linux/arch/arm64/kvm/arm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   5 */
   6
   7#include <linux/bug.h>
   8#include <linux/cpu_pm.h>
   9#include <linux/entry-kvm.h>
  10#include <linux/errno.h>
  11#include <linux/err.h>
  12#include <linux/kvm_host.h>
  13#include <linux/list.h>
  14#include <linux/module.h>
  15#include <linux/vmalloc.h>
  16#include <linux/fs.h>
  17#include <linux/mman.h>
  18#include <linux/sched.h>
  19#include <linux/kmemleak.h>
  20#include <linux/kvm.h>
  21#include <linux/kvm_irqfd.h>
  22#include <linux/irqbypass.h>
  23#include <linux/sched/stat.h>
  24#include <linux/psci.h>
  25#include <trace/events/kvm.h>
  26
  27#define CREATE_TRACE_POINTS
  28#include "trace_arm.h"
  29
  30#include <linux/uaccess.h>
  31#include <asm/ptrace.h>
  32#include <asm/mman.h>
  33#include <asm/tlbflush.h>
  34#include <asm/cacheflush.h>
  35#include <asm/cpufeature.h>
  36#include <asm/virt.h>
  37#include <asm/kvm_arm.h>
  38#include <asm/kvm_asm.h>
  39#include <asm/kvm_mmu.h>
  40#include <asm/kvm_emulate.h>
  41#include <asm/sections.h>
  42
  43#include <kvm/arm_hypercalls.h>
  44#include <kvm/arm_pmu.h>
  45#include <kvm/arm_psci.h>
  46
  47static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
  48DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
  49
  50DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
  51
  52static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  53unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
  54DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
  55
  56/* The VMID used in the VTTBR */
  57static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  58static u32 kvm_next_vmid;
  59static DEFINE_SPINLOCK(kvm_vmid_lock);
  60
  61static bool vgic_present;
  62
  63static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
  64DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
  65
  66int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  67{
  68        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  69}
  70
  71int kvm_arch_hardware_setup(void *opaque)
  72{
  73        return 0;
  74}
  75
  76int kvm_arch_check_processor_compat(void *opaque)
  77{
  78        return 0;
  79}
  80
  81int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
  82                            struct kvm_enable_cap *cap)
  83{
  84        int r;
  85
  86        if (cap->flags)
  87                return -EINVAL;
  88
  89        switch (cap->cap) {
  90        case KVM_CAP_ARM_NISV_TO_USER:
  91                r = 0;
  92                kvm->arch.return_nisv_io_abort_to_user = true;
  93                break;
  94        case KVM_CAP_ARM_MTE:
  95                mutex_lock(&kvm->lock);
  96                if (!system_supports_mte() || kvm->created_vcpus) {
  97                        r = -EINVAL;
  98                } else {
  99                        r = 0;
 100                        kvm->arch.mte_enabled = true;
 101                }
 102                mutex_unlock(&kvm->lock);
 103                break;
 104        default:
 105                r = -EINVAL;
 106                break;
 107        }
 108
 109        return r;
 110}
 111
 112static int kvm_arm_default_max_vcpus(void)
 113{
 114        return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
 115}
 116
 117static void set_default_spectre(struct kvm *kvm)
 118{
 119        /*
 120         * The default is to expose CSV2 == 1 if the HW isn't affected.
 121         * Although this is a per-CPU feature, we make it global because
 122         * asymmetric systems are just a nuisance.
 123         *
 124         * Userspace can override this as long as it doesn't promise
 125         * the impossible.
 126         */
 127        if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
 128                kvm->arch.pfr0_csv2 = 1;
 129        if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
 130                kvm->arch.pfr0_csv3 = 1;
 131}
 132
 133/**
 134 * kvm_arch_init_vm - initializes a VM data structure
 135 * @kvm:        pointer to the KVM struct
 136 */
 137int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 138{
 139        int ret;
 140
 141        ret = kvm_arm_setup_stage2(kvm, type);
 142        if (ret)
 143                return ret;
 144
 145        ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
 146        if (ret)
 147                return ret;
 148
 149        ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
 150        if (ret)
 151                goto out_free_stage2_pgd;
 152
 153        kvm_vgic_early_init(kvm);
 154
 155        /* The maximum number of VCPUs is limited by the host's GIC model */
 156        kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
 157
 158        set_default_spectre(kvm);
 159
 160        return ret;
 161out_free_stage2_pgd:
 162        kvm_free_stage2_pgd(&kvm->arch.mmu);
 163        return ret;
 164}
 165
 166vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 167{
 168        return VM_FAULT_SIGBUS;
 169}
 170
 171
 172/**
 173 * kvm_arch_destroy_vm - destroy the VM data structure
 174 * @kvm:        pointer to the KVM struct
 175 */
 176void kvm_arch_destroy_vm(struct kvm *kvm)
 177{
 178        int i;
 179
 180        bitmap_free(kvm->arch.pmu_filter);
 181
 182        kvm_vgic_destroy(kvm);
 183
 184        for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 185                if (kvm->vcpus[i]) {
 186                        kvm_vcpu_destroy(kvm->vcpus[i]);
 187                        kvm->vcpus[i] = NULL;
 188                }
 189        }
 190        atomic_set(&kvm->online_vcpus, 0);
 191}
 192
 193int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 194{
 195        int r;
 196        switch (ext) {
 197        case KVM_CAP_IRQCHIP:
 198                r = vgic_present;
 199                break;
 200        case KVM_CAP_IOEVENTFD:
 201        case KVM_CAP_DEVICE_CTRL:
 202        case KVM_CAP_USER_MEMORY:
 203        case KVM_CAP_SYNC_MMU:
 204        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 205        case KVM_CAP_ONE_REG:
 206        case KVM_CAP_ARM_PSCI:
 207        case KVM_CAP_ARM_PSCI_0_2:
 208        case KVM_CAP_READONLY_MEM:
 209        case KVM_CAP_MP_STATE:
 210        case KVM_CAP_IMMEDIATE_EXIT:
 211        case KVM_CAP_VCPU_EVENTS:
 212        case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
 213        case KVM_CAP_ARM_NISV_TO_USER:
 214        case KVM_CAP_ARM_INJECT_EXT_DABT:
 215        case KVM_CAP_SET_GUEST_DEBUG:
 216        case KVM_CAP_VCPU_ATTRIBUTES:
 217        case KVM_CAP_PTP_KVM:
 218                r = 1;
 219                break;
 220        case KVM_CAP_SET_GUEST_DEBUG2:
 221                return KVM_GUESTDBG_VALID_MASK;
 222        case KVM_CAP_ARM_SET_DEVICE_ADDR:
 223                r = 1;
 224                break;
 225        case KVM_CAP_NR_VCPUS:
 226                r = num_online_cpus();
 227                break;
 228        case KVM_CAP_MAX_VCPUS:
 229        case KVM_CAP_MAX_VCPU_ID:
 230                if (kvm)
 231                        r = kvm->arch.max_vcpus;
 232                else
 233                        r = kvm_arm_default_max_vcpus();
 234                break;
 235        case KVM_CAP_MSI_DEVID:
 236                if (!kvm)
 237                        r = -EINVAL;
 238                else
 239                        r = kvm->arch.vgic.msis_require_devid;
 240                break;
 241        case KVM_CAP_ARM_USER_IRQ:
 242                /*
 243                 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
 244                 * (bump this number if adding more devices)
 245                 */
 246                r = 1;
 247                break;
 248        case KVM_CAP_ARM_MTE:
 249                r = system_supports_mte();
