linux/arch/arm/mm/fault.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/fault.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 *  Modifications for ARM processor (c) 1995-2004 Russell King
   7 */
   8#include <linux/extable.h>
   9#include <linux/signal.h>
  10#include <linux/mm.h>
  11#include <linux/hardirq.h>
  12#include <linux/init.h>
  13#include <linux/kprobes.h>
  14#include <linux/uaccess.h>
  15#include <linux/page-flags.h>
  16#include <linux/sched/signal.h>
  17#include <linux/sched/debug.h>
  18#include <linux/highmem.h>
  19#include <linux/perf_event.h>
  20
  21#include <asm/system_misc.h>
  22#include <asm/system_info.h>
  23#include <asm/tlbflush.h>
  24
  25#include "fault.h"
  26
  27#ifdef CONFIG_MMU
  28
  29/*
  30 * This is useful to dump out the page tables associated with
  31 * 'addr' in mm 'mm'.
  32 */
  33void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
  34{
  35        pgd_t *pgd;
  36
  37        if (!mm)
  38                mm = &init_mm;
  39
  40        printk("%spgd = %p\n", lvl, mm->pgd);
  41        pgd = pgd_offset(mm, addr);
  42        printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
  43
  44        do {
  45                p4d_t *p4d;
  46                pud_t *pud;
  47                pmd_t *pmd;
  48                pte_t *pte;
  49
  50                p4d = p4d_offset(pgd, addr);
  51                if (p4d_none(*p4d))
  52                        break;
  53
  54                if (p4d_bad(*p4d)) {
  55                        pr_cont("(bad)");
  56                        break;
  57                }
  58
  59                pud = pud_offset(p4d, addr);
  60                if (PTRS_PER_PUD != 1)
  61                        pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
  62
  63                if (pud_none(*pud))
  64                        break;
  65
  66                if (pud_bad(*pud)) {
  67                        pr_cont("(bad)");
  68                        break;
  69                }
  70
  71                pmd = pmd_offset(pud, addr);
  72                if (PTRS_PER_PMD != 1)
  73                        pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
  74
  75                if (pmd_none(*pmd))
  76                        break;
  77
  78                if (pmd_bad(*pmd)) {
  79                        pr_cont("(bad)");
  80                        break;
  81                }
  82
  83                /* We must not map this if we have highmem enabled */
  84                if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
  85                        break;
  86
  87                pte = pte_offset_map(pmd, addr);
  88                pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
  89#ifndef CONFIG_ARM_LPAE
  90                pr_cont(", *ppte=%08llx",
  91                       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
  92#endif
  93                pte_unmap(pte);
  94        } while(0);
  95
  96        pr_cont("\n");
  97}
  98#else                                   /* CONFIG_MMU */
  99void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
 100{ }
 101#endif                                  /* CONFIG_MMU */
 102
 103/*
 104 * Oops.  The kernel tried to access some page that wasn't present.
 105 */
 106static void
 107__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 108                  struct pt_regs *regs)
 109{
 110        /*
 111         * Are we prepared to handle this kernel fault?
 112         */
 113        if (fixup_exception(regs))
 114                return;
 115
 116        /*
 117         * No handler, we'll have to terminate things with extreme prejudice.
 118         */
 119        bust_spinlocks(1);
 120        pr_alert("8<--- cut here ---\n");
 121        pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
 122                 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
 123                 "paging request", addr);
 124
 125        show_pte(KERN_ALERT, mm, addr);
 126        die("Oops", regs, fsr);
 127        bust_spinlocks(0);
 128        do_exit(SIGKILL);
 129}
 130
 131/*
 132 * Something tried to access memory that isn't in our memory map..
 133 * User mode accesses just cause a SIGSEGV
 134 */
 135static void
 136__do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
 137                int code, struct pt_regs *regs)
 138{
 139        struct task_struct *tsk = current;
 140
 141        if (addr > TASK_SIZE)
 142                harden_branch_predictor();
 143
 144#ifdef CONFIG_DEBUG_USER
 145        if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
 146            ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
 147                pr_err("8<--- cut here ---\n");
 148                pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
 149                       tsk->comm, sig, addr, fsr);
 150                show_pte(KERN_ERR, tsk->mm, addr);
 151                show_regs(regs);
 152        }
 153#endif
 154#ifndef CONFIG_KUSER_HELPERS
 155        if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
 156                printk_ratelimited(KERN_DEBUG
 157                                   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
 158                                   tsk->comm, addr);
 159#endif
 160
 161        tsk->thread.address = addr;
 162        tsk->thread.error_code = fsr;
 163        tsk->thread.trap_no = 14;
 164        force_sig_fault(sig, code, (void __user *)addr);
 165}
 166
 167void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 168{
 169        struct task_struct *tsk = current;
 170        struct mm_struct *mm = tsk->active_mm;
 171
 172        /*
 173         * If we are in kernel mode at this point, we
 174         * have no context to handle this fault with.
