
 982        struct scatterlist *s;
 983        int i, j, ret;
 984
 985        for_each_sg(sg, s, nents, i) {
 986#ifdef CONFIG_NEED_SG_DMA_LENGTH
 987                s->dma_length = s->length;
 988#endif
 989                s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 990                                                s->length, dir, attrs);
 991                if (dma_mapping_error(dev, s->dma_address)) {
 992                        ret = -EIO;
 993                        goto bad_mapping;
 994                }
 995        }
 996        return nents;
 997
 998 bad_mapping:
 999        for_each_sg(sg, s, i, j)
1000                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1001        return ret;
1002}
1003
1004/**
1005 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1006 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1007 * @sg: list of buffers
1008 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1009 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1010 *
1011 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1012 * rules concerning calls here are the same as for dma_unmap_single().
1013 */
1014void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1015                enum dma_data_direction dir, unsigned long attrs)
1016{
1017        const struct dma_map_ops *ops = get_dma_ops(dev);
1018        struct scatterlist *s;
1019
1020        int i;
1021
1022        for_each_sg(sg, s, nents, i)
1023                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1024}
1025
1026/**
1027 * arm_dma_sync_sg_for_cpu
1028 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1029 * @sg: list of buffers
1030 * @nents: number of buffers to map (returned from dma_map_sg)
1031 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1032 */
1033void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1034                        int nents, enum dma_data_direction dir)
1035{
1036        const struct dma_map_ops *ops = get_dma_ops(dev);
1037        struct scatterlist *s;
1038        int i;
1039
1040        for_each_sg(sg, s, nents, i)
1041                ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1042                                         dir);
1043}
1044
1045/**
1046 * arm_dma_sync_sg_for_device
1047 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1048 * @sg: list of buffers
1049 * @nents: number of buffers to map (returned from dma_map_sg)
1050 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1051 */
1052void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1053                        int nents, enum dma_data_direction dir)
1054{
1055        const struct dma_map_ops *ops = get_dma_ops(dev);
1056        struct scatterlist *s;
1057        int i;
1058
1059        for_each_sg(sg, s, nents, i)
1060                ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1061                                            dir);
1062}
1063
1064static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1065{
1066        /*
1067         * When CONFIG_ARM_LPAE is set, physical address can extend above
1068         * 32-bits, which then can't be addressed by devices that only support
1069         * 32-bit DMA.
1070         * Use the generic dma-direct / swiotlb ops code in that case, as that
1071         * handles bounce buffering for us.
1072         */
1073        if (IS_ENABLED(CONFIG_ARM_LPAE))
1074                return NULL;
1075        return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1076}
1077
1078#ifdef CONFIG_ARM_DMA_USE_IOMMU
1079
1080static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1081{
1082        int prot = 0;
1083
1084        if (attrs & DMA_ATTR_PRIVILEGED)
1085                prot |= IOMMU_PRIV;
1086
1087        switch (dir) {
1088        case DMA_BIDIRECTIONAL:
1089                return prot | IOMMU_READ | IOMMU_WRITE;
1090        case DMA_TO_DEVICE:
1091                return prot | IOMMU_READ;
1092        case DMA_FROM_DEVICE:
1093                return prot | IOMMU_WRITE;
1094        default:
1095                return prot;
1096        }
1097}
1098
1099/* IOMMU */
1100
1101static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1102
1103static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1104                                      size_t size)
1105{
1106        unsigned int order = get_order(size);
1107        unsigned int align = 0;
1108        unsigned int count, start;
1109        size_t mapping_size = mapping->bits << PAGE_SHIFT;
1110        unsigned long flags;
1111        dma_addr_t iova;
1112        int i;
1113
1114        if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1115                order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1116
1117        count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1118        align = (1 << order) - 1;
1119
1120        spin_lock_irqsave(&mapping->lock, flags);
1121        for (i = 0; i < mapping->nr_bitmaps; i++) {
1122                start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1123                                mapping->bits, 0, count, align);
1124
1125                if (start > mapping->bits)
1126                        continue;
1127
1128                bitmap_set(mapping->bitmaps[i], start, count);
1129                break;
1130        }
1131
1132        /*
1133         * No unused range found. Try to extend the existing mapping
1134         * and perform a second attempt to reserve an IO virtual
1135         * address range of size bytes.
