linux/arch/arm/mm/mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/mmu.c
   4 *
   5 *  Copyright (C) 1995-2005 Russell King
   6 */
   7#include <linux/module.h>
   8#include <linux/kernel.h>
   9#include <linux/errno.h>
  10#include <linux/init.h>
  11#include <linux/mman.h>
  12#include <linux/nodemask.h>
  13#include <linux/memblock.h>
  14#include <linux/fs.h>
  15#include <linux/vmalloc.h>
  16#include <linux/sizes.h>
  17
  18#include <asm/cp15.h>
  19#include <asm/cputype.h>
  20#include <asm/cachetype.h>
  21#include <asm/sections.h>
  22#include <asm/setup.h>
  23#include <asm/smp_plat.h>
  24#include <asm/tlb.h>
  25#include <asm/highmem.h>
  26#include <asm/system_info.h>
  27#include <asm/traps.h>
  28#include <asm/procinfo.h>
  29#include <asm/memory.h>
  30#include <asm/pgalloc.h>
  31#include <asm/kasan_def.h>
  32
  33#include <asm/mach/arch.h>
  34#include <asm/mach/map.h>
  35#include <asm/mach/pci.h>
  36#include <asm/fixmap.h>
  37
  38#include "fault.h"
  39#include "mm.h"
  40#include "tcm.h"
  41
  42extern unsigned long __atags_pointer;
  43
  44/*
  45 * empty_zero_page is a special page that is used for
  46 * zero-initialized data and COW.
  47 */
  48struct page *empty_zero_page;
  49EXPORT_SYMBOL(empty_zero_page);
  50
  51/*
  52 * The pmd table for the upper-most set of pages.
  53 */
  54pmd_t *top_pmd;
  55
  56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  57
  58#define CPOLICY_UNCACHED        0
  59#define CPOLICY_BUFFERED        1
  60#define CPOLICY_WRITETHROUGH    2
  61#define CPOLICY_WRITEBACK       3
  62#define CPOLICY_WRITEALLOC      4
  63
  64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  65static unsigned int ecc_mask __initdata = 0;
  66pgprot_t pgprot_user;
  67pgprot_t pgprot_kernel;
  68
  69EXPORT_SYMBOL(pgprot_user);
  70EXPORT_SYMBOL(pgprot_kernel);
  71
  72struct cachepolicy {
  73        const char      policy[16];
  74        unsigned int    cr_mask;
  75        pmdval_t        pmd;
  76        pteval_t        pte;
  77};
  78
  79static struct cachepolicy cache_policies[] __initdata = {
  80        {
  81                .policy         = "uncached",
  82                .cr_mask        = CR_W|CR_C,
  83                .pmd            = PMD_SECT_UNCACHED,
  84                .pte            = L_PTE_MT_UNCACHED,
  85        }, {
  86                .policy         = "buffered",
  87                .cr_mask        = CR_C,
  88                .pmd            = PMD_SECT_BUFFERED,
  89                .pte            = L_PTE_MT_BUFFERABLE,
  90        }, {
  91                .policy         = "writethrough",
  92                .cr_mask        = 0,
  93                .pmd            = PMD_SECT_WT,
  94                .pte            = L_PTE_MT_WRITETHROUGH,
  95        }, {
  96                .policy         = "writeback",
  97                .cr_mask        = 0,
  98                .pmd            = PMD_SECT_WB,
  99                .pte            = L_PTE_MT_WRITEBACK,
 100        }, {
 101                .policy         = "writealloc",
 102                .cr_mask        = 0,
 103                .pmd            = PMD_SECT_WBWA,
 104                .pte            = L_PTE_MT_WRITEALLOC,
 105        }
 106};
 107
 108#ifdef CONFIG_CPU_CP15
 109static unsigned long initial_pmd_value __initdata = 0;
 110
 111/*
 112 * Initialise the cache_policy variable with the initial state specified
 113 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 114 * the C code sets the page tables up with the same policy as the head
 115 * assembly code, which avoids an illegal state where the TLBs can get
 116 * confused.  See comments in early_cachepolicy() for more information.
 117 */
 118void __init init_default_cache_policy(unsigned long pmd)
 119{
 120        int i;
 121
 122        initial_pmd_value = pmd;
 123
 124        pmd &= PMD_SECT_CACHE_MASK;
 125
 126        for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 127                if (cache_policies[i].pmd == pmd) {
 128                        cachepolicy = i;
 129                        break;
 130                }
 131
 132        if (i == ARRAY_SIZE(cache_policies))
 133                pr_err("ERROR: could not find cache policy\n");
 134}
 135
 136/*
 137 * These are useful for identifying cache coherency problems by allowing
 138 * the cache or the cache and writebuffer to be turned off.  (Note: the
 139 * write buffer should not be on and the cache off).
 140 */
 141static int __init early_cachepolicy(char *p)
 142{
 143        int i, selected = -1;
 144
 145        for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 146                int len = strlen(cache_policies[i].policy);
 147
 148                if (memcmp(p, cache_policies[i].policy, len) == 0) {
 149                        selected = i;
 150                        break;
 151                }
 152        }
 153
 154        if (selected == -1)
 155                pr_err("ERROR: unknown or unsupported cache policy\n");
 156
 157        /*
 158         * This restriction is partly to do with the way we boot; it is
 159         * unpredictable to have memory mapped using two different sets of
 160         * memory attributes (shared, type, and cache attribs).  We can not
 161         * change these attributes once the initial assembly has setup the
 162         * page tables.