 250                break;
 251        case KVM_CAP_STEAL_TIME:
 252                r = kvm_arm_pvtime_supported();
 253                break;
 254        case KVM_CAP_ARM_EL1_32BIT:
 255                r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
 256                break;
 257        case KVM_CAP_GUEST_DEBUG_HW_BPS:
 258                r = get_num_brps();
 259                break;
 260        case KVM_CAP_GUEST_DEBUG_HW_WPS:
 261                r = get_num_wrps();
 262                break;
 263        case KVM_CAP_ARM_PMU_V3:
 264                r = kvm_arm_support_pmu_v3();
 265                break;
 266        case KVM_CAP_ARM_INJECT_SERROR_ESR:
 267                r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
 268                break;
 269        case KVM_CAP_ARM_VM_IPA_SIZE:
 270                r = get_kvm_ipa_limit();
 271                break;
 272        case KVM_CAP_ARM_SVE:
 273                r = system_supports_sve();
 274                break;
 275        case KVM_CAP_ARM_PTRAUTH_ADDRESS:
 276        case KVM_CAP_ARM_PTRAUTH_GENERIC:
 277                r = system_has_full_ptr_auth();
 278                break;
 279        default:
 280                r = 0;
 281        }
 282
 283        return r;
 284}
 285
 286long kvm_arch_dev_ioctl(struct file *filp,
 287                        unsigned int ioctl, unsigned long arg)
 288{
 289        return -EINVAL;
 290}
 291
 292struct kvm *kvm_arch_alloc_vm(void)
 293{
 294        if (!has_vhe())
 295                return kzalloc(sizeof(struct kvm), GFP_KERNEL);
 296
 297        return vzalloc(sizeof(struct kvm));
 298}
 299
 300void kvm_arch_free_vm(struct kvm *kvm)
 301{
 302        if (!has_vhe())
 303                kfree(kvm);
 304        else
 305                vfree(kvm);
 306}
 307
 308int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
 309{
 310        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
 311                return -EBUSY;
 312
 313        if (id >= kvm->arch.max_vcpus)
 314                return -EINVAL;
 315
 316        return 0;
 317}
 318
 319int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
 320{
 321        int err;
 322
 323        /* Force users to call KVM_ARM_VCPU_INIT */
 324        vcpu->arch.target = -1;
 325        bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
 326
 327        vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
 328
 329        /* Set up the timer */
 330        kvm_timer_vcpu_init(vcpu);
 331
 332        kvm_pmu_vcpu_init(vcpu);
 333
 334        kvm_arm_reset_debug_ptr(vcpu);
 335
 336        kvm_arm_pvtime_vcpu_init(&vcpu->arch);
 337
 338        vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
 339
 340        err = kvm_vgic_vcpu_init(vcpu);
 341        if (err)
 342                return err;
 343
 344        return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
 345}
 346
 347void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 348{
 349}
 350
 351void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 352{
 353        if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
 354                static_branch_dec(&userspace_irqchip_in_use);
 355
 356        kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
 357        kvm_timer_vcpu_terminate(vcpu);
 358        kvm_pmu_vcpu_destroy(vcpu);
 359
 360        kvm_arm_vcpu_destroy(vcpu);
 361}
 362
 363int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 364{
 365        return kvm_timer_is_pending(vcpu);
 366}
 367
 368void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
 369{
 370        /*
 371         * If we're about to block (most likely because we've just hit a
 372         * WFI), we need to sync back the state of the GIC CPU interface
 373         * so that we have the latest PMR and group enables. This ensures
 374         * that kvm_arch_vcpu_runnable has up-to-date data to decide
 375         * whether we have pending interrupts.
 376         *
 377         * For the same reason, we want to tell GICv4 that we need
 378         * doorbells to be signalled, should an interrupt become pending.
 379         */
 380        preempt_disable();
 381        kvm_vgic_vmcr_sync(vcpu);
 382        vgic_v4_put(vcpu, true);
 383        preempt_enable();
 384}
 385
 386void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
 387{
 388        preempt_disable();
 389        vgic_v4_load(vcpu);
 390        preempt_enable();
 391}
 392
 393void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 394{
 395        struct kvm_s2_mmu *mmu;
 396        int *last_ran;
 397
 398        mmu = vcpu->arch.hw_mmu;
 399        last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
 400
 401        /*
 402         * We guarantee that both TLBs and I-cache are private to each
 403         * vcpu. If detecting that a vcpu from the same VM has
 404         * previously run on the same physical CPU, call into the
 405         * hypervisor code to nuke the relevant contexts.
 406         *
 407         * We might get preempted before the vCPU actually runs, but
 408         * over-invalidation doesn't affect correctness.
 409         */
 410        if (*last_ran != vcpu->vcpu_id) {
 411                kvm_call_hyp(__kvm_flush_cpu_context, mmu);
 412                *last_ran = vcpu->vcpu_id;
 413        }
 414
 415        vcpu->cpu = cpu;
 416
 417        kvm_vgic_load(vcpu);
 418        kvm_timer_vcpu_load(vcpu);
 419        if (has_vhe())
 420                kvm_vcpu_load_sysregs_vhe(vcpu);
 421        kvm_arch_vcpu_load_fp(vcpu);
 422        kvm_vcpu_pmu_restore_guest(vcpu);
 423        if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
 424                kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
 425
 426        if (single_task_running())
 427                vcpu_clear_wfx_traps(vcpu);
 428        else
 429                vcpu_set_wfx_traps(vcpu);
 430
 431        if (vcpu_has_ptrauth(vcpu))
 432                vcpu_ptrauth_disable(vcpu);
 433        kvm_arch_vcpu_load_debug_state_flags(vcpu);
 434}
 435
 436void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 437{
 438        kvm_arch_vcpu_put_debug_state_flags(vcpu);
 439        kvm_arch_vcpu_put_fp(vcpu);
 440        if (has_vhe())
 441                kvm_vcpu_put_sysregs_vhe(vcpu);
 442        kvm_timer_vcpu_put(vcpu);
 443        kvm_vgic_put(vcpu);
 444        kvm_vcpu_pmu_restore_host(vcpu);
 445
 446        vcpu->cpu = -1;
 447}
 448
 449static void vcpu_power_off(struct kvm_vcpu *vcpu)
 450{
 451        vcpu->arch.power_off = true;
 452        kvm_make_request(KVM_REQ_SLEEP, vcpu);
 453        kvm_vcpu_kick(vcpu);
 454}
 455
 456int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 457                                    struct kvm_mp_state *mp_state)
 458{
 459        if (vcpu->arch.power_off)
 460                mp_state->mp_state = KVM_MP_STATE_STOPPED;
 461        else
 462                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 463
 464        return 0;
 465}
 466
 467int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 468                                    struct kvm_mp_state *mp_state)
 469{
 470        int ret = 0;
 471
 472        switch (mp_state->mp_state) {
 473        case KVM_MP_STATE_RUNNABLE:
 474                vcpu->arch.power_off = false;
 475                break;
 476        case KVM_MP_STATE_STOPPED:
 477                vcpu_power_off(vcpu);
 478                break;
 479        default:
 480                ret = -EINVAL;
 481        }
 482
 483        return ret;
 484}
 485
 486/**
 487 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 488 * @v:          The VCPU pointer
 489 *
 490 * If the guest CPU is not waiting for interrupts or an interrupt line is
 491 * asserted, the CPU is by definition runnable.