1136         */
1137        if (i == mapping->nr_bitmaps) {
1138                if (extend_iommu_mapping(mapping)) {
1139                        spin_unlock_irqrestore(&mapping->lock, flags);
1140                        return DMA_MAPPING_ERROR;
1141                }
1142
1143                start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1144                                mapping->bits, 0, count, align);
1145
1146                if (start > mapping->bits) {
1147                        spin_unlock_irqrestore(&mapping->lock, flags);
1148                        return DMA_MAPPING_ERROR;
1149                }
1150
1151                bitmap_set(mapping->bitmaps[i], start, count);
1152        }
1153        spin_unlock_irqrestore(&mapping->lock, flags);
1154
1155        iova = mapping->base + (mapping_size * i);
1156        iova += start << PAGE_SHIFT;
1157
1158        return iova;
1159}
1160
1161static inline void __free_iova(struct dma_iommu_mapping *mapping,
1162                               dma_addr_t addr, size_t size)
1163{
1164        unsigned int start, count;
1165        size_t mapping_size = mapping->bits << PAGE_SHIFT;
1166        unsigned long flags;
1167        dma_addr_t bitmap_base;
1168        u32 bitmap_index;
1169
1170        if (!size)
1171                return;
1172
1173        bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1174        BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1175
1176        bitmap_base = mapping->base + mapping_size * bitmap_index;
1177
1178        start = (addr - bitmap_base) >> PAGE_SHIFT;
1179
1180        if (addr + size > bitmap_base + mapping_size) {
1181                /*
1182                 * The address range to be freed reaches into the iova
1183                 * range of the next bitmap. This should not happen as
1184                 * we don't allow this in __alloc_iova (at the
1185                 * moment).
1186                 */
1187                BUG();
1188        } else
1189                count = size >> PAGE_SHIFT;
1190
1191        spin_lock_irqsave(&mapping->lock, flags);
1192        bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1193        spin_unlock_irqrestore(&mapping->lock, flags);
1194}
1195
1196/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1197static const int iommu_order_array[] = { 9, 8, 4, 0 };
1198
1199static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1200                                          gfp_t gfp, unsigned long attrs,
1201                                          int coherent_flag)
1202{
1203        struct page **pages;
1204        int count = size >> PAGE_SHIFT;
1205        int array_size = count * sizeof(struct page *);
1206        int i = 0;
1207        int order_idx = 0;
1208
1209        if (array_size <= PAGE_SIZE)
1210                pages = kzalloc(array_size, GFP_KERNEL);
1211        else
1212                pages = vzalloc(array_size);
1213        if (!pages)
1214                return NULL;
1215
1216        if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1217        {
1218                unsigned long order = get_order(size);
1219                struct page *page;
1220
1221                page = dma_alloc_from_contiguous(dev, count, order,
1222                                                 gfp & __GFP_NOWARN);
1223                if (!page)
1224                        goto error;
1225
1226                __dma_clear_buffer(page, size, coherent_flag);
1227
1228                for (i = 0; i < count; i++)
1229                        pages[i] = page + i;
1230
1231                return pages;
1232        }
1233
1234        /* Go straight to 4K chunks if caller says it's OK. */
1235        if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1236                order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1237
1238        /*
1239         * IOMMU can map any pages, so himem can also be used here
1240         */
1241        gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1242
1243        while (count) {
1244                int j, order;
1245
1246                order = iommu_order_array[order_idx];
1247
1248                /* Drop down when we get small */
1249                if (__fls(count) < order) {
1250                        order_idx++;
1251                        continue;
1252                }
1253
1254                if (order) {
1255                        /* See if it's easy to allocate a high-order chunk */
1256                        pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1257
1258                        /* Go down a notch at first sign of pressure */
1259                        if (!pages[i]) {
1260                                order_idx++;
1261                                continue;
1262                        }
1263                } else {
1264                        pages[i] = alloc_pages(gfp, 0);
1265                        if (!pages[i])
1266                                goto error;
1267                }
1268
1269                if (order) {
1270                        split_page(pages[i], order);
1271                        j = 1 << order;
1272                        while (--j)
1273                                pages[i + j] = pages[i] + j;
1274                }
1275
1276                __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1277                i += 1 << order;
1278                count -= 1 << order;
1279        }
1280
1281        return pages;
1282error:
1283        while (i--)
1284                if (pages[i])
1285                        __free_pages(pages[i], 0);
1286        kvfree(pages);
1287        return NULL;
1288}
1289
1290static int __iommu_free_buffer(struct device *dev, struct page **pages,
1291                               size_t size, unsigned long attrs)
1292{
1293        int count = size >> PAGE_SHIFT;
1294        int i;
1295
1296        if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1297                dma_release_from_contiguous(dev, pages[0], count);
1298        } else {
1299                for (i = 0; i < count; i++)
1300                        if (pages[i])
1301                                __free_pages(pages[i], 0);
1302        }
1303
1304        kvfree(pages);
1305        return 0;
1306}
1307
1308/*
1309 * Create a mapping in device IO address space for specified pages
1310 */
1311static dma_addr_t
1312__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1313                       unsigned long attrs)
1314{
1315        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1316        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1317        dma_addr_t dma_addr, iova;
1318        int i;
1319
1320        dma_addr = __alloc_iova(mapping, size);
1321        if (dma_addr == DMA_MAPPING_ERROR)
1322                return dma_addr;
1323
1324        iova = dma_addr;
1325        for (i = 0; i < count; ) {
1326                int ret;
1327
