linux/arch/arm64/kvm/arch_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 ARM Ltd.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/cpu.h>
   8#include <linux/kvm.h>
   9#include <linux/kvm_host.h>
  10#include <linux/interrupt.h>
  11#include <linux/irq.h>
  12#include <linux/irqdomain.h>
  13#include <linux/uaccess.h>
  14
  15#include <clocksource/arm_arch_timer.h>
  16#include <asm/arch_timer.h>
  17#include <asm/kvm_emulate.h>
  18#include <asm/kvm_hyp.h>
  19
  20#include <kvm/arm_vgic.h>
  21#include <kvm/arm_arch_timer.h>
  22
  23#include "trace.h"
  24
  25static struct timecounter *timecounter;
  26static unsigned int host_vtimer_irq;
  27static unsigned int host_ptimer_irq;
  28static u32 host_vtimer_irq_flags;
  29static u32 host_ptimer_irq_flags;
  30
  31static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
  32
  33static const struct kvm_irq_level default_ptimer_irq = {
  34        .irq    = 30,
  35        .level  = 1,
  36};
  37
  38static const struct kvm_irq_level default_vtimer_irq = {
  39        .irq    = 27,
  40        .level  = 1,
  41};
  42
  43static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
  44static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
  45                                 struct arch_timer_context *timer_ctx);
  46static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
  47static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
  48                                struct arch_timer_context *timer,
  49                                enum kvm_arch_timer_regs treg,
  50                                u64 val);
  51static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
  52                              struct arch_timer_context *timer,
  53                              enum kvm_arch_timer_regs treg);
  54
  55u32 timer_get_ctl(struct arch_timer_context *ctxt)
  56{
  57        struct kvm_vcpu *vcpu = ctxt->vcpu;
  58
  59        switch(arch_timer_ctx_index(ctxt)) {
  60        case TIMER_VTIMER:
  61                return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
  62        case TIMER_PTIMER:
  63                return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
  64        default:
  65                WARN_ON(1);
  66                return 0;
  67        }
  68}
  69
  70u64 timer_get_cval(struct arch_timer_context *ctxt)
  71{
  72        struct kvm_vcpu *vcpu = ctxt->vcpu;
  73
  74        switch(arch_timer_ctx_index(ctxt)) {
  75        case TIMER_VTIMER:
  76                return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
  77        case TIMER_PTIMER:
  78                return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
  79        default:
  80                WARN_ON(1);
  81                return 0;
  82        }
  83}
  84
  85static u64 timer_get_offset(struct arch_timer_context *ctxt)
  86{
  87        struct kvm_vcpu *vcpu = ctxt->vcpu;
  88
  89        switch(arch_timer_ctx_index(ctxt)) {
  90        case TIMER_VTIMER:
  91                return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
  92        default:
  93                return 0;
  94        }
  95}
  96
  97static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
  98{
  99        struct kvm_vcpu *vcpu = ctxt->vcpu;
 100
 101        switch(arch_timer_ctx_index(ctxt)) {
 102        case TIMER_VTIMER:
 103                __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
 104                break;
 105        case TIMER_PTIMER:
 106                __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
 107                break;
 108        default:
 109                WARN_ON(1);
 110        }
 111}
 112
 113static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
 114{
 115        struct kvm_vcpu *vcpu = ctxt->vcpu;
 116
 117        switch(arch_timer_ctx_index(ctxt)) {
 118        case TIMER_VTIMER:
 119                __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
 120                break;
 121        case TIMER_PTIMER:
 122                __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
 123                break;
 124        default:
 125                WARN_ON(1);
 126        }
 127}
 128
 129static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
 130{
 131        struct kvm_vcpu *vcpu = ctxt->vcpu;
 132
 133        switch(arch_timer_ctx_index(ctxt)) {
 134        case TIMER_VTIMER:
 135                __vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
 136                break;
 137        default:
 138                WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
 139        }
 140}
 141
 142u64 kvm_phys_timer_read(void)
 143{
 144        return timecounter->cc->read(timecounter->cc);
 145}
 146
 147static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
 148{
 149        if (has_vhe()) {
 150                map->direct_vtimer = vcpu_vtimer(vcpu);
 151                map->direct_ptimer = vcpu_ptimer(vcpu);
 152                map->emul_ptimer = NULL;
 153        } else {
 154                map->direct_vtimer = vcpu_vtimer(vcpu);
 155                map->direct_ptimer = NULL;
 156                map->emul_ptimer = vcpu_ptimer(vcpu);
 157        }
 158
 159        trace_kvm_get_timer_map(vcpu->vcpu_id, map);
 160}
 161
 162static inline bool userspace_irqchip(struct kvm *kvm)
 163{
 164        return static_branch_unlikely(&userspace_irqchip_in_use) &&
 165                unlikely(!irqchip_in_kernel(kvm));
 166}
 167
 168static void soft_timer_start(struct hrtimer *hrt, u64 ns)
 169{
 170        hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
 171                      HRTIMER_MODE_ABS_HARD);
 172}
 173
 174static void soft_timer_cancel(struct hrtimer *hrt)
 175{
 176        hrtimer_cancel(hrt);
 177}
 178
 179static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
 180{
 181        struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
 182        struct arch_timer_context *ctx;
 183        struct timer_map map;
 184
 185        /*
 186         * We may see a timer interrupt after vcpu_put() has been called which
 187         * sets the CPU's vcpu pointer to NULL, because even though the timer
 188         * has been disabled in timer_save_state(), the hardware interrupt
 189         * signal may not have been retired from the interrupt controller yet.