 175         */
 176        if (user_mode(regs))
 177                __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
 178        else
 179                __do_kernel_fault(mm, addr, fsr, regs);
 180}
 181
 182#ifdef CONFIG_MMU
 183#define VM_FAULT_BADMAP         0x010000
 184#define VM_FAULT_BADACCESS      0x020000
 185
 186/*
 187 * Check that the permissions on the VMA allow for the fault which occurred.
 188 * If we encountered a write fault, we must have write permission, otherwise
 189 * we allow any permission.
 190 */
 191static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
 192{
 193        unsigned int mask = VM_ACCESS_FLAGS;
 194
 195        if ((fsr & FSR_WRITE) && !(fsr & FSR_CM))
 196                mask = VM_WRITE;
 197        if (fsr & FSR_LNX_PF)
 198                mask = VM_EXEC;
 199
 200        return vma->vm_flags & mask ? false : true;
 201}
 202
 203static vm_fault_t __kprobes
 204__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 205                unsigned int flags, struct task_struct *tsk,
 206                struct pt_regs *regs)
 207{
 208        struct vm_area_struct *vma;
 209        vm_fault_t fault;
 210
 211        vma = find_vma(mm, addr);
 212        fault = VM_FAULT_BADMAP;
 213        if (unlikely(!vma))
 214                goto out;
 215        if (unlikely(vma->vm_start > addr))
 216                goto check_stack;
 217
 218        /*
 219         * Ok, we have a good vm_area for this
 220         * memory access, so we can handle it.
 221         */
 222good_area:
 223        if (access_error(fsr, vma)) {
 224                fault = VM_FAULT_BADACCESS;
 225                goto out;
 226        }
 227
 228        return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
 229
 230check_stack:
 231        /* Don't allow expansion below FIRST_USER_ADDRESS */
 232        if (vma->vm_flags & VM_GROWSDOWN &&
 233            addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
 234                goto good_area;
 235out:
 236        return fault;
 237}
 238
 239static int __kprobes
 240do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 241{
 242        struct task_struct *tsk;
 243        struct mm_struct *mm;
 244        int sig, code;
 245        vm_fault_t fault;
 246        unsigned int flags = FAULT_FLAG_DEFAULT;
 247
 248        if (kprobe_page_fault(regs, fsr))
 249                return 0;
 250
 251        tsk = current;
 252        mm  = tsk->mm;
 253
 254        /* Enable interrupts if they were enabled in the parent context. */
 255        if (interrupts_enabled(regs))
 256                local_irq_enable();
 257
 258        /*
 259         * If we're in an interrupt or have no user
 260         * context, we must not take the fault..
 261         */
 262        if (faulthandler_disabled() || !mm)
 263                goto no_context;
 264
 265        if (user_mode(regs))
 266                flags |= FAULT_FLAG_USER;
 267        if ((fsr & FSR_WRITE) && !(fsr & FSR_CM))
 268                flags |= FAULT_FLAG_WRITE;
 269
 270        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
 271
 272        /*
 273         * As per x86, we may deadlock here.  However, since the kernel only
 274         * validly references user space from well defined areas of the code,
 275         * we can bug out early if this is from code which shouldn't.
 276         */
 277        if (!mmap_read_trylock(mm)) {
 278                if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
 279                        goto no_context;
 280retry:
 281                mmap_read_lock(mm);
 282        } else {
 283                /*
 284                 * The above down_read_trylock() might have succeeded in
 285                 * which case, we'll have missed the might_sleep() from
 286                 * down_read()
 287                 */
 288                might_sleep();
 289#ifdef CONFIG_DEBUG_VM
 290                if (!user_mode(regs) &&
 291                    !search_exception_tables(regs->ARM_pc))
 292                        goto no_context;
 293#endif
 294        }
 295
 296        fault = __do_page_fault(mm, addr, fsr, flags, tsk, regs);
 297
 298        /* If we need to retry but a fatal signal is pending, handle the
 299         * signal first. We do not need to release the mmap_lock because
 300         * it would already be released in __lock_page_or_retry in
 301         * mm/filemap.c. */
 302        if (fault_signal_pending(fault, regs)) {
 303                if (!user_mode(regs))
 304                        goto no_context;
 305                return 0;
 306        }
 307
 308        if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
 309                if (fault & VM_FAULT_RETRY) {
 310                        flags |= FAULT_FLAG_TRIED;
 311                        goto retry;
 312                }
 313        }
 314
 315        mmap_read_unlock(mm);
 316
 317        /*
 318         * Handle the "normal" case first - VM_FAULT_MAJOR
 319         */
 320        if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
 321                return 0;
 322
 323        /*
 324         * If we are in kernel mode at this point, we
 325         * have no context to handle this fault with.