1328                unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1329                phys_addr_t phys = page_to_phys(pages[i]);
1330                unsigned int len, j;
1331
1332                for (j = i + 1; j < count; j++, next_pfn++)
1333                        if (page_to_pfn(pages[j]) != next_pfn)
1334                                break;
1335
1336                len = (j - i) << PAGE_SHIFT;
1337                ret = iommu_map(mapping->domain, iova, phys, len,
1338                                __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1339                if (ret < 0)
1340                        goto fail;
1341                iova += len;
1342                i = j;
1343        }
1344        return dma_addr;
1345fail:
1346        iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1347        __free_iova(mapping, dma_addr, size);
1348        return DMA_MAPPING_ERROR;
1349}
1350
1351static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1352{
1353        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1354
1355        /*
1356         * add optional in-page offset from iova to size and align
1357         * result to page size
1358         */
1359        size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1360        iova &= PAGE_MASK;
1361
1362        iommu_unmap(mapping->domain, iova, size);
1363        __free_iova(mapping, iova, size);
1364        return 0;
1365}
1366
1367static struct page **__atomic_get_pages(void *addr)
1368{
1369        struct page *page;
1370        phys_addr_t phys;
1371
1372        phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1373        page = phys_to_page(phys);
1374
1375        return (struct page **)page;
1376}
1377
1378static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1379{
1380        if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1381                return __atomic_get_pages(cpu_addr);
1382
1383        if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1384                return cpu_addr;
1385
1386        return dma_common_find_pages(cpu_addr);
1387}
1388
1389static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1390                                  dma_addr_t *handle, int coherent_flag,
1391                                  unsigned long attrs)
1392{
1393        struct page *page;
1394        void *addr;
1395
1396        if (coherent_flag  == COHERENT)
1397                addr = __alloc_simple_buffer(dev, size, gfp, &page);
1398        else
1399                addr = __alloc_from_pool(size, &page);
1400        if (!addr)
1401                return NULL;
1402
1403        *handle = __iommu_create_mapping(dev, &page, size, attrs);
1404        if (*handle == DMA_MAPPING_ERROR)
1405                goto err_mapping;
1406
1407        return addr;
1408
1409err_mapping:
1410        __free_from_pool(addr, size);
1411        return NULL;
1412}
1413
1414static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1415                        dma_addr_t handle, size_t size, int coherent_flag)
1416{
1417        __iommu_remove_mapping(dev, handle, size);
1418        if (coherent_flag == COHERENT)
1419                __dma_free_buffer(virt_to_page(cpu_addr), size);
1420        else
1421                __free_from_pool(cpu_addr, size);
1422}
1423
1424static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1425            dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1426            int coherent_flag)
1427{
1428        pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1429        struct page **pages;
1430        void *addr = NULL;
1431
1432        *handle = DMA_MAPPING_ERROR;
1433        size = PAGE_ALIGN(size);
1434
1435        if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1436                return __iommu_alloc_simple(dev, size, gfp, handle,
1437                                            coherent_flag, attrs);
1438
1439        /*
1440         * Following is a work-around (a.k.a. hack) to prevent pages
1441         * with __GFP_COMP being passed to split_page() which cannot
1442         * handle them.  The real problem is that this flag probably
1443         * should be 0 on ARM as it is not supported on this
1444         * platform; see CONFIG_HUGETLBFS.
1445         */
1446        gfp &= ~(__GFP_COMP);
1447
1448        pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1449        if (!pages)
1450                return NULL;
1451
1452        *handle = __iommu_create_mapping(dev, pages, size, attrs);
1453        if (*handle == DMA_MAPPING_ERROR)
1454                goto err_buffer;
1455
1456        if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1457                return pages;
1458
1459        addr = dma_common_pages_remap(pages, size, prot,
1460                                   __builtin_return_address(0));
1461        if (!addr)
1462                goto err_mapping;
1463
1464        return addr;
1465
1466err_mapping:
1467        __iommu_remove_mapping(dev, *handle, size);
1468err_buffer:
1469        __iommu_free_buffer(dev, pages, size, attrs);
1470        return NULL;
1471}
1472
1473static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1474            dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1475{
1476        return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1477}
1478
1479static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1480                    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1481{
1482        return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1483}
1484
1485static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1486                    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1487                    unsigned long attrs)
1488{
1489        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1490        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1491        int err;
1492
1493        if (!pages)
1494                return -ENXIO;
1495
1496        if (vma->vm_pgoff >= nr_pages)
1497                return -ENXIO;
1498
1499        err = vm_map_pages(vma, pages, nr_pages);
1500        if (err)
1501                pr_err("Remapping memory failed: %d\n", err);
1502
1503        return err;
1504}
1505static int arm_iommu_mmap_attrs(struct device *dev,
1506                struct vm_area_struct *vma, void *cpu_addr,
1507                dma_addr_t dma_addr, size_t size, unsigned long attrs)
1508{
1509        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1510
1511        return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1512}
1513
1514static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1515                struct vm_area_struct *vma, void *cpu_addr,
1516                dma_addr_t dma_addr, size_t size, unsigned long attrs)
1517{
1518        return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1519}
1520
1521/*
1522 * free a page as defined by the above mapping.