 190         */
 191        if (!vcpu)
 192                return IRQ_HANDLED;
 193
 194        get_timer_map(vcpu, &map);
 195
 196        if (irq == host_vtimer_irq)
 197                ctx = map.direct_vtimer;
 198        else
 199                ctx = map.direct_ptimer;
 200
 201        if (kvm_timer_should_fire(ctx))
 202                kvm_timer_update_irq(vcpu, true, ctx);
 203
 204        if (userspace_irqchip(vcpu->kvm) &&
 205            !static_branch_unlikely(&has_gic_active_state))
 206                disable_percpu_irq(host_vtimer_irq);
 207
 208        return IRQ_HANDLED;
 209}
 210
 211static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
 212{
 213        u64 cval, now;
 214
 215        cval = timer_get_cval(timer_ctx);
 216        now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
 217
 218        if (now < cval) {
 219                u64 ns;
 220
 221                ns = cyclecounter_cyc2ns(timecounter->cc,
 222                                         cval - now,
 223                                         timecounter->mask,
 224                                         &timecounter->frac);
 225                return ns;
 226        }
 227
 228        return 0;
 229}
 230
 231static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
 232{
 233        WARN_ON(timer_ctx && timer_ctx->loaded);
 234        return timer_ctx &&
 235                ((timer_get_ctl(timer_ctx) &
 236                  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
 237}
 238
 239/*
 240 * Returns the earliest expiration time in ns among guest timers.
 241 * Note that it will return 0 if none of timers can fire.
 242 */
 243static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
 244{
 245        u64 min_delta = ULLONG_MAX;
 246        int i;
 247
 248        for (i = 0; i < NR_KVM_TIMERS; i++) {
 249                struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
 250
 251                WARN(ctx->loaded, "timer %d loaded\n", i);
 252                if (kvm_timer_irq_can_fire(ctx))
 253                        min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
 254        }
 255
 256        /* If none of timers can fire, then return 0 */
 257        if (min_delta == ULLONG_MAX)
 258                return 0;
 259
 260        return min_delta;
 261}
 262
 263static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
 264{
 265        struct arch_timer_cpu *timer;
 266        struct kvm_vcpu *vcpu;
 267        u64 ns;
 268
 269        timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
 270        vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
 271
 272        /*
 273         * Check that the timer has really expired from the guest's
 274         * PoV (NTP on the host may have forced it to expire
 275         * early). If we should have slept longer, restart it.
 276         */
 277        ns = kvm_timer_earliest_exp(vcpu);
 278        if (unlikely(ns)) {
 279                hrtimer_forward_now(hrt, ns_to_ktime(ns));
 280                return HRTIMER_RESTART;
 281        }
 282
 283        kvm_vcpu_wake_up(vcpu);
 284        return HRTIMER_NORESTART;
 285}
 286
 287static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
 288{
 289        struct arch_timer_context *ctx;
 290        struct kvm_vcpu *vcpu;
 291        u64 ns;
 292
 293        ctx = container_of(hrt, struct arch_timer_context, hrtimer);
 294        vcpu = ctx->vcpu;
 295
 296        trace_kvm_timer_hrtimer_expire(ctx);
 297
 298        /*
 299         * Check that the timer has really expired from the guest's
 300         * PoV (NTP on the host may have forced it to expire
 301         * early). If not ready, schedule for a later time.