 163         */
 164        if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 165                pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 166                        cache_policies[cachepolicy].policy);
 167                return 0;
 168        }
 169
 170        if (selected != cachepolicy) {
 171                unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 172                cachepolicy = selected;
 173                flush_cache_all();
 174                set_cr(cr);
 175        }
 176        return 0;
 177}
 178early_param("cachepolicy", early_cachepolicy);
 179
 180static int __init early_nocache(char *__unused)
 181{
 182        char *p = "buffered";
 183        pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 184        early_cachepolicy(p);
 185        return 0;
 186}
 187early_param("nocache", early_nocache);
 188
 189static int __init early_nowrite(char *__unused)
 190{
 191        char *p = "uncached";
 192        pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 193        early_cachepolicy(p);
 194        return 0;
 195}
 196early_param("nowb", early_nowrite);
 197
 198#ifndef CONFIG_ARM_LPAE
 199static int __init early_ecc(char *p)
 200{
 201        if (memcmp(p, "on", 2) == 0)
 202                ecc_mask = PMD_PROTECTION;
 203        else if (memcmp(p, "off", 3) == 0)
 204                ecc_mask = 0;
 205        return 0;
 206}
 207early_param("ecc", early_ecc);
 208#endif
 209
 210#else /* ifdef CONFIG_CPU_CP15 */
 211
 212static int __init early_cachepolicy(char *p)
 213{
 214        pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 215}
 216early_param("cachepolicy", early_cachepolicy);
 217
 218static int __init noalign_setup(char *__unused)
 219{
 220        pr_warn("noalign kernel parameter not supported without cp15\n");
 221}
 222__setup("noalign", noalign_setup);
 223
 224#endif /* ifdef CONFIG_CPU_CP15 / else */
 225
 226#define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 227#define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
 228#define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 229
 230static struct mem_type mem_types[] __ro_after_init = {
 231        [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
 232                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 233                                  L_PTE_SHARED,
 234                .prot_l1        = PMD_TYPE_TABLE,
 235                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
 236                .domain         = DOMAIN_IO,
 237        },
 238        [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 239                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 240                .prot_l1        = PMD_TYPE_TABLE,
 241                .prot_sect      = PROT_SECT_DEVICE,
 242                .domain         = DOMAIN_IO,
 243        },
 244        [MT_DEVICE_CACHED] = {    /* ioremap_cache */
 245                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 246                .prot_l1        = PMD_TYPE_TABLE,
 247                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
 248                .domain         = DOMAIN_IO,
 249        },
 250        [MT_DEVICE_WC] = {      /* ioremap_wc */
 251                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 252                .prot_l1        = PMD_TYPE_TABLE,
 253                .prot_sect      = PROT_SECT_DEVICE,
 254                .domain         = DOMAIN_IO,
 255        },
 256        [MT_UNCACHED] = {
 257                .prot_pte       = PROT_PTE_DEVICE,
 258                .prot_l1        = PMD_TYPE_TABLE,
 259                .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
 260                .domain         = DOMAIN_IO,
 261        },
 262        [MT_CACHECLEAN] = {
 263                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 264                .domain    = DOMAIN_KERNEL,
 265        },
 266#ifndef CONFIG_ARM_LPAE
 267        [MT_MINICLEAN] = {
 268                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 269                .domain    = DOMAIN_KERNEL,
 270        },
 271#endif
 272        [MT_LOW_VECTORS] = {
 273                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 274                                L_PTE_RDONLY,
 275                .prot_l1   = PMD_TYPE_TABLE,
 276                .domain    = DOMAIN_VECTORS,
 277        },
 278        [MT_HIGH_VECTORS] = {
 279                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 280                                L_PTE_USER | L_PTE_RDONLY,
 281                .prot_l1   = PMD_TYPE_TABLE,
 282                .domain    = DOMAIN_VECTORS,
 283        },
 284        [MT_MEMORY_RWX] = {
 285                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 286                .prot_l1   = PMD_TYPE_TABLE,
 287                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 288                .domain    = DOMAIN_KERNEL,
 289        },
 290        [MT_MEMORY_RW] = {
 291                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 292                             L_PTE_XN,
 293                .prot_l1   = PMD_TYPE_TABLE,
 294                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 295                .domain    = DOMAIN_KERNEL,
 296        },
 297        [MT_ROM] = {
 298                .prot_sect = PMD_TYPE_SECT,
 299                .domain    = DOMAIN_KERNEL,
 300        },
 301        [MT_MEMORY_RWX_NONCACHED] = {
 302                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 303                                L_PTE_MT_BUFFERABLE,
 304                .prot_l1   = PMD_TYPE_TABLE,
 305                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 306                .domain    = DOMAIN_KERNEL,
 307        },
 308        [MT_MEMORY_RW_DTCM] = {
 309                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 310                                L_PTE_XN,
 311                .prot_l1   = PMD_TYPE_TABLE,
 312                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 313                .domain    = DOMAIN_KERNEL,
 314        },
 315        [MT_MEMORY_RWX_ITCM] = {
 316                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 317                .prot_l1   = PMD_TYPE_TABLE,
 318                .domain    = DOMAIN_KERNEL,
 319        },
 320        [MT_MEMORY_RW_SO] = {
 321                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 322                                L_PTE_MT_UNCACHED | L_PTE_XN,
 323                .prot_l1   = PMD_TYPE_TABLE,
 324                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 325                                PMD_SECT_UNCACHED | PMD_SECT_XN,
 326                .domain    = DOMAIN_KERNEL,
 327        },
 328        [MT_MEMORY_DMA_READY] = {
 329                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 330                                L_PTE_XN,
 331                .prot_l1   = PMD_TYPE_TABLE,
 332                .domain    = DOMAIN_KERNEL,
 333        },
 334};
 335
 336const struct mem_type *get_mem_type(unsigned int type)
 337{
 338        return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 339}
 340EXPORT_SYMBOL(get_mem_type);
 341
 342static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 343
 344static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 345        __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 346
 347static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 348{
 349        return &bm_pte[pte_index(addr)];
 350}
 351
 352static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 353{
 354        return pte_offset_kernel(dir, addr);
 355}
 356
 357static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 358{
 359        return pmd_off_k(addr);
 360}
 361
 362void __init early_fixmap_init(void)
 363{
 364        pmd_t *pmd;
 365
 366        /*
 367         * The early fixmap range spans multiple pmds, for which
 368         * we are not prepared:
 369         */
 370        BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 371                     != FIXADDR_TOP >> PMD_SHIFT);
 372
 373        pmd = fixmap_pmd(FIXADDR_TOP);
 374        pmd_populate_kernel(&init_mm, pmd, bm_pte);
 375
 376        pte_offset_fixmap = pte_offset_early_fixmap;
 377}
 378
 379/*
 380 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 381 * As a result, this can only be called with preemption disabled, as under
 382 * stop_machine().
 383 */
 384void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 385{
 386        unsigned long vaddr = __fix_to_virt(idx);
 387        pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 388
 389        /* Make sure fixmap region does not exceed available allocation. */
 390        BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
 391        BUG_ON(idx >= __end_of_fixed_addresses);
 392
 393        /* we only support device mappings until pgprot_kernel has been set */
 394        if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
 395                    pgprot_val(pgprot_kernel) == 0))
 396                return;
 397
 398        if (pgprot_val(prot))
 399                set_pte_at(NULL, vaddr, pte,
 400                        pfn_pte(phys >> PAGE_SHIFT, prot));
 401        else
 402                pte_clear(NULL, vaddr, pte);
 403        local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 404}
 405
 406/*
 407 * Adjust the PMD section entries according to the CPU in use.
 408 */
 409static void __init build_mem_type_table(void)
 410{
 411        struct cachepolicy *cp;
 412        unsigned int cr = get_cr();
 413        pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 414        int cpu_arch = cpu_architecture();
 415        int i;
 416
 417        if (cpu_arch < CPU_ARCH_ARMv6) {
 418#if defined(CONFIG_CPU_DCACHE_DISABLE)
 419                if (cachepolicy > CPOLICY_BUFFERED)
 420                        cachepolicy = CPOLICY_BUFFERED;
 421#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 422                if (cachepolicy > CPOLICY_WRITETHROUGH)
 423                        cachepolicy = CPOLICY_WRITETHROUGH;
 424#endif
 425        }
 426        if (cpu_arch < CPU_ARCH_ARMv5) {
 427                if (cachepolicy >= CPOLICY_WRITEALLOC)
 428                        cachepolicy = CPOLICY_WRITEBACK;
 429                ecc_mask = 0;
 430        }
 431
 432        if (is_smp()) {
 433                if (cachepolicy != CPOLICY_WRITEALLOC) {
 434                        pr_warn("Forcing write-allocate cache policy for SMP\n");
 435                        cachepolicy = CPOLICY_WRITEALLOC;
 436                }
 437                if (!(initial_pmd_value & PMD_SECT_S)) {
 438                        pr_warn("Forcing shared mappings for SMP\n");
 439                        initial_pmd_value |= PMD_SECT_S;
 440                }
 441        }
 442
 443        /*
 444         * Strip out features not present on earlier architectures.