1523 * Must not be called with IRQs disabled.
1524 */
1525static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1526        dma_addr_t handle, unsigned long attrs, int coherent_flag)
1527{
1528        struct page **pages;
1529        size = PAGE_ALIGN(size);
1530
1531        if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1532                __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1533                return;
1534        }
1535
1536        pages = __iommu_get_pages(cpu_addr, attrs);
1537        if (!pages) {
1538                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1539                return;
1540        }
1541
1542        if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1543                dma_common_free_remap(cpu_addr, size);
1544
1545        __iommu_remove_mapping(dev, handle, size);
1546        __iommu_free_buffer(dev, pages, size, attrs);
1547}
1548
1549static void arm_iommu_free_attrs(struct device *dev, size_t size,
1550                                 void *cpu_addr, dma_addr_t handle,
1551                                 unsigned long attrs)
1552{
1553        __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1554}
1555
1556static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1557                    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1558{
1559        __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1560}
1561
1562static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1563                                 void *cpu_addr, dma_addr_t dma_addr,
1564                                 size_t size, unsigned long attrs)
1565{
1566        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1567        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1568
1569        if (!pages)
1570                return -ENXIO;
1571
1572        return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1573                                         GFP_KERNEL);
1574}
1575
1576/*
1577 * Map a part of the scatter-gather list into contiguous io address space
1578 */
1579static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1580                          size_t size, dma_addr_t *handle,
1581                          enum dma_data_direction dir, unsigned long attrs,
1582                          bool is_coherent)
1583{
1584        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1585        dma_addr_t iova, iova_base;
1586        int ret = 0;
1587        unsigned int count;
1588        struct scatterlist *s;
1589        int prot;
1590
1591        size = PAGE_ALIGN(size);
1592        *handle = DMA_MAPPING_ERROR;
1593
1594        iova_base = iova = __alloc_iova(mapping, size);
1595        if (iova == DMA_MAPPING_ERROR)
1596                return -ENOMEM;
1597
1598        for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1599                phys_addr_t phys = page_to_phys(sg_page(s));
1600                unsigned int len = PAGE_ALIGN(s->offset + s->length);
1601
1602                if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1603                        __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1604
1605                prot = __dma_info_to_prot(dir, attrs);
1606
1607                ret = iommu_map(mapping->domain, iova, phys, len, prot);
1608                if (ret < 0)
1609                        goto fail;
1610                count += len >> PAGE_SHIFT;
1611                iova += len;
1612        }
1613        *handle = iova_base;
1614
1615        return 0;
1616fail:
1617        iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1618        __free_iova(mapping, iova_base, size);
1619        return ret;
1620}
1621
1622static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1623                     enum dma_data_direction dir, unsigned long attrs,
1624                     bool is_coherent)
1625{
1626        struct scatterlist *s = sg, *dma = sg, *start = sg;
1627        int i, count = 0, ret;
1628        unsigned int offset = s->offset;
1629        unsigned int size = s->offset + s->length;
1630        unsigned int max = dma_get_max_seg_size(dev);
1631
1632        for (i = 1; i < nents; i++) {
1633                s = sg_next(s);
1634
1635                s->dma_length = 0;
1636
1637                if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1638                        ret = __map_sg_chunk(dev, start, size,
1639                                             &dma->dma_address, dir, attrs,
1640                                             is_coherent);
1641                        if (ret < 0)
1642                                goto bad_mapping;
1643
1644                        dma->dma_address += offset;
1645                        dma->dma_length = size - offset;
1646
1647                        size = offset = s->offset;
1648                        start = s;
1649                        dma = sg_next(dma);
1650                        count += 1;
1651                }
1652                size += s->length;
1653        }
1654        ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1655                             is_coherent);
1656        if (ret < 0)
1657                goto bad_mapping;
1658
1659        dma->dma_address += offset;
1660        dma->dma_length = size - offset;
1661
1662        return count+1;
1663
1664bad_mapping:
1665        for_each_sg(sg, s, count, i)
1666                __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1667        if (ret == -ENOMEM)
1668                return ret;
1669        return -EINVAL;
1670}
1671
1672/**
1673 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1674 * @dev: valid struct device pointer
1675 * @sg: list of buffers
1676 * @nents: number of buffers to map
1677 * @dir: DMA transfer direction
1678 *
1679 * Map a set of i/o coherent buffers described by scatterlist in streaming
1680 * mode for DMA. The scatter gather list elements are merged together (if
1681 * possible) and tagged with the appropriate dma address and length. They are
1682 * obtained via sg_dma_{address,length}.