 302         */
 303        ns = kvm_timer_compute_delta(ctx);
 304        if (unlikely(ns)) {
 305                hrtimer_forward_now(hrt, ns_to_ktime(ns));
 306                return HRTIMER_RESTART;
 307        }
 308
 309        kvm_timer_update_irq(vcpu, true, ctx);
 310        return HRTIMER_NORESTART;
 311}
 312
 313static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
 314{
 315        enum kvm_arch_timers index;
 316        u64 cval, now;
 317
 318        if (!timer_ctx)
 319                return false;
 320
 321        index = arch_timer_ctx_index(timer_ctx);
 322
 323        if (timer_ctx->loaded) {
 324                u32 cnt_ctl = 0;
 325
 326                switch (index) {
 327                case TIMER_VTIMER:
 328                        cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
 329                        break;
 330                case TIMER_PTIMER:
 331                        cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
 332                        break;
 333                case NR_KVM_TIMERS:
 334                        /* GCC is braindead */
 335                        cnt_ctl = 0;
 336                        break;
 337                }
 338
 339                return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
 340                        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
 341                       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
 342        }
 343
 344        if (!kvm_timer_irq_can_fire(timer_ctx))
 345                return false;
 346
 347        cval = timer_get_cval(timer_ctx);
 348        now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
 349
 350        return cval <= now;
 351}
 352
 353bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
 354{
 355        struct timer_map map;
 356
 357        get_timer_map(vcpu, &map);
 358
 359        return kvm_timer_should_fire(map.direct_vtimer) ||
 360               kvm_timer_should_fire(map.direct_ptimer) ||
 361               kvm_timer_should_fire(map.emul_ptimer);
 362}
 363
 364/*
 365 * Reflect the timer output level into the kvm_run structure
 366 */
 367void kvm_timer_update_run(struct kvm_vcpu *vcpu)
 368{
 369        struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 370        struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 371        struct kvm_sync_regs *regs = &vcpu->run->s.regs;
 372
 373        /* Populate the device bitmap with the timer states */
 374        regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
 375                                    KVM_ARM_DEV_EL1_PTIMER);
 376        if (kvm_timer_should_fire(vtimer))
 377                regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
 378        if (kvm_timer_should_fire(ptimer))
 379                regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
 380}
 381
 382static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
 383                                 struct arch_timer_context *timer_ctx)
 384{
 385        int ret;
 386
 387        timer_ctx->irq.level = new_level;
 388        trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
 389                                   timer_ctx->irq.level);
 390
 391        if (!userspace_irqchip(vcpu->kvm)) {
 392                ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
 393                                          timer_ctx->irq.irq,
 394                                          timer_ctx->irq.level,
 395                                          timer_ctx);
 396                WARN_ON(ret);
 397        }
 398}
 399
 400/* Only called for a fully emulated timer */
 401static void timer_emulate(struct arch_timer_context *ctx)
 402{
 403        bool should_fire = kvm_timer_should_fire(ctx);
 404
 405        trace_kvm_timer_emulate(ctx, should_fire);
 406
 407        if (should_fire != ctx->irq.level) {
 408                kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
 409                return;
 410        }
 411
 412        /*
 413         * If the timer can fire now, we don't need to have a soft timer
 414         * scheduled for the future.  If the timer cannot fire at all,
 415         * then we also don't need a soft timer.
 416         */
 417        if (!kvm_timer_irq_can_fire(ctx)) {
 418                soft_timer_cancel(&ctx->hrtimer);
 419                return;
 420        }
 421
 422        soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
 423}
 424
 425static void timer_save_state(struct arch_timer_context *ctx)
 426{
 427        struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
 428        enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
 429        unsigned long flags;
 430
 431        if (!timer->enabled)
 432                return;
 433
 434        local_irq_save(flags);
 435
 436        if (!ctx->loaded)
 437                goto out;
 438
 439        switch (index) {
 440        case TIMER_VTIMER:
 441                timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
 442                timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
 443
 444                /* Disable the timer */
 445                write_sysreg_el0(0, SYS_CNTV_CTL);
 446                isb();
 447
 448                break;
 449        case TIMER_PTIMER:
 450                timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
 451                timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));
 452
 453                /* Disable the timer */
 454                write_sysreg_el0(0, SYS_CNTP_CTL);
 455                isb();
 456
 457                break;
 458        case NR_KVM_TIMERS:
 459                BUG();
 460        }
 461
 462        trace_kvm_timer_save_state(ctx);
 463
 464        ctx->loaded = false;
 465out:
 466        local_irq_restore(flags);
 467}
 468
 469/*
 470 * Schedule the background timer before calling kvm_vcpu_block, so that this
 471 * thread is removed from its waitqueue and made runnable when there's a timer
 472 * interrupt to handle.
 473 */
 474static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
 475{
 476        struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 477        struct timer_map map;
 478
 479        get_timer_map(vcpu, &map);
 480
 481        /*
 482         * If no timers are capable of raising interrupts (disabled or
 483         * masked), then there's no more work for us to do.
 484         */
 485        if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
 486            !kvm_timer_irq_can_fire(map.direct_ptimer) &&
 487            !kvm_timer_irq_can_fire(map.emul_ptimer))
 488                return;
 489
 490        /*
 491         * At least one guest time will expire. Schedule a background timer.
 492         * Set the earliest expiration time among the guest timers.