 445         * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 446         * without extended page tables don't have the 'Shared' bit.
 447         */
 448        if (cpu_arch < CPU_ARCH_ARMv5)
 449                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 450                        mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 451        if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 452                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 453                        mem_types[i].prot_sect &= ~PMD_SECT_S;
 454
 455        /*
 456         * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 457         * "update-able on write" bit on ARM610).  However, Xscale and
 458         * Xscale3 require this bit to be cleared.
 459         */
 460        if (cpu_is_xscale_family()) {
 461                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 462                        mem_types[i].prot_sect &= ~PMD_BIT4;
 463                        mem_types[i].prot_l1 &= ~PMD_BIT4;
 464                }
 465        } else if (cpu_arch < CPU_ARCH_ARMv6) {
 466                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 467                        if (mem_types[i].prot_l1)
 468                                mem_types[i].prot_l1 |= PMD_BIT4;
 469                        if (mem_types[i].prot_sect)
 470                                mem_types[i].prot_sect |= PMD_BIT4;
 471                }
 472        }
 473
 474        /*
 475         * Mark the device areas according to the CPU/architecture.
 476         */
 477        if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 478                if (!cpu_is_xsc3()) {
 479                        /*
 480                         * Mark device regions on ARMv6+ as execute-never
 481                         * to prevent speculative instruction fetches.
 482                         */
 483                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 484                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 485                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 486                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 487
 488                        /* Also setup NX memory mapping */
 489                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 490                }
 491                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 492                        /*
 493                         * For ARMv7 with TEX remapping,
 494                         * - shared device is SXCB=1100
 495                         * - nonshared device is SXCB=0100
 496                         * - write combine device mem is SXCB=0001
 497                         * (Uncached Normal memory)
 498                         */
 499                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 500                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 501                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 502                } else if (cpu_is_xsc3()) {
 503                        /*
 504                         * For Xscale3,
 505                         * - shared device is TEXCB=00101
 506                         * - nonshared device is TEXCB=01000
 507                         * - write combine device mem is TEXCB=00100
 508                         * (Inner/Outer Uncacheable in xsc3 parlance)
 509                         */
 510                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 511                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 512                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 513                } else {
 514                        /*
 515                         * For ARMv6 and ARMv7 without TEX remapping,
 516                         * - shared device is TEXCB=00001
 517                         * - nonshared device is TEXCB=01000
 518                         * - write combine device mem is TEXCB=00100
 519                         * (Uncached Normal in ARMv6 parlance).
 520                         */
 521                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 522                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 523                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 524                }
 525        } else {
 526                /*
 527                 * On others, write combining is "Uncached/Buffered"
 528                 */
 529                mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 530        }
 531
 532        /*
 533         * Now deal with the memory-type mappings
 534         */
 535        cp = &cache_policies[cachepolicy];
 536        vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 537
 538#ifndef CONFIG_ARM_LPAE
 539        /*
 540         * We don't use domains on ARMv6 (since this causes problems with
 541         * v6/v7 kernels), so we must use a separate memory type for user
 542         * r/o, kernel r/w to map the vectors page.
 543         */
 544        if (cpu_arch == CPU_ARCH_ARMv6)
 545                vecs_pgprot |= L_PTE_MT_VECTORS;
 546
 547        /*
 548         * Check is it with support for the PXN bit
 549         * in the Short-descriptor translation table format descriptors.
 550         */
 551        if (cpu_arch == CPU_ARCH_ARMv7 &&
 552                (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 553                user_pmd_table |= PMD_PXNTABLE;
 554        }
 555#endif
 556
 557        /*
 558         * ARMv6 and above have extended page tables.
 559         */
 560        if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 561#ifndef CONFIG_ARM_LPAE
 562                /*
 563                 * Mark cache clean areas and XIP ROM read only
 564                 * from SVC mode and no access from userspace.
 565                 */
 566                mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 567                mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 568                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 569#endif
 570
 571                /*
 572                 * If the initial page tables were created with the S bit
 573                 * set, then we need to do the same here for the same
 574                 * reasons given in early_cachepolicy().
 575                 */
 576                if (initial_pmd_value & PMD_SECT_S) {
 577                        user_pgprot |= L_PTE_SHARED;
 578                        kern_pgprot |= L_PTE_SHARED;
 579                        vecs_pgprot |= L_PTE_SHARED;
 580                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 581                        mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 582                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 583                        mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 584                        mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 585                        mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 586                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 587                        mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 588                        mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 589                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 590                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 591                }
 592        }
 593
 594        /*
 595         * Non-cacheable Normal - intended for memory areas that must
 596         * not cause dirty cache line writebacks when used
 597         */
 598        if (cpu_arch >= CPU_ARCH_ARMv6) {
 599                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 600                        /* Non-cacheable Normal is XCB = 001 */
 601                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 602                                PMD_SECT_BUFFERED;
 603                } else {
 604                        /* For both ARMv6 and non-TEX-remapping ARMv7 */
 605                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 606                                PMD_SECT_TEX(1);
 607                }
 608        } else {
 609                mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 610        }
 611
 612#ifdef CONFIG_ARM_LPAE
 613        /*
 614         * Do not generate access flag faults for the kernel mappings.