 492 */
 493int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 494{
 495        bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
 496        return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
 497                && !v->arch.power_off && !v->arch.pause);
 498}
 499
 500bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 501{
 502        return vcpu_mode_priv(vcpu);
 503}
 504
 505/* Just ensure a guest exit from a particular CPU */
 506static void exit_vm_noop(void *info)
 507{
 508}
 509
 510void force_vm_exit(const cpumask_t *mask)
 511{
 512        preempt_disable();
 513        smp_call_function_many(mask, exit_vm_noop, NULL, true);
 514        preempt_enable();
 515}
 516
 517/**
 518 * need_new_vmid_gen - check that the VMID is still valid
 519 * @vmid: The VMID to check
 520 *
 521 * return true if there is a new generation of VMIDs being used
 522 *
 523 * The hardware supports a limited set of values with the value zero reserved
 524 * for the host, so we check if an assigned value belongs to a previous
 525 * generation, which requires us to assign a new value. If we're the first to
 526 * use a VMID for the new generation, we must flush necessary caches and TLBs
 527 * on all CPUs.
 528 */
 529static bool need_new_vmid_gen(struct kvm_vmid *vmid)
 530{
 531        u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
 532        smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
 533        return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
 534}
 535
 536/**
 537 * update_vmid - Update the vmid with a valid VMID for the current generation
 538 * @vmid: The stage-2 VMID information struct
 539 */
 540static void update_vmid(struct kvm_vmid *vmid)
 541{
 542        if (!need_new_vmid_gen(vmid))
 543                return;
 544
 545        spin_lock(&kvm_vmid_lock);
 546
 547        /*
 548         * We need to re-check the vmid_gen here to ensure that if another vcpu
 549         * already allocated a valid vmid for this vm, then this vcpu should
 550         * use the same vmid.
 551         */
 552        if (!need_new_vmid_gen(vmid)) {
 553                spin_unlock(&kvm_vmid_lock);
 554                return;
 555        }
 556
 557        /* First user of a new VMID generation? */
 558        if (unlikely(kvm_next_vmid == 0)) {
 559                atomic64_inc(&kvm_vmid_gen);
 560                kvm_next_vmid = 1;
 561
 562                /*
 563                 * On SMP we know no other CPUs can use this CPU's or each
 564                 * other's VMID after force_vm_exit returns since the
 565                 * kvm_vmid_lock blocks them from reentry to the guest.
 566                 */
 567                force_vm_exit(cpu_all_mask);
 568                /*
 569                 * Now broadcast TLB + ICACHE invalidation over the inner
 570                 * shareable domain to make sure all data structures are
 571                 * clean.
 572                 */
 573                kvm_call_hyp(__kvm_flush_vm_context);
 574        }
 575
 576        WRITE_ONCE(vmid->vmid, kvm_next_vmid);
 577        kvm_next_vmid++;
 578        kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
 579
 580        smp_wmb();
 581        WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
 582
 583        spin_unlock(&kvm_vmid_lock);
 584}
 585
 586static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 587{
 588        struct kvm *kvm = vcpu->kvm;
 589        int ret = 0;
 590
 591        if (likely(vcpu->arch.has_run_once))
 592                return 0;
 593
 594        if (!kvm_arm_vcpu_is_finalized(vcpu))
 595                return -EPERM;
 596
 597        vcpu->arch.has_run_once = true;
 598
 599        kvm_arm_vcpu_init_debug(vcpu);
 600
 601        if (likely(irqchip_in_kernel(kvm))) {
 602                /*
 603                 * Map the VGIC hardware resources before running a vcpu the
 604                 * first time on this VM.
 605                 */
 606                ret = kvm_vgic_map_resources(kvm);
 607                if (ret)
 608                        return ret;
 609        } else {
 610                /*
 611                 * Tell the rest of the code that there are userspace irqchip
 612                 * VMs in the wild.
 613                 */
 614                static_branch_inc(&userspace_irqchip_in_use);
 615        }
 616
 617        ret = kvm_timer_enable(vcpu);
 618        if (ret)
 619                return ret;
 620
 621        ret = kvm_arm_pmu_v3_enable(vcpu);
 622
 623        return ret;
 624}
 625
 626bool kvm_arch_intc_initialized(struct kvm *kvm)
 627{
 628        return vgic_initialized(kvm);
 629}
 630
 631void kvm_arm_halt_guest(struct kvm *kvm)
 632{
 633        int i;
 634        struct kvm_vcpu *vcpu;
 635
 636        kvm_for_each_vcpu(i, vcpu, kvm)
 637                vcpu->arch.pause = true;
 638        kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
 639}
 640
 641void kvm_arm_resume_guest(struct kvm *kvm)
 642{
 643        int i;
 644        struct kvm_vcpu *vcpu;
 645
 646        kvm_for_each_vcpu(i, vcpu, kvm) {
 647                vcpu->arch.pause = false;
 648                rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
 649        }
 650}
 651
 652static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
 653{
 654        struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
 655
 656        rcuwait_wait_event(wait,
 657                           (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
 658                           TASK_INTERRUPTIBLE);
 659
 660        if (vcpu->arch.power_off || vcpu->arch.pause) {
 661                /* Awaken to handle a signal, request we sleep again later. */
 662                kvm_make_request(KVM_REQ_SLEEP, vcpu);
 663        }
 664
 665        /*
 666         * Make sure we will observe a potential reset request if we've
 667         * observed a change to the power state. Pairs with the smp_wmb() in
 668         * kvm_psci_vcpu_on().
 669         */
 670        smp_rmb();
 671}
 672
 673static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 674{
 675        return vcpu->arch.target >= 0;
 676}
 677
 678static void check_vcpu_requests(struct kvm_vcpu *vcpu)
 679{
 680        if (kvm_request_pending(vcpu)) {
 681                if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
 682                        vcpu_req_sleep(vcpu);
 683
 684                if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
 685                        kvm_reset_vcpu(vcpu);
 686
 687                /*
 688                 * Clear IRQ_PENDING requests that were made to guarantee
 689                 * that a VCPU sees new virtual interrupts.
 690                 */
 691                kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
 692
 693                if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
 694                        kvm_update_stolen_time(vcpu);
 695
 696                if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
 697                        /* The distributor enable bits were changed */
 698                        preempt_disable();
 699                        vgic_v4_put(vcpu, false);
 700                        vgic_v4_load(vcpu);
 701                        preempt_enable();
 702                }
 703
 704                if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
 705                        kvm_pmu_handle_pmcr(vcpu,
 706                                            __vcpu_sys_reg(vcpu, PMCR_EL0));
 707        }
 708}
 709
 710static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
 711{
 712        if (likely(!vcpu_mode_is_32bit(vcpu)))
 713                return false;
 714
 715        return !system_supports_32bit_el0() ||
 716                static_branch_unlikely(&arm64_mismatched_32bit_el0);
 717}
 718
 719/**
 720 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
 721 * @vcpu:       The VCPU pointer
 722 * @ret:        Pointer to write optional return code
 723 *
 724 * Returns: true if the VCPU needs to return to a preemptible + interruptible
 725 *          and skip guest entry.
 726 *
 727 * This function disambiguates between two different types of exits: exits to a
 728 * preemptible + interruptible kernel context and exits to userspace. For an
 729 * exit to userspace, this function will write the return code to ret and return
 730 * true. For an exit to preemptible + interruptible kernel context (i.e. check
 731 * for pending work and re-enter), return true without writing to ret.