 493         */
 494        soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
 495}
 496
 497static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
 498{
 499        struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 500
 501        soft_timer_cancel(&timer->bg_timer);
 502}
 503
 504static void timer_restore_state(struct arch_timer_context *ctx)
 505{
 506        struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
 507        enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
 508        unsigned long flags;
 509
 510        if (!timer->enabled)
 511                return;
 512
 513        local_irq_save(flags);
 514
 515        if (ctx->loaded)
 516                goto out;
 517
 518        switch (index) {
 519        case TIMER_VTIMER:
 520                write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
 521                isb();
 522                write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
 523                break;
 524        case TIMER_PTIMER:
 525                write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
 526                isb();
 527                write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
 528                break;
 529        case NR_KVM_TIMERS:
 530                BUG();
 531        }
 532
 533        trace_kvm_timer_restore_state(ctx);
 534
 535        ctx->loaded = true;
 536out:
 537        local_irq_restore(flags);
 538}
 539
 540static void set_cntvoff(u64 cntvoff)
 541{
 542        kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
 543}
 544
 545static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
 546{
 547        int r;
 548        r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
 549        WARN_ON(r);
 550}
 551
 552static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
 553{
 554        struct kvm_vcpu *vcpu = ctx->vcpu;
 555        bool phys_active = false;
 556
 557        /*
 558         * Update the timer output so that it is likely to match the
 559         * state we're about to restore. If the timer expires between
 560         * this point and the register restoration, we'll take the
 561         * interrupt anyway.
 562         */
 563        kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
 564
 565        if (irqchip_in_kernel(vcpu->kvm))
 566                phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
 567
 568        phys_active |= ctx->irq.level;
 569
 570        set_timer_irq_phys_active(ctx, phys_active);
 571}
 572
 573static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
 574{
 575        struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 576
 577        /*
 578         * Update the timer output so that it is likely to match the
 579         * state we're about to restore. If the timer expires between
 580         * this point and the register restoration, we'll take the
 581         * interrupt anyway.
 582         */
 583        kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
 584
 585        /*
 586         * When using a userspace irqchip with the architected timers and a
 587         * host interrupt controller that doesn't support an active state, we
 588         * must still prevent continuously exiting from the guest, and
 589         * therefore mask the physical interrupt by disabling it on the host
 590         * interrupt controller when the virtual level is high, such that the
 591         * guest can make forward progress.  Once we detect the output level
 592         * being de-asserted, we unmask the interrupt again so that we exit
 593         * from the guest when the timer fires.
 594         */
 595        if (vtimer->irq.level)
 596                disable_percpu_irq(host_vtimer_irq);
 597        else
 598                enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 599}
 600
 601void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
 602{
 603        struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 604        struct timer_map map;
 605
 606        if (unlikely(!timer->enabled))
 607                return;
 608
 609        get_timer_map(vcpu, &map);
 610
 611        if (static_branch_likely(&has_gic_active_state)) {
 612                kvm_timer_vcpu_load_gic(map.direct_vtimer);
 613                if (map.direct_ptimer)
 614                        kvm_timer_vcpu_load_gic(map.direct_ptimer);
 615        } else {
 616                kvm_timer_vcpu_load_nogic(vcpu);
 617        }
 618
 619        set_cntvoff(timer_get_offset(map.direct_vtimer));
 620
 621        kvm_timer_unblocking(vcpu);
 622
 623        timer_restore_state(map.direct_vtimer);
 624        if (map.direct_ptimer)
 625                timer_restore_state(map.direct_ptimer);
 626
 627        if (map.emul_ptimer)
 628                timer_emulate(map.emul_ptimer);
 629}
 630
 631bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
 632{
 633        struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 634        struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 635        struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
 636        bool vlevel, plevel;
 637
 638        if (likely(irqchip_in_kernel(vcpu->kvm)))
 639                return false;
 640
 641        vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
 642        plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
 643
 644        return kvm_timer_should_fire(vtimer) != vlevel ||
 645               kvm_timer_should_fire(ptimer) != plevel;
 646}
 647
 648void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
 649{
 650        struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 651        struct timer_map map;
 652        struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
 653
 654        if (unlikely(!timer->enabled))
 655                return;
 656
 657        get_timer_map(vcpu, &map);
 658
 659        timer_save_state(map.direct_vtimer);
 660        if (map.direct_ptimer)
 661                timer_save_state(map.direct_ptimer);
 662
 663        /*
 664         * Cancel soft timer emulation, because the only case where we
 665         * need it after a vcpu_put is in the context of a sleeping VCPU, and
 666         * in that case we already factor in the deadline for the physical
 667         * timer when scheduling the bg_timer.
 668         *
 669         * In any case, we re-schedule the hrtimer for the physical timer when
 670         * coming back to the VCPU thread in kvm_timer_vcpu_load().