 615         */
 616        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 617                mem_types[i].prot_pte |= PTE_EXT_AF;
 618                if (mem_types[i].prot_sect)
 619                        mem_types[i].prot_sect |= PMD_SECT_AF;
 620        }
 621        kern_pgprot |= PTE_EXT_AF;
 622        vecs_pgprot |= PTE_EXT_AF;
 623
 624        /*
 625         * Set PXN for user mappings
 626         */
 627        user_pgprot |= PTE_EXT_PXN;
 628#endif
 629
 630        for (i = 0; i < 16; i++) {
 631                pteval_t v = pgprot_val(protection_map[i]);
 632                protection_map[i] = __pgprot(v | user_pgprot);
 633        }
 634
 635        mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 636        mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 637
 638        pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 639        pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 640                                 L_PTE_DIRTY | kern_pgprot);
 641
 642        mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 643        mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 644        mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 645        mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 646        mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 647        mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 648        mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 649        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 650        mem_types[MT_ROM].prot_sect |= cp->pmd;
 651
 652        switch (cp->pmd) {
 653        case PMD_SECT_WT:
 654                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 655                break;
 656        case PMD_SECT_WB:
 657        case PMD_SECT_WBWA:
 658                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 659                break;
 660        }
 661        pr_info("Memory policy: %sData cache %s\n",
 662                ecc_mask ? "ECC enabled, " : "", cp->policy);
 663
 664        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 665                struct mem_type *t = &mem_types[i];
 666                if (t->prot_l1)
 667                        t->prot_l1 |= PMD_DOMAIN(t->domain);
 668                if (t->prot_sect)
 669                        t->prot_sect |= PMD_DOMAIN(t->domain);
 670        }
 671}
 672
 673#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 674pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 675                              unsigned long size, pgprot_t vma_prot)
 676{
 677        if (!pfn_valid(pfn))
 678                return pgprot_noncached(vma_prot);
 679        else if (file->f_flags & O_SYNC)
 680                return pgprot_writecombine(vma_prot);
 681        return vma_prot;
 682}
 683EXPORT_SYMBOL(phys_mem_access_prot);
 684#endif
 685
 686#define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 687
 688static void __init *early_alloc(unsigned long sz)
 689{
 690        void *ptr = memblock_alloc(sz, sz);
 691
 692        if (!ptr)
 693                panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 694                      __func__, sz, sz);
 695
 696        return ptr;
 697}
 698
 699static void *__init late_alloc(unsigned long sz)
 700{
 701        void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
 702
 703        if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
 704                BUG();
 705        return ptr;
 706}
 707
 708static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 709                                unsigned long prot,
 710                                void *(*alloc)(unsigned long sz))
 711{
 712        if (pmd_none(*pmd)) {
 713                pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 714                __pmd_populate(pmd, __pa(pte), prot);
 715        }
 716        BUG_ON(pmd_bad(*pmd));
 717        return pte_offset_kernel(pmd, addr);
 718}
 719
 720static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 721                                      unsigned long prot)
 722{
 723        return arm_pte_alloc(pmd, addr, prot, early_alloc);
 724}
 725
 726static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 727                                  unsigned long end, unsigned long pfn,
 728                                  const struct mem_type *type,
 729                                  void *(*alloc)(unsigned long sz),
 730                                  bool ng)
 731{
 732        pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 733        do {
 734                set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 735                            ng ? PTE_EXT_NG : 0);
 736                pfn++;
 737        } while (pte++, addr += PAGE_SIZE, addr != end);
 738}
 739
 740static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 741                        unsigned long end, phys_addr_t phys,
 742                        const struct mem_type *type, bool ng)
 743{
 744        pmd_t *p = pmd;
 745
 746#ifndef CONFIG_ARM_LPAE
 747        /*
 748         * In classic MMU format, puds and pmds are folded in to
 749         * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 750         * group of L1 entries making up one logical pointer to
 751         * an L2 table (2MB), where as PMDs refer to the individual
 752         * L1 entries (1MB). Hence increment to get the correct
 753         * offset for odd 1MB sections.
 754         * (See arch/arm/include/asm/pgtable-2level.h)
 755         */
 756        if (addr & SECTION_SIZE)
 757                pmd++;
 758#endif
 759        do {
 760                *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 761                phys += SECTION_SIZE;
 762        } while (pmd++, addr += SECTION_SIZE, addr != end);
 763
 764        flush_pmd_entry(p);
 765}
 766
 767static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 768                                      unsigned long end, phys_addr_t phys,
 769                                      const struct mem_type *type,
 770                                      void *(*alloc)(unsigned long sz), bool ng)
 771{
 772        pmd_t *pmd = pmd_offset(pud, addr);
 773        unsigned long next;
 774
 775        do {
 776                /*
 777                 * With LPAE, we must loop over to map
 778                 * all the pmds for the given range.
 779                 */
 780                next = pmd_addr_end(addr, end);
 781
 782                /*
 783                 * Try a section mapping - addr, next and phys must all be
 784                 * aligned to a section boundary.
 785                 */
 786                if (type->prot_sect &&
 787                                ((addr | next | phys) & ~SECTION_MASK) == 0) {
 788                        __map_init_section(pmd, addr, next, phys, type, ng);
 789                } else {
 790                        alloc_init_pte(pmd, addr, next,
 791                                       __phys_to_pfn(phys), type, alloc, ng);
 792                }
 793
 794                phys += next - addr;
 795
 796        } while (pmd++, addr = next, addr != end);
 797}
 798
 799static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
 800                                  unsigned long end, phys_addr_t phys,
 801                                  const struct mem_type *type,
 802                                  void *(*alloc)(unsigned long sz), bool ng)
 803{
 804        pud_t *pud = pud_offset(p4d, addr);
 805        unsigned long next;
 806
 807        do {
 808                next = pud_addr_end(addr, end);
 809                alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 810                phys += next - addr;
 811        } while (pud++, addr = next, addr != end);
 812}
 813
 814static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
 815                                  unsigned long end, phys_addr_t phys,
 816                                  const struct mem_type *type,
 817                                  void *(*alloc)(unsigned long sz), bool ng)
 818{
 819        p4d_t *p4d = p4d_offset(pgd, addr);
 820        unsigned long next;
 821
 822        do {
 823                next = p4d_addr_end(addr, end);
 824                alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
 825                phys += next - addr;
 826        } while (p4d++, addr = next, addr != end);
 827}
 828
 829#ifndef CONFIG_ARM_LPAE
 830static void __init create_36bit_mapping(struct mm_struct *mm,
 831                                        struct map_desc *md,
 832                                        const struct mem_type *type,
 833                                        bool ng)
 834{
 835        unsigned long addr, length, end;
 836        phys_addr_t phys;
 837        pgd_t *pgd;
 838
 839        addr = md->virtual;
 840        phys = __pfn_to_phys(md->pfn);
 841        length = PAGE_ALIGN(md->length);
 842
 843        if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 844                pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 845                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 846                return;
 847        }
 848
 849        /* N.B. ARMv6 supersections are only defined to work with domain 0.
 850         *      Since domain assignments can in fact be arbitrary, the
 851         *      'domain == 0' check below is required to insure that ARMv6
 852         *      supersections are only allocated for domain 0 regardless
 853         *      of the actual domain assignments in use.
 854         */
 855        if (type->domain) {
 856                pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 857                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 858                return;
 859        }
 860
 861        if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 862                pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 863                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 864                return;
 865        }
 866
 867        /*
 868         * Shift bits [35:32] of address into bits [23:20] of PMD
 869         * (See ARMv6 spec).