 732 */
 733static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
 734{
 735        struct kvm_run *run = vcpu->run;
 736
 737        /*
 738         * If we're using a userspace irqchip, then check if we need
 739         * to tell a userspace irqchip about timer or PMU level
 740         * changes and if so, exit to userspace (the actual level
 741         * state gets updated in kvm_timer_update_run and
 742         * kvm_pmu_update_run below).
 743         */
 744        if (static_branch_unlikely(&userspace_irqchip_in_use)) {
 745                if (kvm_timer_should_notify_user(vcpu) ||
 746                    kvm_pmu_should_notify_user(vcpu)) {
 747                        *ret = -EINTR;
 748                        run->exit_reason = KVM_EXIT_INTR;
 749                        return true;
 750                }
 751        }
 752
 753        return kvm_request_pending(vcpu) ||
 754                        need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
 755                        xfer_to_guest_mode_work_pending();
 756}
 757
 758/**
 759 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 760 * @vcpu:       The VCPU pointer
 761 *
 762 * This function is called through the VCPU_RUN ioctl called from user space. It
 763 * will execute VM code in a loop until the time slice for the process is used
 764 * or some emulation is needed from user space in which case the function will
 765 * return with return value 0 and with the kvm_run structure filled in with the
 766 * required data for the requested emulation.
 767 */
 768int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
 769{
 770        struct kvm_run *run = vcpu->run;
 771        int ret;
 772
 773        if (unlikely(!kvm_vcpu_initialized(vcpu)))
 774                return -ENOEXEC;
 775
 776        ret = kvm_vcpu_first_run_init(vcpu);
 777        if (ret)
 778                return ret;
 779
 780        if (run->exit_reason == KVM_EXIT_MMIO) {
 781                ret = kvm_handle_mmio_return(vcpu);
 782                if (ret)
 783                        return ret;
 784        }
 785
 786        vcpu_load(vcpu);
 787
 788        if (run->immediate_exit) {
 789                ret = -EINTR;
 790                goto out;
 791        }
 792
 793        kvm_sigset_activate(vcpu);
 794
 795        ret = 1;
 796        run->exit_reason = KVM_EXIT_UNKNOWN;
 797        while (ret > 0) {
 798                /*
 799                 * Check conditions before entering the guest
 800                 */
 801                ret = xfer_to_guest_mode_handle_work(vcpu);
 802                if (!ret)
 803                        ret = 1;
 804
 805                update_vmid(&vcpu->arch.hw_mmu->vmid);
 806
 807                check_vcpu_requests(vcpu);
 808
 809                /*
 810                 * Preparing the interrupts to be injected also
 811                 * involves poking the GIC, which must be done in a
 812                 * non-preemptible context.
 813                 */
 814                preempt_disable();
 815
 816                kvm_pmu_flush_hwstate(vcpu);
 817
 818                local_irq_disable();
 819
 820                kvm_vgic_flush_hwstate(vcpu);
 821
 822                /*
 823                 * Ensure we set mode to IN_GUEST_MODE after we disable
 824                 * interrupts and before the final VCPU requests check.
 825                 * See the comment in kvm_vcpu_exiting_guest_mode() and
 826                 * Documentation/virt/kvm/vcpu-requests.rst
 827                 */
 828                smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 829
 830                if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
 831                        vcpu->mode = OUTSIDE_GUEST_MODE;
 832                        isb(); /* Ensure work in x_flush_hwstate is committed */
 833                        kvm_pmu_sync_hwstate(vcpu);
 834                        if (static_branch_unlikely(&userspace_irqchip_in_use))
 835                                kvm_timer_sync_user(vcpu);
 836                        kvm_vgic_sync_hwstate(vcpu);
 837                        local_irq_enable();
 838                        preempt_enable();
 839                        continue;
 840                }
 841
 842                kvm_arm_setup_debug(vcpu);
 843
 844                /**************************************************************
 845                 * Enter the guest
 846                 */
 847                trace_kvm_entry(*vcpu_pc(vcpu));
 848                guest_enter_irqoff();
 849
 850                ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
 851
 852                vcpu->mode = OUTSIDE_GUEST_MODE;
 853                vcpu->stat.exits++;
 854                /*
 855                 * Back from guest
 856                 *************************************************************/
 857
 858                kvm_arm_clear_debug(vcpu);
 859
 860                /*
 861                 * We must sync the PMU state before the vgic state so
 862                 * that the vgic can properly sample the updated state of the
 863                 * interrupt line.
 864                 */
 865                kvm_pmu_sync_hwstate(vcpu);
 866
 867                /*
 868                 * Sync the vgic state before syncing the timer state because
 869                 * the timer code needs to know if the virtual timer
 870                 * interrupts are active.
 871                 */
 872                kvm_vgic_sync_hwstate(vcpu);
 873
 874                /*
 875                 * Sync the timer hardware state before enabling interrupts as
 876                 * we don't want vtimer interrupts to race with syncing the
 877                 * timer virtual interrupt state.
 878                 */
 879                if (static_branch_unlikely(&userspace_irqchip_in_use))
 880                        kvm_timer_sync_user(vcpu);
 881
 882                kvm_arch_vcpu_ctxsync_fp(vcpu);
 883
 884                /*
 885                 * We may have taken a host interrupt in HYP mode (ie
 886                 * while executing the guest). This interrupt is still
 887                 * pending, as we haven't serviced it yet!
 888                 *
 889                 * We're now back in SVC mode, with interrupts
 890                 * disabled.  Enabling the interrupts now will have
 891                 * the effect of taking the interrupt again, in SVC
 892                 * mode this time.
 893                 */
 894                local_irq_enable();
 895
 896                /*
 897                 * We do local_irq_enable() before calling guest_exit() so
 898                 * that if a timer interrupt hits while running the guest we
 899                 * account that tick as being spent in the guest.  We enable
 900                 * preemption after calling guest_exit() so that if we get
 901                 * preempted we make sure ticks after that is not counted as
 902                 * guest time.
 903                 */
 904                guest_exit();
 905                trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
 906
 907                /* Exit types that need handling before we can be preempted */
 908                handle_exit_early(vcpu, ret);
 909
 910                preempt_enable();
 911
 912                /*
 913                 * The ARMv8 architecture doesn't give the hypervisor
 914                 * a mechanism to prevent a guest from dropping to AArch32 EL0
 915                 * if implemented by the CPU. If we spot the guest in such
 916                 * state and that we decided it wasn't supposed to do so (like
 917                 * with the asymmetric AArch32 case), return to userspace with
 918                 * a fatal error.
 919                 */
 920                if (vcpu_mode_is_bad_32bit(vcpu)) {
 921                        /*
 922                         * As we have caught the guest red-handed, decide that
 923                         * it isn't fit for purpose anymore by making the vcpu
 924                         * invalid. The VMM can try and fix it by issuing  a
 925                         * KVM_ARM_VCPU_INIT if it really wants to.
 926                         */
 927                        vcpu->arch.target = -1;
 928                        ret = ARM_EXCEPTION_IL;
 929                }
 930
 931                ret = handle_exit(vcpu, ret);
 932        }
 933
 934        /* Tell userspace about in-kernel device output levels */
 935        if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
 936                kvm_timer_update_run(vcpu);
 937                kvm_pmu_update_run(vcpu);
 938        }
 939
 940        kvm_sigset_deactivate(vcpu);
 941
 942out:
 943        /*
 944         * In the unlikely event that we are returning to userspace
 945         * with pending exceptions or PC adjustment, commit these
 946         * adjustments in order to give userspace a consistent view of
 947         * the vcpu state. Note that this relies on __kvm_adjust_pc()
 948         * being preempt-safe on VHE.