 671         */
 672        if (map.emul_ptimer)
 673                soft_timer_cancel(&map.emul_ptimer->hrtimer);
 674
 675        if (rcuwait_active(wait))
 676                kvm_timer_blocking(vcpu);
 677
 678        /*
 679         * The kernel may decide to run userspace after calling vcpu_put, so
 680         * we reset cntvoff to 0 to ensure a consistent read between user
 681         * accesses to the virtual counter and kernel access to the physical
 682         * counter of non-VHE case. For VHE, the virtual counter uses a fixed
 683         * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
 684         */
 685        set_cntvoff(0);
 686}
 687
 688/*
 689 * With a userspace irqchip we have to check if the guest de-asserted the
 690 * timer and if so, unmask the timer irq signal on the host interrupt
 691 * controller to ensure that we see future timer signals.
 692 */
 693static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
 694{
 695        struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 696
 697        if (!kvm_timer_should_fire(vtimer)) {
 698                kvm_timer_update_irq(vcpu, false, vtimer);
 699                if (static_branch_likely(&has_gic_active_state))
 700                        set_timer_irq_phys_active(vtimer, false);
 701                else
 702                        enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 703        }
 704}
 705
 706void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
 707{
 708        struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 709
 710        if (unlikely(!timer->enabled))
 711                return;
 712
 713        if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
 714                unmask_vtimer_irq_user(vcpu);
 715}
 716
 717int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
 718{
 719        struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 720        struct timer_map map;
 721
 722        get_timer_map(vcpu, &map);
 723
 724        /*
 725         * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
 726         * and to 0 for ARMv7.  We provide an implementation that always
 727         * resets the timer to be disabled and unmasked and is compliant with
 728         * the ARMv7 architecture.
 729         */
 730        timer_set_ctl(vcpu_vtimer(vcpu), 0);
 731        timer_set_ctl(vcpu_ptimer(vcpu), 0);
 732
 733        if (timer->enabled) {
 734                kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
 735                kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
 736
 737                if (irqchip_in_kernel(vcpu->kvm)) {
 738                        kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
 739                        if (map.direct_ptimer)
 740                                kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
 741                }
 742        }
 743
 744        if (map.emul_ptimer)
 745                soft_timer_cancel(&map.emul_ptimer->hrtimer);
 746
 747        return 0;
 748}
 749
 750/* Make the updates of cntvoff for all vtimer contexts atomic */
 751static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
 752{
 753        int i;
 754        struct kvm *kvm = vcpu->kvm;
 755        struct kvm_vcpu *tmp;
 756
 757        mutex_lock(&kvm->lock);
 758        kvm_for_each_vcpu(i, tmp, kvm)
 759                timer_set_offset(vcpu_vtimer(tmp), cntvoff);
 760
 761        /*
 762         * When called from the vcpu create path, the CPU being created is not
 763         * included in the loop above, so we just set it here as well.
 764         */
 765        timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
 766        mutex_unlock(&kvm->lock);
 767}
 768
 769void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
 770{
 771        struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 772        struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 773        struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 774
 775        vtimer->vcpu = vcpu;
 776        ptimer->vcpu = vcpu;
 777
 778        /* Synchronize cntvoff across all vtimers of a VM. */
 779        update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
 780        timer_set_offset(ptimer, 0);
 781
 782        hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
 783        timer->bg_timer.function = kvm_bg_timer_expire;
 784
 785        hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
 786        hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
 787        vtimer->hrtimer.function = kvm_hrtimer_expire;
 788        ptimer->hrtimer.function = kvm_hrtimer_expire;
 789
 790        vtimer->irq.irq = default_vtimer_irq.irq;
 791        ptimer->irq.irq = default_ptimer_irq.irq;
 792
 793        vtimer->host_timer_irq = host_vtimer_irq;
 794        ptimer->host_timer_irq = host_ptimer_irq;
 795
 796        vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
 797        ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
 798}
 799
 800static void kvm_timer_init_interrupt(void *info)
 801{
 802        enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 803        enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
 804}
 805
 806int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
 807{
 808        struct arch_timer_context *timer;
 809
 810        switch (regid) {
 811        case KVM_REG_ARM_TIMER_CTL:
 812                timer = vcpu_vtimer(vcpu);
 813                kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
 814                break;
 815        case KVM_REG_ARM_TIMER_CNT:
 816                timer = vcpu_vtimer(vcpu);
 817                update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
 818                break;
 819        case KVM_REG_ARM_TIMER_CVAL:
 820                timer = vcpu_vtimer(vcpu);
 821                kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
 822                break;
 823        case KVM_REG_ARM_PTIMER_CTL:
 824                timer = vcpu_ptimer(vcpu);
 825                kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
 826                break;
 827        case KVM_REG_ARM_PTIMER_CVAL:
 828                timer = vcpu_ptimer(vcpu);
 829                kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
 830                break;
 831
 832        default:
 833                return -1;
 834        }
 835
 836        return 0;
 837}
 838
 839static u64 read_timer_ctl(struct arch_timer_context *timer)
 840{
 841        /*
 842         * Set ISTATUS bit if it's expired.
 843         * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
 844         * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
 845         * regardless of ENABLE bit for our implementation convenience.