1683 */
1684static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1685                int nents, enum dma_data_direction dir, unsigned long attrs)
1686{
1687        return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1688}
1689
1690/**
1691 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1692 * @dev: valid struct device pointer
1693 * @sg: list of buffers
1694 * @nents: number of buffers to map
1695 * @dir: DMA transfer direction
1696 *
1697 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1698 * The scatter gather list elements are merged together (if possible) and
1699 * tagged with the appropriate dma address and length. They are obtained via
1700 * sg_dma_{address,length}.
1701 */
1702static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1703                int nents, enum dma_data_direction dir, unsigned long attrs)
1704{
1705        return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1706}
1707
1708static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1709                int nents, enum dma_data_direction dir,
1710                unsigned long attrs, bool is_coherent)
1711{
1712        struct scatterlist *s;
1713        int i;
1714
1715        for_each_sg(sg, s, nents, i) {
1716                if (sg_dma_len(s))
1717                        __iommu_remove_mapping(dev, sg_dma_address(s),
1718                                               sg_dma_len(s));
1719                if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1720                        __dma_page_dev_to_cpu(sg_page(s), s->offset,
1721                                              s->length, dir);
1722        }
1723}
1724
1725/**
1726 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1727 * @dev: valid struct device pointer
1728 * @sg: list of buffers
1729 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1730 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1731 *
1732 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1733 * rules concerning calls here are the same as for dma_unmap_single().
1734 */
1735static void arm_coherent_iommu_unmap_sg(struct device *dev,
1736                struct scatterlist *sg, int nents, enum dma_data_direction dir,
1737                unsigned long attrs)
1738{
1739        __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1740}
1741
1742/**
1743 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1744 * @dev: valid struct device pointer
1745 * @sg: list of buffers
1746 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1747 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1748 *
1749 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1750 * rules concerning calls here are the same as for dma_unmap_single().
1751 */
1752static void arm_iommu_unmap_sg(struct device *dev,
1753                               struct scatterlist *sg, int nents,
1754                               enum dma_data_direction dir,
1755                               unsigned long attrs)
1756{
1757        __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1758}
1759
1760/**
1761 * arm_iommu_sync_sg_for_cpu
1762 * @dev: valid struct device pointer
1763 * @sg: list of buffers
1764 * @nents: number of buffers to map (returned from dma_map_sg)
1765 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1766 */
1767static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1768                        struct scatterlist *sg,
1769                        int nents, enum dma_data_direction dir)
1770{
1771        struct scatterlist *s;
1772        int i;
1773
1774        for_each_sg(sg, s, nents, i)
1775                __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1776
1777}
1778
1779/**
1780 * arm_iommu_sync_sg_for_device
1781 * @dev: valid struct device pointer
1782 * @sg: list of buffers
1783 * @nents: number of buffers to map (returned from dma_map_sg)
1784 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1785 */
1786static void arm_iommu_sync_sg_for_device(struct device *dev,
1787                        struct scatterlist *sg,
1788                        int nents, enum dma_data_direction dir)
1789{
1790        struct scatterlist *s;
1791        int i;
1792
1793        for_each_sg(sg, s, nents, i)
1794                __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1795}
1796
1797
1798/**
1799 * arm_coherent_iommu_map_page
1800 * @dev: valid struct device pointer
1801 * @page: page that buffer resides in
1802 * @offset: offset into page for start of buffer
1803 * @size: size of buffer to map
1804 * @dir: DMA transfer direction
1805 *
1806 * Coherent IOMMU aware version of arm_dma_map_page()
1807 */
1808static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1809             unsigned long offset, size_t size, enum dma_data_direction dir,
1810             unsigned long attrs)
1811{
1812        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1813        dma_addr_t dma_addr;
1814        int ret, prot, len = PAGE_ALIGN(size + offset);
1815
1816        dma_addr = __alloc_iova(mapping, len);
1817        if (dma_addr == DMA_MAPPING_ERROR)
1818                return dma_addr;
1819
1820        prot = __dma_info_to_prot(dir, attrs);
1821
1822        ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1823        if (ret < 0)
1824                goto fail;
1825
1826        return dma_addr + offset;
1827fail:
1828        __free_iova(mapping, dma_addr, len);
1829        return DMA_MAPPING_ERROR;
1830}
1831
1832/**
1833 * arm_iommu_map_page
1834 * @dev: valid struct device pointer
1835 * @page: page that buffer resides in
1836 * @offset: offset into page for start of buffer
1837 * @size: size of buffer to map
1838 * @dir: DMA transfer direction
1839 *
1840 * IOMMU aware version of arm_dma_map_page()