 949         */
 950        if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
 951                                         KVM_ARM64_INCREMENT_PC)))
 952                kvm_call_hyp(__kvm_adjust_pc, vcpu);
 953
 954        vcpu_put(vcpu);
 955        return ret;
 956}
 957
 958static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 959{
 960        int bit_index;
 961        bool set;
 962        unsigned long *hcr;
 963
 964        if (number == KVM_ARM_IRQ_CPU_IRQ)
 965                bit_index = __ffs(HCR_VI);
 966        else /* KVM_ARM_IRQ_CPU_FIQ */
 967                bit_index = __ffs(HCR_VF);
 968
 969        hcr = vcpu_hcr(vcpu);
 970        if (level)
 971                set = test_and_set_bit(bit_index, hcr);
 972        else
 973                set = test_and_clear_bit(bit_index, hcr);
 974
 975        /*
 976         * If we didn't change anything, no need to wake up or kick other CPUs
 977         */
 978        if (set == level)
 979                return 0;
 980
 981        /*
 982         * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 983         * trigger a world-switch round on the running physical CPU to set the
 984         * virtual IRQ/FIQ fields in the HCR appropriately.
 985         */
 986        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 987        kvm_vcpu_kick(vcpu);
 988
 989        return 0;
 990}
 991
 992int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 993                          bool line_status)
 994{
 995        u32 irq = irq_level->irq;
 996        unsigned int irq_type, vcpu_idx, irq_num;
 997        int nrcpus = atomic_read(&kvm->online_vcpus);
 998        struct kvm_vcpu *vcpu = NULL;
 999        bool level = irq_level->level;
1000
1001        irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1002        vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1003        vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1004        irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1005
1006        trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1007
1008        switch (irq_type) {
1009        case KVM_ARM_IRQ_TYPE_CPU:
1010                if (irqchip_in_kernel(kvm))
1011                        return -ENXIO;
1012
1013                if (vcpu_idx >= nrcpus)
1014                        return -EINVAL;
1015
1016                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1017                if (!vcpu)
1018                        return -EINVAL;
1019
1020                if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1021                        return -EINVAL;
1022
1023                return vcpu_interrupt_line(vcpu, irq_num, level);
1024        case KVM_ARM_IRQ_TYPE_PPI:
1025                if (!irqchip_in_kernel(kvm))
1026                        return -ENXIO;
1027
1028                if (vcpu_idx >= nrcpus)
1029                        return -EINVAL;
1030
1031                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1032                if (!vcpu)
1033                        return -EINVAL;
1034
1035                if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1036                        return -EINVAL;
1037
1038                return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1039        case KVM_ARM_IRQ_TYPE_SPI:
1040                if (!irqchip_in_kernel(kvm))
1041                        return -ENXIO;
1042
1043                if (irq_num < VGIC_NR_PRIVATE_IRQS)
1044                        return -EINVAL;
1045
1046                return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1047        }
1048
1049        return -EINVAL;
1050}
1051
1052static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1053                               const struct kvm_vcpu_init *init)
1054{
1055        unsigned int i, ret;
1056        u32 phys_target = kvm_target_cpu();
1057
1058        if (init->target != phys_target)
1059                return -EINVAL;
1060
1061        /*
1062         * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1063         * use the same target.
1064         */
1065        if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1066                return -EINVAL;
1067
1068        /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1069        for (i = 0; i < sizeof(init->features) * 8; i++) {
1070                bool set = (init->features[i / 32] & (1 << (i % 32)));
1071
1072                if (set && i >= KVM_VCPU_MAX_FEATURES)
1073                        return -ENOENT;
1074
1075                /*
1076                 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1077                 * use the same feature set.
1078                 */
1079                if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1080                    test_bit(i, vcpu->arch.features) != set)
1081                        return -EINVAL;
1082
1083                if (set)
1084                        set_bit(i, vcpu->arch.features);
1085        }
1086
1087        vcpu->arch.target = phys_target;
1088
1089        /* Now we know what it is, we can reset it. */
1090        ret = kvm_reset_vcpu(vcpu);
1091        if (ret) {
1092                vcpu->arch.target = -1;
1093                bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1094        }
1095
1096        return ret;
1097}
1098
1099static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1100                                         struct kvm_vcpu_init *init)
1101{
1102        int ret;
1103
1104        ret = kvm_vcpu_set_target(vcpu, init);
1105        if (ret)
1106                return ret;
1107
1108        /*
1109         * Ensure a rebooted VM will fault in RAM pages and detect if the
1110         * guest MMU is turned off and flush the caches as needed.
1111         *
1112         * S2FWB enforces all memory accesses to RAM being cacheable,
1113         * ensuring that the data side is always coherent. We still
1114         * need to invalidate the I-cache though, as FWB does *not*
1115         * imply CTR_EL0.DIC.
1116         */
1117        if (vcpu->arch.has_run_once) {
1118                if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1119                        stage2_unmap_vm(vcpu->kvm);
1120                else
1121                        icache_inval_all_pou();
1122        }
1123
1124        vcpu_reset_hcr(vcpu);
1125        vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1126
1127        /*
1128         * Handle the "start in power-off" case.
1129         */
1130        if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1131                vcpu_power_off(vcpu);
1132        else
1133                vcpu->arch.power_off = false;
1134
1135        return 0;
1136}
1137
1138static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1139                                 struct kvm_device_attr *attr)
1140{
1141        int ret = -ENXIO;
1142
1143        switch (attr->group) {
1144        default:
1145                ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1146                break;
1147        }
1148
1149        return ret;
1150}
1151
1152static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1153                                 struct kvm_device_attr *attr)
1154{
1155        int ret = -ENXIO;
1156
1157        switch (attr->group) {
1158        default:
1159                ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1160                break;
1161        }
1162
1163        return ret;
1164}
1165
1166static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1167                                 struct kvm_device_attr *attr)
1168{
1169        int ret = -ENXIO;
1170
1171        switch (attr->group) {
1172        default:
1173                ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1174                break;
1175        }
1176
1177        return ret;
1178}
1179
1180static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1181                                   struct kvm_vcpu_events *events)
1182{
1183        memset(events, 0, sizeof(*events));
1184
1185        return __kvm_arm_vcpu_get_events(vcpu, events);
1186}
1187
1188static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1189                                   struct kvm_vcpu_events *events)
1190{
1191        int i;
1192
1193        /* check whether the reserved field is zero */
1194        for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1195                if (events->reserved[i])
1196                        return -EINVAL;
1197
1198        /* check whether the pad field is zero */
1199        for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1200                if (events->exception.pad[i])
1201                        return -EINVAL;
1202
1203        return __kvm_arm_vcpu_set_events(vcpu, events);
1204}
1205
1206long kvm_arch_vcpu_ioctl(struct file *filp,
1207                         unsigned int ioctl, unsigned long arg)
1208{
1209        struct kvm_vcpu *vcpu = filp->private_data;
1210        void __user *argp = (void __user *)arg;
1211        struct kvm_device_attr attr;
1212        long r;
1213
1214        switch (ioctl) {
1215        case KVM_ARM_VCPU_INIT: {
1216                struct kvm_vcpu_init init;
1217
1218                r = -EFAULT;
1219                if (copy_from_user(&init, argp, sizeof(init)))
1220                        break;
1221
1222                r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1223                break;
1224        }
1225        case KVM_SET_ONE_REG:
1226        case KVM_GET_ONE_REG: {
1227                struct kvm_one_reg reg;
1228
1229                r = -ENOEXEC;
1230                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1231                        break;
1232
1233                r = -EFAULT;
1234                if (copy_from_user(&reg, argp, sizeof(reg)))
1235                        break;
1236
1237                /*
1238                 * We could owe a reset due to PSCI. Handle the pending reset
1239                 * here to ensure userspace register accesses are ordered after
1240                 * the reset.