 870         */
 871        phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 872
 873        pgd = pgd_offset(mm, addr);
 874        end = addr + length;
 875        do {
 876                p4d_t *p4d = p4d_offset(pgd, addr);
 877                pud_t *pud = pud_offset(p4d, addr);
 878                pmd_t *pmd = pmd_offset(pud, addr);
 879                int i;
 880
 881                for (i = 0; i < 16; i++)
 882                        *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 883                                       (ng ? PMD_SECT_nG : 0));
 884
 885                addr += SUPERSECTION_SIZE;
 886                phys += SUPERSECTION_SIZE;
 887                pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 888        } while (addr != end);
 889}
 890#endif  /* !CONFIG_ARM_LPAE */
 891
 892static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 893                                    void *(*alloc)(unsigned long sz),
 894                                    bool ng)
 895{
 896        unsigned long addr, length, end;
 897        phys_addr_t phys;
 898        const struct mem_type *type;
 899        pgd_t *pgd;
 900
 901        type = &mem_types[md->type];
 902
 903#ifndef CONFIG_ARM_LPAE
 904        /*
 905         * Catch 36-bit addresses
 906         */
 907        if (md->pfn >= 0x100000) {
 908                create_36bit_mapping(mm, md, type, ng);
 909                return;
 910        }
 911#endif
 912
 913        addr = md->virtual & PAGE_MASK;
 914        phys = __pfn_to_phys(md->pfn);
 915        length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 916
 917        if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 918                pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 919                        (long long)__pfn_to_phys(md->pfn), addr);
 920                return;
 921        }
 922
 923        pgd = pgd_offset(mm, addr);
 924        end = addr + length;
 925        do {
 926                unsigned long next = pgd_addr_end(addr, end);
 927
 928                alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
 929
 930                phys += next - addr;
 931                addr = next;
 932        } while (pgd++, addr != end);
 933}
 934
 935/*
 936 * Create the page directory entries and any necessary
 937 * page tables for the mapping specified by `md'.  We
 938 * are able to cope here with varying sizes and address
 939 * offsets, and we take full advantage of sections and
 940 * supersections.
 941 */
 942static void __init create_mapping(struct map_desc *md)
 943{
 944        if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 945                pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 946                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 947                return;
 948        }
 949
 950        if (md->type == MT_DEVICE &&
 951            md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 952            (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 953                pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 954                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 955        }
 956
 957        __create_mapping(&init_mm, md, early_alloc, false);
 958}
 959
 960void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 961                                bool ng)
 962{
 963#ifdef CONFIG_ARM_LPAE
 964        p4d_t *p4d;
 965        pud_t *pud;
 966
 967        p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 968        if (WARN_ON(!p4d))
 969                return;
 970        pud = pud_alloc(mm, p4d, md->virtual);
 971        if (WARN_ON(!pud))
 972                return;
 973        pmd_alloc(mm, pud, 0);
 974#endif
 975        __create_mapping(mm, md, late_alloc, ng);
 976}
 977
 978/*
 979 * Create the architecture specific mappings
 980 */
 981void __init iotable_init(struct map_desc *io_desc, int nr)
 982{
 983        struct map_desc *md;
 984        struct vm_struct *vm;
 985        struct static_vm *svm;
 986
 987        if (!nr)
 988                return;
 989
 990        svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
 991        if (!svm)
 992                panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
 993                      __func__, sizeof(*svm) * nr, __alignof__(*svm));
 994
 995        for (md = io_desc; nr; md++, nr--) {
 996                create_mapping(md);
 997
 998                vm = &svm->vm;
 999                vm->addr = (void *)(md->virtual & PAGE_MASK);
1000                vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1001                vm->phys_addr = __pfn_to_phys(md->pfn);
1002                vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1003                vm->flags |= VM_ARM_MTYPE(md->type);
1004                vm->caller = iotable_init;
1005                add_static_vm_early(svm++);
1006        }
1007}
1008
1009void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1010                                  void *caller)
1011{
1012        struct vm_struct *vm;
1013        struct static_vm *svm;
1014
1015        svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1016        if (!svm)
1017                panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1018                      __func__, sizeof(*svm), __alignof__(*svm));
1019
1020        vm = &svm->vm;
1021        vm->addr = (void *)addr;
1022        vm->size = size;
1023        vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1024        vm->caller = caller;
1025        add_static_vm_early(svm);
1026}
1027
1028#ifndef CONFIG_ARM_LPAE
1029
1030/*
1031 * The Linux PMD is made of two consecutive section entries covering 2MB
1032 * (see definition in include/asm/pgtable-2level.h).  However a call to
1033 * create_mapping() may optimize static mappings by using individual
1034 * 1MB section mappings.  This leaves the actual PMD potentially half
1035 * initialized if the top or bottom section entry isn't used, leaving it
1036 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1037 * the virtual space left free by that unused section entry.
1038 *
1039 * Let's avoid the issue by inserting dummy vm entries covering the unused
1040 * PMD halves once the static mappings are in place.
1041 */
1042
1043static void __init pmd_empty_section_gap(unsigned long addr)
1044{
1045        vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1046}
1047
1048static void __init fill_pmd_gaps(void)
1049{
1050        struct static_vm *svm;
1051        struct vm_struct *vm;
1052        unsigned long addr, next = 0;
1053        pmd_t *pmd;
1054
1055        list_for_each_entry(svm, &static_vmlist, list) {
1056                vm = &svm->vm;
1057                addr = (unsigned long)vm->addr;
1058                if (addr < next)
1059                        continue;
1060
1061                /*
1062                 * Check if this vm starts on an odd section boundary.
1063                 * If so and the first section entry for this PMD is free
1064                 * then we block the corresponding virtual address.
1065                 */
1066                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1067                        pmd = pmd_off_k(addr);
1068                        if (pmd_none(*pmd))
1069                                pmd_empty_section_gap(addr & PMD_MASK);
1070                }
1071
1072                /*
1073                 * Then check if this vm ends on an odd section boundary.
1074                 * If so and the second section entry for this PMD is empty
1075                 * then we block the corresponding virtual address.
1076                 */
1077                addr += vm->size;
1078                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1079                        pmd = pmd_off_k(addr) + 1;
1080                        if (pmd_none(*pmd))
1081                                pmd_empty_section_gap(addr);
1082                }
1083
1084                /* no need to look at any vm entry until we hit the next PMD */
1085                next = (addr + PMD_SIZE - 1) & PMD_MASK;
1086        }
1087}
1088
1089#else
1090#define fill_pmd_gaps() do { } while (0)
1091#endif
1092
1093#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1094static void __init pci_reserve_io(void)
1095{
1096        struct static_vm *svm;
1097
1098        svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1099        if (svm)
1100                return;
1101
1102        vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1103}
1104#else
1105#define pci_reserve_io() do { } while (0)
1106#endif
1107
1108#ifdef CONFIG_DEBUG_LL
1109void __init debug_ll_io_init(void)
1110{
1111        struct map_desc map;
1112
1113        debug_ll_addr(&map.pfn, &map.virtual);
1114        if (!map.pfn || !map.virtual)
1115                return;
1116        map.pfn = __phys_to_pfn(map.pfn);
1117        map.virtual &= PAGE_MASK;
1118        map.length = PAGE_SIZE;
1119        map.type = MT_DEVICE;
1120        iotable_init(&map, 1);
1121}
1122#endif
1123
1124static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1125
1126/*
1127 * vmalloc=size forces the vmalloc area to be exactly 'size'
1128 * bytes. This can be used to increase (or decrease) the vmalloc
1129 * area - the default is 240MiB.