 326         */
 327        if (!user_mode(regs))
 328                goto no_context;
 329
 330        if (fault & VM_FAULT_OOM) {
 331                /*
 332                 * We ran out of memory, call the OOM killer, and return to
 333                 * userspace (which will retry the fault, or kill us if we
 334                 * got oom-killed)
 335                 */
 336                pagefault_out_of_memory();
 337                return 0;
 338        }
 339
 340        if (fault & VM_FAULT_SIGBUS) {
 341                /*
 342                 * We had some memory, but were unable to
 343                 * successfully fix up this page fault.
 344                 */
 345                sig = SIGBUS;
 346                code = BUS_ADRERR;
 347        } else {
 348                /*
 349                 * Something tried to access memory that
 350                 * isn't in our memory map..
 351                 */
 352                sig = SIGSEGV;
 353                code = fault == VM_FAULT_BADACCESS ?
 354                        SEGV_ACCERR : SEGV_MAPERR;
 355        }
 356
 357        __do_user_fault(addr, fsr, sig, code, regs);
 358        return 0;
 359
 360no_context:
 361        __do_kernel_fault(mm, addr, fsr, regs);
 362        return 0;
 363}
 364#else                                   /* CONFIG_MMU */
 365static int
 366do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 367{
 368        return 0;
 369}
 370#endif                                  /* CONFIG_MMU */
 371
 372/*
 373 * First Level Translation Fault Handler
 374 *
 375 * We enter here because the first level page table doesn't contain
 376 * a valid entry for the address.
 377 *
 378 * If the address is in kernel space (>= TASK_SIZE), then we are
 379 * probably faulting in the vmalloc() area.
 380 *
 381 * If the init_task's first level page tables contains the relevant
 382 * entry, we copy the it to this task.  If not, we send the process
 383 * a signal, fixup the exception, or oops the kernel.
 384 *
 385 * NOTE! We MUST NOT take any locks for this case. We may be in an
 386 * interrupt or a critical region, and should only copy the information
 387 * from the master page table, nothing more.
 388 */
 389#ifdef CONFIG_MMU
 390static int __kprobes
 391do_translation_fault(unsigned long addr, unsigned int fsr,
 392                     struct pt_regs *regs)
 393{
 394        unsigned int index;
 395        pgd_t *pgd, *pgd_k;
 396        p4d_t *p4d, *p4d_k;
 397        pud_t *pud, *pud_k;
 398        pmd_t *pmd, *pmd_k;
 399
 400        if (addr < TASK_SIZE)
 401                return do_page_fault(addr, fsr, regs);
 402
 403        if (user_mode(regs))
 404                goto bad_area;
 405
 406        index = pgd_index(addr);
 407
 408        pgd = cpu_get_pgd() + index;
 409        pgd_k = init_mm.pgd + index;
 410
 411        p4d = p4d_offset(pgd, addr);
 412        p4d_k = p4d_offset(pgd_k, addr);
 413
 414        if (p4d_none(*p4d_k))
 415                goto bad_area;
 416        if (!p4d_present(*p4d))
 417                set_p4d(p4d, *p4d_k);
 418
 419        pud = pud_offset(p4d, addr);
 420        pud_k = pud_offset(p4d_k, addr);
 421
 422        if (pud_none(*pud_k))
 423                goto bad_area;
 424        if (!pud_present(*pud))
 425                set_pud(pud, *pud_k);
 426
 427        pmd = pmd_offset(pud, addr);
 428        pmd_k = pmd_offset(pud_k, addr);
 429
 430#ifdef CONFIG_ARM_LPAE
 431        /*
 432         * Only one hardware entry per PMD with LPAE.