1241                 */
1242                if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1243                        kvm_reset_vcpu(vcpu);
1244
1245                if (ioctl == KVM_SET_ONE_REG)
1246                        r = kvm_arm_set_reg(vcpu, &reg);
1247                else
1248                        r = kvm_arm_get_reg(vcpu, &reg);
1249                break;
1250        }
1251        case KVM_GET_REG_LIST: {
1252                struct kvm_reg_list __user *user_list = argp;
1253                struct kvm_reg_list reg_list;
1254                unsigned n;
1255
1256                r = -ENOEXEC;
1257                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1258                        break;
1259
1260                r = -EPERM;
1261                if (!kvm_arm_vcpu_is_finalized(vcpu))
1262                        break;
1263
1264                r = -EFAULT;
1265                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1266                        break;
1267                n = reg_list.n;
1268                reg_list.n = kvm_arm_num_regs(vcpu);
1269                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1270                        break;
1271                r = -E2BIG;
1272                if (n < reg_list.n)
1273                        break;
1274                r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1275                break;
1276        }
1277        case KVM_SET_DEVICE_ATTR: {
1278                r = -EFAULT;
1279                if (copy_from_user(&attr, argp, sizeof(attr)))
1280                        break;
1281                r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1282                break;
1283        }
1284        case KVM_GET_DEVICE_ATTR: {
1285                r = -EFAULT;
1286                if (copy_from_user(&attr, argp, sizeof(attr)))
1287                        break;
1288                r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1289                break;
1290        }
1291        case KVM_HAS_DEVICE_ATTR: {
1292                r = -EFAULT;
1293                if (copy_from_user(&attr, argp, sizeof(attr)))
1294                        break;
1295                r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1296                break;
1297        }
1298        case KVM_GET_VCPU_EVENTS: {
1299                struct kvm_vcpu_events events;
1300
1301                if (kvm_arm_vcpu_get_events(vcpu, &events))
1302                        return -EINVAL;
1303
1304                if (copy_to_user(argp, &events, sizeof(events)))
1305                        return -EFAULT;
1306
1307                return 0;
1308        }
1309        case KVM_SET_VCPU_EVENTS: {
1310                struct kvm_vcpu_events events;
1311
1312                if (copy_from_user(&events, argp, sizeof(events)))
1313                        return -EFAULT;
1314
1315                return kvm_arm_vcpu_set_events(vcpu, &events);
1316        }
1317        case KVM_ARM_VCPU_FINALIZE: {
1318                int what;
1319
1320                if (!kvm_vcpu_initialized(vcpu))
1321                        return -ENOEXEC;
1322
1323                if (get_user(what, (const int __user *)argp))
1324                        return -EFAULT;
1325
1326                return kvm_arm_vcpu_finalize(vcpu, what);
1327        }
1328        default:
1329                r = -EINVAL;
1330        }
1331
1332        return r;
1333}
1334
1335void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1336{
1337
1338}
1339
1340void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1341                                        const struct kvm_memory_slot *memslot)
1342{
1343        kvm_flush_remote_tlbs(kvm);
1344}
1345
1346static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1347                                        struct kvm_arm_device_addr *dev_addr)
1348{
1349        unsigned long dev_id, type;
1350
1351        dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1352                KVM_ARM_DEVICE_ID_SHIFT;
1353        type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1354                KVM_ARM_DEVICE_TYPE_SHIFT;
1355
1356        switch (dev_id) {
1357        case KVM_ARM_DEVICE_VGIC_V2:
1358                if (!vgic_present)
1359                        return -ENXIO;
1360                return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1361        default:
1362                return -ENODEV;
1363        }
1364}
1365
1366long kvm_arch_vm_ioctl(struct file *filp,
1367                       unsigned int ioctl, unsigned long arg)
1368{
1369        struct kvm *kvm = filp->private_data;
1370        void __user *argp = (void __user *)arg;
1371
1372        switch (ioctl) {
1373        case KVM_CREATE_IRQCHIP: {
1374                int ret;
1375                if (!vgic_present)
1376                        return -ENXIO;
1377                mutex_lock(&kvm->lock);
1378                ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1379                mutex_unlock(&kvm->lock);
1380                return ret;
1381        }
1382        case KVM_ARM_SET_DEVICE_ADDR: {
1383                struct kvm_arm_device_addr dev_addr;
1384
1385                if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1386                        return -EFAULT;
1387                return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1388        }
1389        case KVM_ARM_PREFERRED_TARGET: {
1390                int err;
1391                struct kvm_vcpu_init init;
1392
1393                err = kvm_vcpu_preferred_target(&init);
1394                if (err)
1395                        return err;
1396
1397                if (copy_to_user(argp, &init, sizeof(init)))
1398                        return -EFAULT;
1399
1400                return 0;
1401        }
1402        case KVM_ARM_MTE_COPY_TAGS: {
1403                struct kvm_arm_copy_mte_tags copy_tags;
1404
1405                if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1406                        return -EFAULT;
1407                return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1408        }
1409        default:
1410                return -EINVAL;
1411        }
1412}
1413
1414static unsigned long nvhe_percpu_size(void)
1415{
1416        return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1417                (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1418}
1419
1420static unsigned long nvhe_percpu_order(void)
1421{
1422        unsigned long size = nvhe_percpu_size();
1423
1424        return size ? get_order(size) : 0;
1425}
1426
1427/* A lookup table holding the hypervisor VA for each vector slot */
1428static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1429
1430static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1431{
1432        hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1433}
1434
1435static int kvm_init_vector_slots(void)
1436{
1437        int err;
1438        void *base;
1439
1440        base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1441        kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1442
1443        base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1444        kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1445
1446        if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1447                return 0;
1448
1449        if (!has_vhe()) {
1450                err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1451                                               __BP_HARDEN_HYP_VECS_SZ, &base);
1452                if (err)
1453                        return err;
1454        }
1455
1456        kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1457        kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1458        return 0;
1459}
1460
1461static void cpu_prepare_hyp_mode(int cpu)
1462{
1463        struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1464        unsigned long tcr;
1465
1466        /*
1467         * Calculate the raw per-cpu offset without a translation from the
1468         * kernel's mapping to the linear mapping, and store it in tpidr_el2
1469         * so that we can use adr_l to access per-cpu variables in EL2.
1470         * Also drop the KASAN tag which gets in the way...
1471         */
1472        params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1473                            (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1474
1475        params->mair_el2 = read_sysreg(mair_el1);
1476
1477        /*
1478         * The ID map may be configured to use an extended virtual address
1479         * range. This is only the case if system RAM is out of range for the
1480         * currently configured page size and VA_BITS, in which case we will
1481         * also need the extended virtual range for the HYP ID map, or we won't
1482         * be able to enable the EL2 MMU.
1483         *
1484         * However, at EL2, there is only one TTBR register, and we can't switch
1485         * between translation tables *and* update TCR_EL2.T0SZ at the same
1486         * time. Bottom line: we need to use the extended range with *both* our
1487         * translation tables.
1488         *
1489         * So use the same T0SZ value we use for the ID map.