1130 */
1131static int __init early_vmalloc(char *arg)
1132{
1133        unsigned long vmalloc_reserve = memparse(arg, NULL);
1134        unsigned long vmalloc_max;
1135
1136        if (vmalloc_reserve < SZ_16M) {
1137                vmalloc_reserve = SZ_16M;
1138                pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1139                        vmalloc_reserve >> 20);
1140        }
1141
1142        vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1143        if (vmalloc_reserve > vmalloc_max) {
1144                vmalloc_reserve = vmalloc_max;
1145                pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1146                        vmalloc_reserve >> 20);
1147        }
1148
1149        vmalloc_size = vmalloc_reserve;
1150        return 0;
1151}
1152early_param("vmalloc", early_vmalloc);
1153
1154phys_addr_t arm_lowmem_limit __initdata = 0;
1155
1156void __init adjust_lowmem_bounds(void)
1157{
1158        phys_addr_t block_start, block_end, memblock_limit = 0;
1159        u64 vmalloc_limit, i;
1160        phys_addr_t lowmem_limit = 0;
1161
1162        /*
1163         * Let's use our own (unoptimized) equivalent of __pa() that is
1164         * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1165         * The result is used as the upper bound on physical memory address
1166         * and may itself be outside the valid range for which phys_addr_t
1167         * and therefore __pa() is defined.
1168         */
1169        vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1170                        PAGE_OFFSET + PHYS_OFFSET;
1171
1172        /*
1173         * The first usable region must be PMD aligned. Mark its start
1174         * as MEMBLOCK_NOMAP if it isn't
1175         */
1176        for_each_mem_range(i, &block_start, &block_end) {
1177                if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1178                        phys_addr_t len;
1179
1180                        len = round_up(block_start, PMD_SIZE) - block_start;
1181                        memblock_mark_nomap(block_start, len);
1182                }
1183                break;
1184        }
1185
1186        for_each_mem_range(i, &block_start, &block_end) {
1187                if (block_start < vmalloc_limit) {
1188                        if (block_end > lowmem_limit)
1189                                /*
1190                                 * Compare as u64 to ensure vmalloc_limit does
1191                                 * not get truncated. block_end should always
1192                                 * fit in phys_addr_t so there should be no
1193                                 * issue with assignment.
1194                                 */
1195                                lowmem_limit = min_t(u64,
1196                                                         vmalloc_limit,
1197                                                         block_end);
1198
1199                        /*
1200                         * Find the first non-pmd-aligned page, and point
1201                         * memblock_limit at it. This relies on rounding the
1202                         * limit down to be pmd-aligned, which happens at the
1203                         * end of this function.
1204                         *
1205                         * With this algorithm, the start or end of almost any
1206                         * bank can be non-pmd-aligned. The only exception is
1207                         * that the start of the bank 0 must be section-
1208                         * aligned, since otherwise memory would need to be
1209                         * allocated when mapping the start of bank 0, which
1210                         * occurs before any free memory is mapped.
1211                         */
1212                        if (!memblock_limit) {
1213                                if (!IS_ALIGNED(block_start, PMD_SIZE))
1214                                        memblock_limit = block_start;
1215                                else if (!IS_ALIGNED(block_end, PMD_SIZE))
1216                                        memblock_limit = lowmem_limit;
1217                        }
1218
1219                }
1220        }
1221
1222        arm_lowmem_limit = lowmem_limit;
1223
1224        high_memory = __va(arm_lowmem_limit - 1) + 1;
1225
1226        if (!memblock_limit)
1227                memblock_limit = arm_lowmem_limit;
1228
1229        /*
1230         * Round the memblock limit down to a pmd size.  This
1231         * helps to ensure that we will allocate memory from the
1232         * last full pmd, which should be mapped.
1233         */
1234        memblock_limit = round_down(memblock_limit, PMD_SIZE);
1235
1236        if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1237                if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1238                        phys_addr_t end = memblock_end_of_DRAM();
1239
1240                        pr_notice("Ignoring RAM at %pa-%pa\n",
1241                                  &memblock_limit, &end);
1242                        pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1243
1244                        memblock_remove(memblock_limit, end - memblock_limit);
1245                }
1246        }
1247
1248        memblock_set_current_limit(memblock_limit);
1249}
1250
1251static __init void prepare_page_table(void)
1252{
1253        unsigned long addr;
1254        phys_addr_t end;
1255
1256        /*
1257         * Clear out all the mappings below the kernel image.
1258         */
1259#ifdef CONFIG_KASAN
1260        /*
1261         * KASan's shadow memory inserts itself between the TASK_SIZE
1262         * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1263         */
1264        for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1265                pmd_clear(pmd_off_k(addr));
1266        /*
1267         * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1268         * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1269         * are using a thumb-compiled kernel, there there will be 8MB more
1270         * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1271         */
1272        for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1273                pmd_clear(pmd_off_k(addr));
1274#else
1275        for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1276                pmd_clear(pmd_off_k(addr));
1277#endif
1278
1279#ifdef CONFIG_XIP_KERNEL
1280        /* The XIP kernel is mapped in the module area -- skip over it */
1281        addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1282#endif
1283        for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1284                pmd_clear(pmd_off_k(addr));
1285
1286        /*
1287         * Find the end of the first block of lowmem.
1288         */
1289        end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1290        if (end >= arm_lowmem_limit)
1291                end = arm_lowmem_limit;
1292
1293        /*
1294         * Clear out all the kernel space mappings, except for the first
1295         * memory bank, up to the vmalloc region.
1296         */
1297        for (addr = __phys_to_virt(end);
1298             addr < VMALLOC_START; addr += PMD_SIZE)
1299                pmd_clear(pmd_off_k(addr));
1300}
1301
1302#ifdef CONFIG_ARM_LPAE
1303/* the first page is reserved for pgd */
1304#define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1305                                 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1306#else
1307#define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1308#endif
1309
1310/*
1311 * Reserve the special regions of memory
1312 */
1313void __init arm_mm_memblock_reserve(void)
1314{
1315        /*
1316         * Reserve the page tables.  These are already in use,
1317         * and can only be in node 0.
1318         */
1319        memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1320
1321#ifdef CONFIG_SA1111
1322        /*
1323         * Because of the SA1111 DMA bug, we want to preserve our
1324         * precious DMA-able memory...
1325         */
1326        memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1327#endif
1328}
1329
1330/*
1331 * Set up the device mappings.  Since we clear out the page tables for all
1332 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1333 * device mappings.  This means earlycon can be used to debug this function
1334 * Any other function or debugging method which may touch any device _will_
1335 * crash the kernel.
1336 */
1337static void __init devicemaps_init(const struct machine_desc *mdesc)
1338{
1339        struct map_desc map;
1340        unsigned long addr;
1341        void *vectors;
1342
1343        /*
1344         * Allocate the vector page early.
1345         */
1346        vectors = early_alloc(PAGE_SIZE * 2);
1347
1348        early_trap_init(vectors);
1349
1350        /*
1351         * Clear page table except top pmd used by early fixmaps
1352         */
1353        for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1354                pmd_clear(pmd_off_k(addr));
1355
1356        if (__atags_pointer) {
1357                /* create a read-only mapping of the device tree */
1358                map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1359                map.virtual = FDT_FIXED_BASE;
1360                map.length = FDT_FIXED_SIZE;
1361                map.type = MT_ROM;
1362                create_mapping(&map);
1363        }
1364
1365        /*
1366         * Map the kernel if it is XIP.
1367         * It is always first in the modulearea.