 846         */
 847        u32 ctl = timer_get_ctl(timer);
 848
 849        if (!kvm_timer_compute_delta(timer))
 850                ctl |= ARCH_TIMER_CTRL_IT_STAT;
 851
 852        return ctl;
 853}
 854
 855u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
 856{
 857        switch (regid) {
 858        case KVM_REG_ARM_TIMER_CTL:
 859                return kvm_arm_timer_read(vcpu,
 860                                          vcpu_vtimer(vcpu), TIMER_REG_CTL);
 861        case KVM_REG_ARM_TIMER_CNT:
 862                return kvm_arm_timer_read(vcpu,
 863                                          vcpu_vtimer(vcpu), TIMER_REG_CNT);
 864        case KVM_REG_ARM_TIMER_CVAL:
 865                return kvm_arm_timer_read(vcpu,
 866                                          vcpu_vtimer(vcpu), TIMER_REG_CVAL);
 867        case KVM_REG_ARM_PTIMER_CTL:
 868                return kvm_arm_timer_read(vcpu,
 869                                          vcpu_ptimer(vcpu), TIMER_REG_CTL);
 870        case KVM_REG_ARM_PTIMER_CNT:
 871                return kvm_arm_timer_read(vcpu,
 872                                          vcpu_ptimer(vcpu), TIMER_REG_CNT);
 873        case KVM_REG_ARM_PTIMER_CVAL:
 874                return kvm_arm_timer_read(vcpu,
 875                                          vcpu_ptimer(vcpu), TIMER_REG_CVAL);
 876        }
 877        return (u64)-1;
 878}
 879
 880static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
 881                              struct arch_timer_context *timer,
 882                              enum kvm_arch_timer_regs treg)
 883{
 884        u64 val;
 885
 886        switch (treg) {
 887        case TIMER_REG_TVAL:
 888                val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
 889                val = lower_32_bits(val);
 890                break;
 891
 892        case TIMER_REG_CTL:
 893                val = read_timer_ctl(timer);
 894                break;
 895
 896        case TIMER_REG_CVAL:
 897                val = timer_get_cval(timer);
 898                break;
 899
 900        case TIMER_REG_CNT:
 901                val = kvm_phys_timer_read() - timer_get_offset(timer);
 902                break;
 903
 904        default:
 905                BUG();
 906        }
 907
 908        return val;
 909}
 910
 911u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
 912                              enum kvm_arch_timers tmr,
 913                              enum kvm_arch_timer_regs treg)
 914{
 915        u64 val;
 916
 917        preempt_disable();
 918        kvm_timer_vcpu_put(vcpu);
 919
 920        val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
 921
 922        kvm_timer_vcpu_load(vcpu);
 923        preempt_enable();
 924
 925        return val;
 926}
 927
 928static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
 929                                struct arch_timer_context *timer,
 930                                enum kvm_arch_timer_regs treg,
 931                                u64 val)
 932{
 933        switch (treg) {
 934        case TIMER_REG_TVAL:
 935                timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
 936                break;
 937
 938        case TIMER_REG_CTL:
 939                timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
 940                break;
 941
 942        case TIMER_REG_CVAL:
 943                timer_set_cval(timer, val);
 944                break;
 945
 946        default:
 947                BUG();
 948        }
 949}
 950
 951void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
 952                                enum kvm_arch_timers tmr,
 953                                enum kvm_arch_timer_regs treg,
 954                                u64 val)
 955{
 956        preempt_disable();
 957        kvm_timer_vcpu_put(vcpu);
 958
 959        kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
 960
 961        kvm_timer_vcpu_load(vcpu);
 962        preempt_enable();
 963}
 964
 965static int kvm_timer_starting_cpu(unsigned int cpu)
 966{
 967        kvm_timer_init_interrupt(NULL);
 968        return 0;
 969}
 970
 971static int kvm_timer_dying_cpu(unsigned int cpu)
 972{
 973        disable_percpu_irq(host_vtimer_irq);
 974        return 0;
 975}
 976
 977static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
 978{
 979        if (vcpu)
 980                irqd_set_forwarded_to_vcpu(d);
 981        else
 982                irqd_clr_forwarded_to_vcpu(d);
 983
 984        return 0;
 985}
 986
 987static int timer_irq_set_irqchip_state(struct irq_data *d,
 988                                       enum irqchip_irq_state which, bool val)
 989{
 990        if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
 991                return irq_chip_set_parent_state(d, which, val);
 992
 993        if (val)
 994                irq_chip_mask_parent(d);
 995        else
 996                irq_chip_unmask_parent(d);
 997
 998        return 0;
 999}
1000
1001static void timer_irq_eoi(struct irq_data *d)
1002{
1003        if (!irqd_is_forwarded_to_vcpu(d))
1004                irq_chip_eoi_parent(d);
1005}
1006
1007static void timer_irq_ack(struct irq_data *d)
1008{
1009        d = d->parent_data;
1010        if (d->chip->irq_ack)
1011                d->chip->irq_ack(d);
1012}
1013
1014static struct irq_chip timer_chip = {
1015        .name                   = "KVM",
1016        .irq_ack                = timer_irq_ack,
1017        .irq_mask               = irq_chip_mask_parent,
1018        .irq_unmask             = irq_chip_unmask_parent,
1019        .irq_eoi                = timer_irq_eoi,
1020        .irq_set_type           = irq_chip_set_type_parent,
1021        .irq_set_vcpu_affinity  = timer_irq_set_vcpu_affinity,
1022        .irq_set_irqchip_state  = timer_irq_set_irqchip_state,
1023};
1024
1025static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1026                                  unsigned int nr_irqs, void *arg)
1027{
1028        irq_hw_number_t hwirq = (uintptr_t)arg;
1029
1030        return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1031                                             &timer_chip, NULL);