1490         */
1491        tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1492        tcr &= ~TCR_T0SZ_MASK;
1493        tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1494        params->tcr_el2 = tcr;
1495
1496        params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1497        params->pgd_pa = kvm_mmu_get_httbr();
1498        if (is_protected_kvm_enabled())
1499                params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1500        else
1501                params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1502        params->vttbr = params->vtcr = 0;
1503
1504        /*
1505         * Flush the init params from the data cache because the struct will
1506         * be read while the MMU is off.
1507         */
1508        kvm_flush_dcache_to_poc(params, sizeof(*params));
1509}
1510
1511static void hyp_install_host_vector(void)
1512{
1513        struct kvm_nvhe_init_params *params;
1514        struct arm_smccc_res res;
1515
1516        /* Switch from the HYP stub to our own HYP init vector */
1517        __hyp_set_vectors(kvm_get_idmap_vector());
1518
1519        /*
1520         * Call initialization code, and switch to the full blown HYP code.
1521         * If the cpucaps haven't been finalized yet, something has gone very
1522         * wrong, and hyp will crash and burn when it uses any
1523         * cpus_have_const_cap() wrapper.
1524         */
1525        BUG_ON(!system_capabilities_finalized());
1526        params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1527        arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1528        WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1529}
1530
1531static void cpu_init_hyp_mode(void)
1532{
1533        hyp_install_host_vector();
1534
1535        /*
1536         * Disabling SSBD on a non-VHE system requires us to enable SSBS
1537         * at EL2.
1538         */
1539        if (this_cpu_has_cap(ARM64_SSBS) &&
1540            arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1541                kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1542        }
1543}
1544
1545static void cpu_hyp_reset(void)
1546{
1547        if (!is_kernel_in_hyp_mode())
1548                __hyp_reset_vectors();
1549}
1550
1551/*
1552 * EL2 vectors can be mapped and rerouted in a number of ways,
1553 * depending on the kernel configuration and CPU present:
1554 *
1555 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1556 *   placed in one of the vector slots, which is executed before jumping
1557 *   to the real vectors.
1558 *
1559 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1560 *   containing the hardening sequence is mapped next to the idmap page,
1561 *   and executed before jumping to the real vectors.
1562 *
1563 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1564 *   empty slot is selected, mapped next to the idmap page, and
1565 *   executed before jumping to the real vectors.
1566 *
1567 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1568 * VHE, as we don't have hypervisor-specific mappings. If the system
1569 * is VHE and yet selects this capability, it will be ignored.
1570 */
1571static void cpu_set_hyp_vector(void)
1572{
1573        struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1574        void *vector = hyp_spectre_vector_selector[data->slot];
1575
1576        if (!is_protected_kvm_enabled())
1577                *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1578        else
1579                kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1580}
1581
1582static void cpu_hyp_reinit(void)
1583{
1584        kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1585
1586        cpu_hyp_reset();
1587
1588        if (is_kernel_in_hyp_mode())
1589                kvm_timer_init_vhe();
1590        else
1591                cpu_init_hyp_mode();
1592
1593        cpu_set_hyp_vector();
1594
1595        kvm_arm_init_debug();
1596
1597        if (vgic_present)
1598                kvm_vgic_init_cpu_hardware();
1599}
1600
1601static void _kvm_arch_hardware_enable(void *discard)
1602{
1603        if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1604                cpu_hyp_reinit();
1605                __this_cpu_write(kvm_arm_hardware_enabled, 1);
1606        }
1607}
1608
1609int kvm_arch_hardware_enable(void)
1610{
1611        _kvm_arch_hardware_enable(NULL);
1612        return 0;
1613}
1614
1615static void _kvm_arch_hardware_disable(void *discard)
1616{
1617        if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1618                cpu_hyp_reset();
1619                __this_cpu_write(kvm_arm_hardware_enabled, 0);
1620        }
1621}
1622
1623void kvm_arch_hardware_disable(void)
1624{
1625        if (!is_protected_kvm_enabled())
1626                _kvm_arch_hardware_disable(NULL);
1627}
1628
1629#ifdef CONFIG_CPU_PM
1630static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1631                                    unsigned long cmd,
1632                                    void *v)
1633{
1634        /*
1635         * kvm_arm_hardware_enabled is left with its old value over
1636         * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1637         * re-enable hyp.
1638         */
1639        switch (cmd) {
1640        case CPU_PM_ENTER:
1641                if (__this_cpu_read(kvm_arm_hardware_enabled))
1642                        /*
1643                         * don't update kvm_arm_hardware_enabled here
1644                         * so that the hardware will be re-enabled
1645                         * when we resume. See below.
1646                         */
1647                        cpu_hyp_reset();
1648
1649                return NOTIFY_OK;
1650        case CPU_PM_ENTER_FAILED:
1651        case CPU_PM_EXIT:
1652                if (__this_cpu_read(kvm_arm_hardware_enabled))
1653                        /* The hardware was enabled before suspend. */
1654                        cpu_hyp_reinit();
1655
1656                return NOTIFY_OK;
1657
1658        default:
1659                return NOTIFY_DONE;
1660        }
1661}
1662
1663static struct notifier_block hyp_init_cpu_pm_nb = {
1664        .notifier_call = hyp_init_cpu_pm_notifier,
1665};
1666
1667static void hyp_cpu_pm_init(void)
1668{
1669        if (!is_protected_kvm_enabled())
1670                cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1671}
1672static void hyp_cpu_pm_exit(void)
1673{
1674        if (!is_protected_kvm_enabled())
1675                cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1676}
1677#else
1678static inline void hyp_cpu_pm_init(void)
1679{
1680}
1681static inline void hyp_cpu_pm_exit(void)
1682{
1683}
1684#endif
1685
1686static void init_cpu_logical_map(void)
1687{
1688        unsigned int cpu;
1689
1690        /*
1691         * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1692         * Only copy the set of online CPUs whose features have been chacked
1693         * against the finalized system capabilities. The hypervisor will not
1694         * allow any other CPUs from the `possible` set to boot.
1695         */
1696        for_each_online_cpu(cpu)
1697                hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1698}
1699
1700#define init_psci_0_1_impl_state(config, what)  \
1701        config.psci_0_1_ ## what ## _implemented = psci_ops.what
1702
1703static bool init_psci_relay(void)
1704{
1705        /*
1706         * If PSCI has not been initialized, protected KVM cannot install
1707         * itself on newly booted CPUs.
1708         */
1709        if (!psci_ops.get_version) {
1710                kvm_err("Cannot initialize protected mode without PSCI\n");
1711                return false;
1712        }
1713
1714        kvm_host_psci_config.version = psci_ops.get_version();
1715
1716        if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1717                kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1718                init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1719                init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1720                init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1721                init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1722        }
1723        return true;
1724}
1725
1726static int init_subsystems(void)
1727{
1728        int err = 0;
1729
1730        /*
1731         * Enable hardware so that subsystem initialisation can access EL2.