1841 */
1842static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1843             unsigned long offset, size_t size, enum dma_data_direction dir,
1844             unsigned long attrs)
1845{
1846        if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1847                __dma_page_cpu_to_dev(page, offset, size, dir);
1848
1849        return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1850}
1851
1852/**
1853 * arm_coherent_iommu_unmap_page
1854 * @dev: valid struct device pointer
1855 * @handle: DMA address of buffer
1856 * @size: size of buffer (same as passed to dma_map_page)
1857 * @dir: DMA transfer direction (same as passed to dma_map_page)
1858 *
1859 * Coherent IOMMU aware version of arm_dma_unmap_page()
1860 */
1861static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1862                size_t size, enum dma_data_direction dir, unsigned long attrs)
1863{
1864        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1865        dma_addr_t iova = handle & PAGE_MASK;
1866        int offset = handle & ~PAGE_MASK;
1867        int len = PAGE_ALIGN(size + offset);
1868
1869        if (!iova)
1870                return;
1871
1872        iommu_unmap(mapping->domain, iova, len);
1873        __free_iova(mapping, iova, len);
1874}
1875
1876/**
1877 * arm_iommu_unmap_page
1878 * @dev: valid struct device pointer
1879 * @handle: DMA address of buffer
1880 * @size: size of buffer (same as passed to dma_map_page)
1881 * @dir: DMA transfer direction (same as passed to dma_map_page)
1882 *
1883 * IOMMU aware version of arm_dma_unmap_page()
1884 */
1885static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1886                size_t size, enum dma_data_direction dir, unsigned long attrs)
1887{
1888        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1889        dma_addr_t iova = handle & PAGE_MASK;
1890        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1891        int offset = handle & ~PAGE_MASK;
1892        int len = PAGE_ALIGN(size + offset);
1893
1894        if (!iova)
1895                return;
1896
1897        if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1898                __dma_page_dev_to_cpu(page, offset, size, dir);
1899
1900        iommu_unmap(mapping->domain, iova, len);
1901        __free_iova(mapping, iova, len);
1902}
1903
1904/**
1905 * arm_iommu_map_resource - map a device resource for DMA
1906 * @dev: valid struct device pointer
1907 * @phys_addr: physical address of resource
1908 * @size: size of resource to map
1909 * @dir: DMA transfer direction
1910 */
1911static dma_addr_t arm_iommu_map_resource(struct device *dev,
1912                phys_addr_t phys_addr, size_t size,
1913                enum dma_data_direction dir, unsigned long attrs)
1914{
1915        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1916        dma_addr_t dma_addr;
1917        int ret, prot;
1918        phys_addr_t addr = phys_addr & PAGE_MASK;
1919        unsigned int offset = phys_addr & ~PAGE_MASK;
1920        size_t len = PAGE_ALIGN(size + offset);
1921
1922        dma_addr = __alloc_iova(mapping, len);
1923        if (dma_addr == DMA_MAPPING_ERROR)
1924                return dma_addr;
1925
1926        prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1927
1928        ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1929        if (ret < 0)
1930                goto fail;
1931
1932        return dma_addr + offset;
1933fail:
1934        __free_iova(mapping, dma_addr, len);
1935        return DMA_MAPPING_ERROR;
1936}
1937
1938/**
1939 * arm_iommu_unmap_resource - unmap a device DMA resource
1940 * @dev: valid struct device pointer
1941 * @dma_handle: DMA address to resource
1942 * @size: size of resource to map
1943 * @dir: DMA transfer direction
1944 */
1945static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1946                size_t size, enum dma_data_direction dir,
1947                unsigned long attrs)
1948{
1949        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1950        dma_addr_t iova = dma_handle & PAGE_MASK;
1951        unsigned int offset = dma_handle & ~PAGE_MASK;
1952        size_t len = PAGE_ALIGN(size + offset);
1953
1954        if (!iova)
1955                return;
1956
1957        iommu_unmap(mapping->domain, iova, len);
1958        __free_iova(mapping, iova, len);
1959}
1960
1961static void arm_iommu_sync_single_for_cpu(struct device *dev,
1962                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1963{
1964        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1965        dma_addr_t iova = handle & PAGE_MASK;
1966        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1967        unsigned int offset = handle & ~PAGE_MASK;
1968
1969        if (!iova)
1970                return;
1971
1972        __dma_page_dev_to_cpu(page, offset, size, dir);
1973}
1974
1975static void arm_iommu_sync_single_for_device(struct device *dev,
1976                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1977{
1978        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979        dma_addr_t iova = handle & PAGE_MASK;
1980        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1981        unsigned int offset = handle & ~PAGE_MASK;
1982
1983        if (!iova)
1984                return;
1985
1986        __dma_page_cpu_to_dev(page, offset, size, dir);
1987}
1988
1989static const struct dma_map_ops iommu_ops = {
1990        .alloc          = arm_iommu_alloc_attrs,
1991        .free           = arm_iommu_free_attrs,
1992        .mmap           = arm_iommu_mmap_attrs,
1993        .get_sgtable    = arm_iommu_get_sgtable,
1994
1995        .map_page               = arm_iommu_map_page,
1996        .unmap_page             = arm_iommu_unmap_page,