1368         */
1369#ifdef CONFIG_XIP_KERNEL
1370        map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1371        map.virtual = MODULES_VADDR;
1372        map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1373        map.type = MT_ROM;
1374        create_mapping(&map);
1375#endif
1376
1377        /*
1378         * Map the cache flushing regions.
1379         */
1380#ifdef FLUSH_BASE
1381        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1382        map.virtual = FLUSH_BASE;
1383        map.length = SZ_1M;
1384        map.type = MT_CACHECLEAN;
1385        create_mapping(&map);
1386#endif
1387#ifdef FLUSH_BASE_MINICACHE
1388        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1389        map.virtual = FLUSH_BASE_MINICACHE;
1390        map.length = SZ_1M;
1391        map.type = MT_MINICLEAN;
1392        create_mapping(&map);
1393#endif
1394
1395        /*
1396         * Create a mapping for the machine vectors at the high-vectors
1397         * location (0xffff0000).  If we aren't using high-vectors, also
1398         * create a mapping at the low-vectors virtual address.
1399         */
1400        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1401        map.virtual = 0xffff0000;
1402        map.length = PAGE_SIZE;
1403#ifdef CONFIG_KUSER_HELPERS
1404        map.type = MT_HIGH_VECTORS;
1405#else
1406        map.type = MT_LOW_VECTORS;
1407#endif
1408        create_mapping(&map);
1409
1410        if (!vectors_high()) {
1411                map.virtual = 0;
1412                map.length = PAGE_SIZE * 2;
1413                map.type = MT_LOW_VECTORS;
1414                create_mapping(&map);
1415        }
1416
1417        /* Now create a kernel read-only mapping */
1418        map.pfn += 1;
1419        map.virtual = 0xffff0000 + PAGE_SIZE;
1420        map.length = PAGE_SIZE;
1421        map.type = MT_LOW_VECTORS;
1422        create_mapping(&map);
1423
1424        /*
1425         * Ask the machine support to map in the statically mapped devices.
1426         */
1427        if (mdesc->map_io)
1428                mdesc->map_io();
1429        else
1430                debug_ll_io_init();
1431        fill_pmd_gaps();
1432
1433        /* Reserve fixed i/o space in VMALLOC region */
1434        pci_reserve_io();
1435
1436        /*
1437         * Finally flush the caches and tlb to ensure that we're in a
1438         * consistent state wrt the writebuffer.  This also ensures that
1439         * any write-allocated cache lines in the vector page are written
1440         * back.  After this point, we can start to touch devices again.
1441         */
1442        local_flush_tlb_all();
1443        flush_cache_all();
1444
1445        /* Enable asynchronous aborts */
1446        early_abt_enable();
1447}
1448
1449static void __init kmap_init(void)
1450{
1451#ifdef CONFIG_HIGHMEM
1452        pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1453                PKMAP_BASE, _PAGE_KERNEL_TABLE);
1454#endif
1455
1456        early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1457                        _PAGE_KERNEL_TABLE);
1458}
1459
1460static void __init map_lowmem(void)
1461{
1462        phys_addr_t start, end;
1463        u64 i;
1464
1465        /* Map all the lowmem memory banks. */
1466        for_each_mem_range(i, &start, &end) {
1467                struct map_desc map;
1468
1469                pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1470                         (long long)start, (long long)end);
1471                if (end > arm_lowmem_limit)
1472                        end = arm_lowmem_limit;
1473                if (start >= end)
1474                        break;
1475
1476                /*
1477                 * If our kernel image is in the VMALLOC area we need to remove
1478                 * the kernel physical memory from lowmem since the kernel will
1479                 * be mapped separately.
1480                 *
1481                 * The kernel will typically be at the very start of lowmem,
1482                 * but any placement relative to memory ranges is possible.
1483                 *
1484                 * If the memblock contains the kernel, we have to chisel out
1485                 * the kernel memory from it and map each part separately. We
1486                 * get 6 different theoretical cases:
1487                 *
1488                 *                            +--------+ +--------+
1489                 *  +-- start --+  +--------+ | Kernel | | Kernel |
1490                 *  |           |  | Kernel | | case 2 | | case 5 |
1491                 *  |           |  | case 1 | +--------+ |        | +--------+
1492                 *  |  Memory   |  +--------+            |        | | Kernel |
1493                 *  |  range    |  +--------+            |        | | case 6 |
1494                 *  |           |  | Kernel | +--------+ |        | +--------+
1495                 *  |           |  | case 3 | | Kernel | |        |
1496                 *  +-- end ----+  +--------+ | case 4 | |        |
1497                 *                            +--------+ +--------+
1498                 */
1499
1500                /* Case 5: kernel covers range, don't map anything, should be rare */
1501                if ((start > kernel_sec_start) && (end < kernel_sec_end))
1502                        break;
1503
1504                /* Cases where the kernel is starting inside the range */
1505                if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1506                        /* Case 6: kernel is embedded in the range, we need two mappings */
1507                        if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1508                                /* Map memory below the kernel */
1509                                map.pfn = __phys_to_pfn(start);
1510                                map.virtual = __phys_to_virt(start);
1511                                map.length = kernel_sec_start - start;
1512                                map.type = MT_MEMORY_RW;
1513                                create_mapping(&map);
1514                                /* Map memory above the kernel */
1515                                map.pfn = __phys_to_pfn(kernel_sec_end);
1516                                map.virtual = __phys_to_virt(kernel_sec_end);
1517                                map.length = end - kernel_sec_end;
1518                                map.type = MT_MEMORY_RW;
1519                                create_mapping(&map);
1520                                break;
1521                        }
1522                        /* Case 1: kernel and range start at the same address, should be common */
1523                        if (kernel_sec_start == start)
1524                                start = kernel_sec_end;
1525                        /* Case 3: kernel and range end at the same address, should be rare */
1526                        if (kernel_sec_end == end)
1527                                end = kernel_sec_start;
1528                } else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1529                        /* Case 2: kernel ends inside range, starts below it */
1530                        start = kernel_sec_end;
1531                } else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1532                        /* Case 4: kernel starts inside range, ends above it */
1533                        end = kernel_sec_start;
1534                }
1535                map.pfn = __phys_to_pfn(start);
1536                map.virtual = __phys_to_virt(start);
1537                map.length = end - start;
1538                map.type = MT_MEMORY_RW;
1539                create_mapping(&map);
1540        }
1541}
1542
1543static void __init map_kernel(void)
1544{
1545        /*
1546         * We use the well known kernel section start and end and split the area in the
1547         * middle like this:
1548         *  .                .
1549         *  | RW memory      |
1550         *  +----------------+ kernel_x_start
1551         *  | Executable     |
1552         *  | kernel memory  |
1553         *  +----------------+ kernel_x_end / kernel_nx_start
1554         *  | Non-executable |
1555         *  | kernel memory  |
1556         *  +----------------+ kernel_nx_end
1557         *  | RW memory      |
1558         *  .                .
1559         *
1560         * Notice that we are dealing with section sized mappings here so all of this
1561         * will be bumped to the closest section boundary. This means that some of the
1562         * non-executable part of the kernel memory is actually mapped as executable.