 433         */
 434        index = 0;
 435#else
 436        /*
 437         * On ARM one Linux PGD entry contains two hardware entries (see page
 438         * tables layout in pgtable.h). We normally guarantee that we always
 439         * fill both L1 entries. But create_mapping() doesn't follow the rule.
 440         * It can create inidividual L1 entries, so here we have to call
 441         * pmd_none() check for the entry really corresponded to address, not
 442         * for the first of pair.
 443         */
 444        index = (addr >> SECTION_SHIFT) & 1;
 445#endif
 446        if (pmd_none(pmd_k[index]))
 447                goto bad_area;
 448
 449        copy_pmd(pmd, pmd_k);
 450        return 0;
 451
 452bad_area:
 453        do_bad_area(addr, fsr, regs);
 454        return 0;
 455}
 456#else                                   /* CONFIG_MMU */
 457static int
 458do_translation_fault(unsigned long addr, unsigned int fsr,
 459                     struct pt_regs *regs)
 460{
 461        return 0;
 462}
 463#endif                                  /* CONFIG_MMU */
 464
 465/*
 466 * Some section permission faults need to be handled gracefully.
 467 * They can happen due to a __{get,put}_user during an oops.
 468 */
 469#ifndef CONFIG_ARM_LPAE
 470static int
 471do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 472{
 473        do_bad_area(addr, fsr, regs);
 474        return 0;
 475}
 476#endif /* CONFIG_ARM_LPAE */
 477
 478/*
 479 * This abort handler always returns "fault".
 480 */
 481static int
 482do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 483{
 484        return 1;
 485}
 486
 487struct fsr_info {
 488        int     (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
 489        int     sig;
 490        int     code;
 491        const char *name;
 492};
 493
 494/* FSR definition */
 495#ifdef CONFIG_ARM_LPAE
 496#include "fsr-3level.c"
 497#else
 498#include "fsr-2level.c"
 499#endif
 500
 501void __init
 502hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 503                int sig, int code, const char *name)
 504{
 505        if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
 506                BUG();
 507
 508        fsr_info[nr].fn   = fn;
 509        fsr_info[nr].sig  = sig;
 510        fsr_info[nr].code = code;
 511        fsr_info[nr].name = name;
 512}
 513
 514/*
 515 * Dispatch a data abort to the relevant handler.
 516 */
 517asmlinkage void
 518do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 519{
 520        const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
 521
 522        if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
 523                return;
 524
 525        pr_alert("8<--- cut here ---\n");
 526        pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
 527                inf->name, fsr, addr);
 528        show_pte(KERN_ALERT, current->mm, addr);
 529
 530        arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
 531                       fsr, 0);
 532}
 533
 534void __init
 535hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 536                 int sig, int code, const char *name)
 537{
 538        if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
 539                BUG();
 540
 541        ifsr_info[nr].fn   = fn;
 542        ifsr_info[nr].sig  = sig;
 543        ifsr_info[nr].code = code;
 544        ifsr_info[nr].name = name;
 545}
 546
 547asmlinkage void
 548do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
 549{
 550        const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
 551
 552        if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
 553                return;
 554
 555        pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
 556                inf->name, ifsr, addr);
 557
 558        arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
 559                       ifsr, 0);
 560}
 561
 562/*
 563 * Abort handler to be used only during first unmasking of asynchronous aborts
 564 * on the boot CPU. This makes sure that the machine will not die if the
 565 * firmware/bootloader left an imprecise abort pending for us to trip over.
 566 */
 567static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
 568                                      struct pt_regs *regs)
 569{
 570        pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
 571                "first unmask, this is most likely caused by a "
 572                "firmware/bootloader bug.\n", fsr);
 573
 574        return 0;
 575}
 576
 577void __init early_abt_enable(void)
 578{
 579        fsr_info[FSR_FS_AEA].fn = early_abort_handler;
 580        local_abt_enable();
 581        fsr_info[FSR_FS_AEA].fn = do_bad;
 582}
 583
 584#ifndef CONFIG_ARM_LPAE
 585static int __init exceptions_init(void)
 586{
 587        if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 588                hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
 589                                "I-cache maintenance fault");
 590        }
 591
 592        if (cpu_architecture() >= CPU_ARCH_ARMv7) {
 593                /*
 594                 * TODO: Access flag faults introduced in ARMv6K.
 595                 * Runtime check for 'K' extension is needed
 596                 */
 597                hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
 598                                "section access flag fault");
 599                hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
 600                                "section access flag fault");
 601        }
 602
 603        return 0;
 604}
 605
 606arch_initcall(exceptions_init);
 607#endif
 608