1997        .sync_single_for_cpu    = arm_iommu_sync_single_for_cpu,
1998        .sync_single_for_device = arm_iommu_sync_single_for_device,
1999
2000        .map_sg                 = arm_iommu_map_sg,
2001        .unmap_sg               = arm_iommu_unmap_sg,
2002        .sync_sg_for_cpu        = arm_iommu_sync_sg_for_cpu,
2003        .sync_sg_for_device     = arm_iommu_sync_sg_for_device,
2004
2005        .map_resource           = arm_iommu_map_resource,
2006        .unmap_resource         = arm_iommu_unmap_resource,
2007
2008        .dma_supported          = arm_dma_supported,
2009};
2010
2011static const struct dma_map_ops iommu_coherent_ops = {
2012        .alloc          = arm_coherent_iommu_alloc_attrs,
2013        .free           = arm_coherent_iommu_free_attrs,
2014        .mmap           = arm_coherent_iommu_mmap_attrs,
2015        .get_sgtable    = arm_iommu_get_sgtable,
2016
2017        .map_page       = arm_coherent_iommu_map_page,
2018        .unmap_page     = arm_coherent_iommu_unmap_page,
2019
2020        .map_sg         = arm_coherent_iommu_map_sg,
2021        .unmap_sg       = arm_coherent_iommu_unmap_sg,
2022
2023        .map_resource   = arm_iommu_map_resource,
2024        .unmap_resource = arm_iommu_unmap_resource,
2025
2026        .dma_supported          = arm_dma_supported,
2027};
2028
2029/**
2030 * arm_iommu_create_mapping
2031 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2032 * @base: start address of the valid IO address space
2033 * @size: maximum size of the valid IO address space
2034 *
2035 * Creates a mapping structure which holds information about used/unused
2036 * IO address ranges, which is required to perform memory allocation and
2037 * mapping with IOMMU aware functions.
2038 *
2039 * The client device need to be attached to the mapping with
2040 * arm_iommu_attach_device function.
2041 */
2042struct dma_iommu_mapping *
2043arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2044{
2045        unsigned int bits = size >> PAGE_SHIFT;
2046        unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2047        struct dma_iommu_mapping *mapping;
2048        int extensions = 1;
2049        int err = -ENOMEM;
2050
2051        /* currently only 32-bit DMA address space is supported */
2052        if (size > DMA_BIT_MASK(32) + 1)
2053                return ERR_PTR(-ERANGE);
2054
2055        if (!bitmap_size)
2056                return ERR_PTR(-EINVAL);
2057
2058        if (bitmap_size > PAGE_SIZE) {
2059                extensions = bitmap_size / PAGE_SIZE;
2060                bitmap_size = PAGE_SIZE;
2061        }
2062
2063        mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2064        if (!mapping)
2065                goto err;
2066
2067        mapping->bitmap_size = bitmap_size;
2068        mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2069                                   GFP_KERNEL);
2070        if (!mapping->bitmaps)
2071                goto err2;
2072
2073        mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2074        if (!mapping->bitmaps[0])
2075                goto err3;
2076
2077        mapping->nr_bitmaps = 1;
2078        mapping->extensions = extensions;
2079        mapping->base = base;
2080        mapping->bits = BITS_PER_BYTE * bitmap_size;
2081
2082        spin_lock_init(&mapping->lock);
2083
2084        mapping->domain = iommu_domain_alloc(bus);
2085        if (!mapping->domain)
2086                goto err4;
2087
2088        kref_init(&mapping->kref);
2089        return mapping;
2090err4:
2091        kfree(mapping->bitmaps[0]);
2092err3:
2093        kfree(mapping->bitmaps);
2094err2:
2095        kfree(mapping);
2096err:
2097        return ERR_PTR(err);
2098}
2099EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2100
2101static void release_iommu_mapping(struct kref *kref)
2102{
2103        int i;
2104        struct dma_iommu_mapping *mapping =
2105                container_of(kref, struct dma_iommu_mapping, kref);
2106
2107        iommu_domain_free(mapping->domain);
2108        for (i = 0; i < mapping->nr_bitmaps; i++)
2109                kfree(mapping->bitmaps[i]);
2110        kfree(mapping->bitmaps);
2111        kfree(mapping);
2112}
2113
2114static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2115{
2116        int next_bitmap;
2117
2118        if (mapping->nr_bitmaps >= mapping->extensions)
2119                return -EINVAL;
2120
2121        next_bitmap = mapping->nr_bitmaps;
2122        mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2123                                                GFP_ATOMIC);
2124        if (!mapping->bitmaps[next_bitmap])
2125                return -ENOMEM;
2126
2127        mapping->nr_bitmaps++;
2128
2129        return 0;
2130}
2131
2132void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2133{
2134        if (mapping)
2135                kref_put(&mapping->kref, release_iommu_mapping);
2136}
2137EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2138
2139static int __arm_iommu_attach_device(struct device *dev,
2140                                     struct dma_iommu_mapping *mapping)
2141{
2142        int err;
2143
2144        err = iommu_attach_device(mapping->domain, dev);
2145        if (err)
2146                return err;
2147
2148        kref_get(&mapping->kref);
2149        to_dma_iommu_mapping(dev) = mapping;
2150
2151        pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2152        return 0;
2153}
2154
2155/**
2156 * arm_iommu_attach_device
2157 * @dev: valid struct device pointer
2158 * @mapping: io address space mapping structure (returned from
2159 *      arm_iommu_create_mapping)
2160 *
2161 * Attaches specified io address space mapping to the provided device.