1032}
1033
1034static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1035                                  unsigned int nr_irqs)
1036{
1037}
1038
1039static const struct irq_domain_ops timer_domain_ops = {
1040        .alloc  = timer_irq_domain_alloc,
1041        .free   = timer_irq_domain_free,
1042};
1043
1044static struct irq_ops arch_timer_irq_ops = {
1045        .get_input_level = kvm_arch_timer_get_input_level,
1046};
1047
1048static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1049{
1050        *flags = irq_get_trigger_type(virq);
1051        if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1052                kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1053                        virq);
1054                *flags = IRQF_TRIGGER_LOW;
1055        }
1056}
1057
1058static int kvm_irq_init(struct arch_timer_kvm_info *info)
1059{
1060        struct irq_domain *domain = NULL;
1061
1062        if (info->virtual_irq <= 0) {
1063                kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1064                        info->virtual_irq);
1065                return -ENODEV;
1066        }
1067
1068        host_vtimer_irq = info->virtual_irq;
1069        kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1070
1071        if (kvm_vgic_global_state.no_hw_deactivation) {
1072                struct fwnode_handle *fwnode;
1073                struct irq_data *data;
1074
1075                fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1076                if (!fwnode)
1077                        return -ENOMEM;
1078
1079                /* Assume both vtimer and ptimer in the same parent */
1080                data = irq_get_irq_data(host_vtimer_irq);
1081                domain = irq_domain_create_hierarchy(data->domain, 0,
1082                                                     NR_KVM_TIMERS, fwnode,
1083                                                     &timer_domain_ops, NULL);
1084                if (!domain) {
1085                        irq_domain_free_fwnode(fwnode);
1086                        return -ENOMEM;
1087                }
1088
1089                arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1090                WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1091                                            (void *)TIMER_VTIMER));
1092        }
1093
1094        if (info->physical_irq > 0) {
1095                host_ptimer_irq = info->physical_irq;
1096                kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1097
1098                if (domain)
1099                        WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1100                                                    (void *)TIMER_PTIMER));
1101        }
1102
1103        return 0;
1104}
1105
1106int kvm_timer_hyp_init(bool has_gic)
1107{
1108        struct arch_timer_kvm_info *info;
1109        int err;
1110
1111        info = arch_timer_get_kvm_info();
1112        timecounter = &info->timecounter;
1113
1114        if (!timecounter->cc) {
1115                kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1116                return -ENODEV;
1117        }
1118
1119        err = kvm_irq_init(info);
1120        if (err)
1121                return err;
1122
1123        /* First, do the virtual EL1 timer irq */
1124
1125        err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1126                                 "kvm guest vtimer", kvm_get_running_vcpus());
1127        if (err) {
1128                kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1129                        host_vtimer_irq, err);
1130                return err;
1131        }
1132
1133        if (has_gic) {
1134                err = irq_set_vcpu_affinity(host_vtimer_irq,
1135                                            kvm_get_running_vcpus());
1136                if (err) {
1137                        kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1138                        goto out_free_irq;
1139                }
1140
1141                static_branch_enable(&has_gic_active_state);
1142        }
1143
1144        kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1145
1146        /* Now let's do the physical EL1 timer irq */
1147
1148        if (info->physical_irq > 0) {
1149                err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1150                                         "kvm guest ptimer", kvm_get_running_vcpus());
1151                if (err) {
1152                        kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1153                                host_ptimer_irq, err);
1154                        return err;
1155                }
1156
1157                if (has_gic) {
1158                        err = irq_set_vcpu_affinity(host_ptimer_irq,
1159                                                    kvm_get_running_vcpus());
1160                        if (err) {
1161                                kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1162                                goto out_free_irq;
1163                        }
1164                }
1165
1166                kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1167        } else if (has_vhe()) {
1168                kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1169                        info->physical_irq);
1170                err = -ENODEV;
1171                goto out_free_irq;
1172        }
1173
1174        cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
1175                          "kvm/arm/timer:starting", kvm_timer_starting_cpu,
1176                          kvm_timer_dying_cpu);
1177        return 0;
1178out_free_irq:
1179        free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1180        return err;
1181}
1182
1183void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1184{
1185        struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1186
1187        soft_timer_cancel(&timer->bg_timer);
1188}
1189
1190static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1191{