1563         * This will only persist until we turn on proper memory management later on
1564         * and we remap the whole kernel with page granularity.
1565         */
1566        phys_addr_t kernel_x_start = kernel_sec_start;
1567        phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1568        phys_addr_t kernel_nx_start = kernel_x_end;
1569        phys_addr_t kernel_nx_end = kernel_sec_end;
1570        struct map_desc map;
1571
1572        map.pfn = __phys_to_pfn(kernel_x_start);
1573        map.virtual = __phys_to_virt(kernel_x_start);
1574        map.length = kernel_x_end - kernel_x_start;
1575        map.type = MT_MEMORY_RWX;
1576        create_mapping(&map);
1577
1578        /* If the nx part is small it may end up covered by the tail of the RWX section */
1579        if (kernel_x_end == kernel_nx_end)
1580                return;
1581
1582        map.pfn = __phys_to_pfn(kernel_nx_start);
1583        map.virtual = __phys_to_virt(kernel_nx_start);
1584        map.length = kernel_nx_end - kernel_nx_start;
1585        map.type = MT_MEMORY_RW;
1586        create_mapping(&map);
1587}
1588
1589#ifdef CONFIG_ARM_PV_FIXUP
1590typedef void pgtables_remap(long long offset, unsigned long pgd);
1591pgtables_remap lpae_pgtables_remap_asm;
1592
1593/*
1594 * early_paging_init() recreates boot time page table setup, allowing machines
1595 * to switch over to a high (>4G) address space on LPAE systems
1596 */
1597static void __init early_paging_init(const struct machine_desc *mdesc)
1598{
1599        pgtables_remap *lpae_pgtables_remap;
1600        unsigned long pa_pgd;
1601        unsigned int cr, ttbcr;
1602        long long offset;
1603
1604        if (!mdesc->pv_fixup)
1605                return;
1606
1607        offset = mdesc->pv_fixup();
1608        if (offset == 0)
1609                return;
1610
1611        /*
1612         * Offset the kernel section physical offsets so that the kernel
1613         * mapping will work out later on.
1614         */
1615        kernel_sec_start += offset;
1616        kernel_sec_end += offset;
1617
1618        /*
1619         * Get the address of the remap function in the 1:1 identity
1620         * mapping setup by the early page table assembly code.  We
1621         * must get this prior to the pv update.  The following barrier
1622         * ensures that this is complete before we fixup any P:V offsets.
1623         */
1624        lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1625        pa_pgd = __pa(swapper_pg_dir);
1626        barrier();
1627
1628        pr_info("Switching physical address space to 0x%08llx\n",
1629                (u64)PHYS_OFFSET + offset);
1630
1631        /* Re-set the phys pfn offset, and the pv offset */
1632        __pv_offset += offset;
1633        __pv_phys_pfn_offset += PFN_DOWN(offset);
1634
1635        /* Run the patch stub to update the constants */
1636        fixup_pv_table(&__pv_table_begin,
1637                (&__pv_table_end - &__pv_table_begin) << 2);
1638
1639        /*
1640         * We changing not only the virtual to physical mapping, but also
1641         * the physical addresses used to access memory.  We need to flush
1642         * all levels of cache in the system with caching disabled to
1643         * ensure that all data is written back, and nothing is prefetched
1644         * into the caches.  We also need to prevent the TLB walkers
1645         * allocating into the caches too.  Note that this is ARMv7 LPAE
1646         * specific.
1647         */
1648        cr = get_cr();
1649        set_cr(cr & ~(CR_I | CR_C));
1650        asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1651        asm volatile("mcr p15, 0, %0, c2, c0, 2"
1652                : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1653        flush_cache_all();
1654
1655        /*
1656         * Fixup the page tables - this must be in the idmap region as
1657         * we need to disable the MMU to do this safely, and hence it
1658         * needs to be assembly.  It's fairly simple, as we're using the
1659         * temporary tables setup by the initial assembly code.
1660         */
1661        lpae_pgtables_remap(offset, pa_pgd);
1662
1663        /* Re-enable the caches and cacheable TLB walks */
1664        asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1665        set_cr(cr);
1666}
1667
1668#else
1669
1670static void __init early_paging_init(const struct machine_desc *mdesc)
1671{
1672        long long offset;
1673
1674        if (!mdesc->pv_fixup)
1675                return;
1676
1677        offset = mdesc->pv_fixup();
1678        if (offset == 0)
1679                return;
1680
1681        pr_crit("Physical address space modification is only to support Keystone2.\n");
1682        pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1683        pr_crit("feature. Your kernel may crash now, have a good day.\n");
1684        add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1685}
1686
1687#endif
1688
1689static void __init early_fixmap_shutdown(void)
1690{
1691        int i;
1692        unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1693
1694        pte_offset_fixmap = pte_offset_late_fixmap;
1695        pmd_clear(fixmap_pmd(va));
1696        local_flush_tlb_kernel_page(va);
1697
1698        for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1699                pte_t *pte;
1700                struct map_desc map;
1701
1702                map.virtual = fix_to_virt(i);
1703                pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1704
1705                /* Only i/o device mappings are supported ATM */
1706                if (pte_none(*pte) ||
1707                    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1708                        continue;
1709
1710                map.pfn = pte_pfn(*pte);
1711                map.type = MT_DEVICE;
1712                map.length = PAGE_SIZE;
1713
1714                create_mapping(&map);
1715        }
1716}
1717
1718/*
1719 * paging_init() sets up the page tables, initialises the zone memory
1720 * maps, and sets up the zero page, bad page and bad page tables.
1721 */
1722void __init paging_init(const struct machine_desc *mdesc)
1723{
1724        void *zero_page;
1725
1726        pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1727                 kernel_sec_start, kernel_sec_end);
1728
1729        prepare_page_table();
1730        map_lowmem();
1731        memblock_set_current_limit(arm_lowmem_limit);
1732        pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1733        /*
1734         * After this point early_alloc(), i.e. the memblock allocator, can
1735         * be used
1736         */
1737        map_kernel();
1738        dma_contiguous_remap();
1739        early_fixmap_shutdown();
1740        devicemaps_init(mdesc);
1741        kmap_init();
1742        tcm_init();
1743
1744        top_pmd = pmd_off_k(0xffff0000);
1745
1746        /* allocate the zero page. */
1747        zero_page = early_alloc(PAGE_SIZE);
1748
1749        bootmem_init();
1750
1751        empty_zero_page = virt_to_page(zero_page);
1752        __flush_dcache_page(NULL, empty_zero_page);
1753}
1754
1755void __init early_mm_init(const struct machine_desc *mdesc)
1756{
1757        build_mem_type_table();
1758        early_paging_init(mdesc);
1759}
1760
1761void set_pte_at(struct mm_struct *mm, unsigned long addr,
1762                              pte_t *ptep, pte_t pteval)
1763{
1764        unsigned long ext = 0;
1765
1766        if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1767                if (!pte_special(pteval))
1768                        __sync_icache_dcache(pteval);
1769                ext |= PTE_EXT_NG;
1770        }
1771
1772        set_pte_ext(ptep, pteval, ext);
1773}
1774