2162 * This replaces the dma operations (dma_map_ops pointer) with the
2163 * IOMMU aware version.
2164 *
2165 * More than one client might be attached to the same io address space
2166 * mapping.
2167 */
2168int arm_iommu_attach_device(struct device *dev,
2169                            struct dma_iommu_mapping *mapping)
2170{
2171        int err;
2172
2173        err = __arm_iommu_attach_device(dev, mapping);
2174        if (err)
2175                return err;
2176
2177        set_dma_ops(dev, &iommu_ops);
2178        return 0;
2179}
2180EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2181
2182/**
2183 * arm_iommu_detach_device
2184 * @dev: valid struct device pointer
2185 *
2186 * Detaches the provided device from a previously attached map.
2187 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2188 */
2189void arm_iommu_detach_device(struct device *dev)
2190{
2191        struct dma_iommu_mapping *mapping;
2192
2193        mapping = to_dma_iommu_mapping(dev);
2194        if (!mapping) {
2195                dev_warn(dev, "Not attached\n");
2196                return;
2197        }
2198
2199        iommu_detach_device(mapping->domain, dev);
2200        kref_put(&mapping->kref, release_iommu_mapping);
2201        to_dma_iommu_mapping(dev) = NULL;
2202        set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2203
2204        pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2205}
2206EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2207
2208static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2209{
2210        return coherent ? &iommu_coherent_ops : &iommu_ops;
2211}
2212
2213static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2214                                    const struct iommu_ops *iommu)
2215{
2216        struct dma_iommu_mapping *mapping;
2217
2218        if (!iommu)
2219                return false;
2220
2221        mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2222        if (IS_ERR(mapping)) {
2223                pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2224                                size, dev_name(dev));
2225                return false;
2226        }
2227
2228        if (__arm_iommu_attach_device(dev, mapping)) {
2229                pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2230                                dev_name(dev));
2231                arm_iommu_release_mapping(mapping);
2232                return false;
2233        }
2234
2235        return true;
2236}
2237
2238static void arm_teardown_iommu_dma_ops(struct device *dev)
2239{
2240        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2241
2242        if (!mapping)
2243                return;
2244
2245        arm_iommu_detach_device(dev);
2246        arm_iommu_release_mapping(mapping);
2247}
2248
2249#else
2250
2251static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2252                                    const struct iommu_ops *iommu)
2253{
2254        return false;
2255}
2256
2257static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2258
2259#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2260
2261#endif  /* CONFIG_ARM_DMA_USE_IOMMU */
2262
2263void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2264                        const struct iommu_ops *iommu, bool coherent)
2265{
2266        const struct dma_map_ops *dma_ops;
2267
2268        dev->archdata.dma_coherent = coherent;
2269#ifdef CONFIG_SWIOTLB
2270        dev->dma_coherent = coherent;
2271#endif
2272
2273        /*
2274         * Don't override the dma_ops if they have already been set. Ideally
2275         * this should be the only location where dma_ops are set, remove this
2276         * check when all other callers of set_dma_ops will have disappeared.
2277         */
2278        if (dev->dma_ops)
2279                return;
2280
2281        if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2282                dma_ops = arm_get_iommu_dma_map_ops(coherent);
2283        else
2284                dma_ops = arm_get_dma_map_ops(coherent);
2285
2286        set_dma_ops(dev, dma_ops);
2287
2288#ifdef CONFIG_XEN
2289        if (xen_initial_domain())
2290                dev->dma_ops = &xen_swiotlb_dma_ops;
2291#endif
2292        dev->archdata.dma_ops_setup = true;
2293}
2294
2295void arch_teardown_dma_ops(struct device *dev)
2296{
2297        if (!dev->archdata.dma_ops_setup)
2298                return;
2299
2300        arm_teardown_iommu_dma_ops(dev);
2301        /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2302        set_dma_ops(dev, NULL);
2303}
2304
2305#ifdef CONFIG_SWIOTLB
2306void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2307                enum dma_data_direction dir)
2308{
2309        __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2310                              size, dir);
2311}
2312
2313void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2314                enum dma_data_direction dir)
2315{
2316        __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2317                              size, dir);
2318}
2319
2320void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2321                gfp_t gfp, unsigned long attrs)
2322{
2323        return __dma_alloc(dev, size, dma_handle, gfp,
2324                           __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2325                           attrs, __builtin_return_address(0));
2326}
2327
2328void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2329                dma_addr_t dma_handle, unsigned long attrs)
2330{
2331        __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2332}
2333#endif /* CONFIG_SWIOTLB */
2334