1192        int vtimer_irq, ptimer_irq;
1193        int i, ret;
1194
1195        vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
1196        ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
1197        if (ret)
1198                return false;
1199
1200        ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
1201        ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
1202        if (ret)
1203                return false;
1204
1205        kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
1206                if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
1207                    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
1208                        return false;
1209        }
1210
1211        return true;
1212}
1213
1214bool kvm_arch_timer_get_input_level(int vintid)
1215{
1216        struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1217        struct arch_timer_context *timer;
1218
1219        if (vintid == vcpu_vtimer(vcpu)->irq.irq)
1220                timer = vcpu_vtimer(vcpu);
1221        else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
1222                timer = vcpu_ptimer(vcpu);
1223        else
1224                BUG();
1225
1226        return kvm_timer_should_fire(timer);
1227}
1228
1229int kvm_timer_enable(struct kvm_vcpu *vcpu)
1230{
1231        struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1232        struct timer_map map;
1233        int ret;
1234
1235        if (timer->enabled)
1236                return 0;
1237
1238        /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1239        if (!irqchip_in_kernel(vcpu->kvm))
1240                goto no_vgic;
1241
1242        /*
1243         * At this stage, we have the guarantee that the vgic is both
1244         * available and initialized.
1245         */
1246        if (!timer_irqs_are_valid(vcpu)) {
1247                kvm_debug("incorrectly configured timer irqs\n");
1248                return -EINVAL;
1249        }
1250
1251        get_timer_map(vcpu, &map);
1252
1253        ret = kvm_vgic_map_phys_irq(vcpu,
1254                                    map.direct_vtimer->host_timer_irq,
1255                                    map.direct_vtimer->irq.irq,
1256                                    &arch_timer_irq_ops);
1257        if (ret)
1258                return ret;
1259
1260        if (map.direct_ptimer) {
1261                ret = kvm_vgic_map_phys_irq(vcpu,
1262                                            map.direct_ptimer->host_timer_irq,
1263                                            map.direct_ptimer->irq.irq,
1264                                            &arch_timer_irq_ops);
1265        }
1266
1267        if (ret)
1268                return ret;
1269
1270no_vgic:
1271        timer->enabled = 1;
1272        return 0;
1273}
1274
1275/*
1276 * On VHE system, we only need to configure the EL2 timer trap register once,
1277 * not for every world switch.
1278 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
1279 * and this makes those bits have no effect for the host kernel execution.
1280 */
1281void kvm_timer_init_vhe(void)
1282{
1283        /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
1284        u32 cnthctl_shift = 10;
1285        u64 val;
1286
1287        /*
1288         * VHE systems allow the guest direct access to the EL1 physical
1289         * timer/counter.
1290         */
1291        val = read_sysreg(cnthctl_el2);
1292        val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
1293        val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
1294        write_sysreg(val, cnthctl_el2);
1295}
1296
1297static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
1298{
1299        struct kvm_vcpu *vcpu;
1300        int i;
1301
1302        kvm_for_each_vcpu(i, vcpu, kvm) {
1303                vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
1304                vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
1305        }
1306}
1307
1308int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1309{
1310        int __user *uaddr = (int __user *)(long)attr->addr;
1311        struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
1312        struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
1313        int irq;
1314
1315        if (!irqchip_in_kernel(vcpu->kvm))
1316                return -EINVAL;
1317
1318        if (get_user(irq, uaddr))
1319                return -EFAULT;
1320
1321        if (!(irq_is_ppi(irq)))
1322                return -EINVAL;
1323
1324        if (vcpu->arch.timer_cpu.enabled)
1325                return -EBUSY;
1326
1327        switch (attr->attr) {
1328        case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1329                set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
1330                break;
1331        case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1332                set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
1333                break;
1334        default:
1335                return -ENXIO;
1336        }
1337
1338        return 0;
1339}
1340
1341int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1342{
1343        int __user *uaddr = (int __user *)(long)attr->addr;
1344        struct arch_timer_context *timer;
1345        int irq;
1346
1347        switch (attr->attr) {
1348        case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1349                timer = vcpu_vtimer(vcpu);
1350                break;
1351        case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1352                timer = vcpu_ptimer(vcpu);
1353                break;
1354        default:
1355                return -ENXIO;
1356        }
1357
1358        irq = timer->irq.irq;
1359        return put_user(irq, uaddr);
1360}
1361
1362int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1363{
1364        switch (attr->attr) {
1365        case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1366        case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1367                return 0;
1368        }
1369
1370        return -ENXIO;
1371}
1372