1732         */
1733        on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1734
1735        /*
1736         * Register CPU lower-power notifier
1737         */
1738        hyp_cpu_pm_init();
1739
1740        /*
1741         * Init HYP view of VGIC
1742         */
1743        err = kvm_vgic_hyp_init();
1744        switch (err) {
1745        case 0:
1746                vgic_present = true;
1747                break;
1748        case -ENODEV:
1749        case -ENXIO:
1750                vgic_present = false;
1751                err = 0;
1752                break;
1753        default:
1754                goto out;
1755        }
1756
1757        /*
1758         * Init HYP architected timer support
1759         */
1760        err = kvm_timer_hyp_init(vgic_present);
1761        if (err)
1762                goto out;
1763
1764        kvm_perf_init();
1765        kvm_sys_reg_table_init();
1766
1767out:
1768        if (err || !is_protected_kvm_enabled())
1769                on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1770
1771        return err;
1772}
1773
1774static void teardown_hyp_mode(void)
1775{
1776        int cpu;
1777
1778        free_hyp_pgds();
1779        for_each_possible_cpu(cpu) {
1780                free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1781                free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1782        }
1783}
1784
1785static int do_pkvm_init(u32 hyp_va_bits)
1786{
1787        void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1788        int ret;
1789
1790        preempt_disable();
1791        hyp_install_host_vector();
1792        ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1793                                num_possible_cpus(), kern_hyp_va(per_cpu_base),
1794                                hyp_va_bits);
1795        preempt_enable();
1796
1797        return ret;
1798}
1799
1800static int kvm_hyp_init_protection(u32 hyp_va_bits)
1801{
1802        void *addr = phys_to_virt(hyp_mem_base);
1803        int ret;
1804
1805        kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1806        kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1807
1808        ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1809        if (ret)
1810                return ret;
1811
1812        ret = do_pkvm_init(hyp_va_bits);
1813        if (ret)
1814                return ret;
1815
1816        free_hyp_pgds();
1817
1818        return 0;
1819}
1820
1821/**
1822 * Inits Hyp-mode on all online CPUs
1823 */
1824static int init_hyp_mode(void)
1825{
1826        u32 hyp_va_bits;
1827        int cpu;
1828        int err = -ENOMEM;
1829
1830        /*
1831         * The protected Hyp-mode cannot be initialized if the memory pool
1832         * allocation has failed.
1833         */
1834        if (is_protected_kvm_enabled() && !hyp_mem_base)
1835                goto out_err;
1836
1837        /*
1838         * Allocate Hyp PGD and setup Hyp identity mapping
1839         */
1840        err = kvm_mmu_init(&hyp_va_bits);
1841        if (err)
1842                goto out_err;
1843
1844        /*
1845         * Allocate stack pages for Hypervisor-mode
1846         */
1847        for_each_possible_cpu(cpu) {
1848                unsigned long stack_page;
1849
1850                stack_page = __get_free_page(GFP_KERNEL);
1851                if (!stack_page) {
1852                        err = -ENOMEM;
1853                        goto out_err;
1854                }
1855
1856                per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1857        }
1858
1859        /*
1860         * Allocate and initialize pages for Hypervisor-mode percpu regions.
1861         */
1862        for_each_possible_cpu(cpu) {
1863                struct page *page;
1864                void *page_addr;
1865
1866                page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1867                if (!page) {
1868                        err = -ENOMEM;
1869                        goto out_err;
1870                }
1871
1872                page_addr = page_address(page);
1873                memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1874                kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1875        }
1876
1877        /*
1878         * Map the Hyp-code called directly from the host
1879         */
1880        err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1881                                  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1882        if (err) {
1883                kvm_err("Cannot map world-switch code\n");
1884                goto out_err;
1885        }
1886
1887        err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1888                                  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1889        if (err) {
1890                kvm_err("Cannot map .hyp.rodata section\n");
1891                goto out_err;
1892        }
1893
1894        err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1895                                  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1896        if (err) {
1897                kvm_err("Cannot map rodata section\n");
1898                goto out_err;
1899        }
1900
1901        /*
1902         * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1903         * section thanks to an assertion in the linker script. Map it RW and
1904         * the rest of .bss RO.
1905         */
1906        err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1907                                  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1908        if (err) {
1909                kvm_err("Cannot map hyp bss section: %d\n", err);
1910                goto out_err;
1911        }
1912
1913        err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1914                                  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1915        if (err) {
1916                kvm_err("Cannot map bss section\n");
1917                goto out_err;
1918        }
1919
1920        /*
1921         * Map the Hyp stack pages
1922         */
1923        for_each_possible_cpu(cpu) {
1924                char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1925                err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1926                                          PAGE_HYP);
1927
1928                if (err) {
1929                        kvm_err("Cannot map hyp stack\n");
1930                        goto out_err;
1931                }
1932        }
1933
1934        for_each_possible_cpu(cpu) {
1935                char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1936                char *percpu_end = percpu_begin + nvhe_percpu_size();
1937
1938                /* Map Hyp percpu pages */
1939                err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1940                if (err) {
1941                        kvm_err("Cannot map hyp percpu region\n");
1942                        goto out_err;
1943                }
1944
1945                /* Prepare the CPU initialization parameters */
1946                cpu_prepare_hyp_mode(cpu);
1947        }
1948
1949        if (is_protected_kvm_enabled()) {
1950                init_cpu_logical_map();
1951
1952                if (!init_psci_relay()) {
1953                        err = -ENODEV;
1954                        goto out_err;
1955                }
1956        }
1957
1958        if (is_protected_kvm_enabled()) {
1959                err = kvm_hyp_init_protection(hyp_va_bits);
1960                if (err) {
1961                        kvm_err("Failed to init hyp memory protection\n");
1962                        goto out_err;
1963                }
1964        }
1965
1966        return 0;
1967
1968out_err:
1969        teardown_hyp_mode();
1970        kvm_err("error initializing Hyp mode: %d\n", err);
1971        return err;
1972}
1973
1974static void _kvm_host_prot_finalize(void *discard)
1975{
1976        WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1977}
1978
1979static int finalize_hyp_mode(void)
1980{
1981        if (!is_protected_kvm_enabled())
1982                return 0;
1983
1984        /*
1985         * Exclude HYP BSS from kmemleak so that it doesn't get peeked
1986         * at, which would end badly once the section is inaccessible.
1987         * None of other sections should ever be introspected.
1988         */
1989        kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
1990
1991        /*
1992         * Flip the static key upfront as that may no longer be possible
1993         * once the host stage 2 is installed.
1994         */
1995        static_branch_enable(&kvm_protected_mode_initialized);
1996        on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
1997
1998        return 0;
1999}
2000
2001struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2002{
2003        struct kvm_vcpu *vcpu;
2004        int i;
2005
2006        mpidr &= MPIDR_HWID_BITMASK;
2007        kvm_for_each_vcpu(i, vcpu, kvm) {
2008                if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2009                        return vcpu;
2010        }
2011        return NULL;
2012}
2013
2014bool kvm_arch_has_irq_bypass(void)
2015{
2016        return true;
2017}
2018
2019int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2020                                      struct irq_bypass_producer *prod)
2021{
2022        struct kvm_kernel_irqfd *irqfd =
2023                container_of(cons, struct kvm_kernel_irqfd, consumer);
2024
2025        return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2026                                          &irqfd->irq_entry);
2027}
2028void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2029                                      struct irq_bypass_producer *prod)
2030{
2031        struct kvm_kernel_irqfd *irqfd =
2032                container_of(cons, struct kvm_kernel_irqfd, consumer);
2033
2034        kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2035                                     &irqfd->irq_entry);
2036}
2037
2038void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2039{
2040        struct kvm_kernel_irqfd *irqfd =
2041                container_of(cons, struct kvm_kernel_irqfd, consumer);
2042
2043        kvm_arm_halt_guest(irqfd->kvm);
2044}
2045
2046void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2047{
2048        struct kvm_kernel_irqfd *irqfd =
2049                container_of(cons, struct kvm_kernel_irqfd, consumer);
2050
2051        kvm_arm_resume_guest(irqfd->kvm);
2052}
2053
2054/**
2055 * Initialize Hyp-mode and memory mappings on all CPUs.
2056 */
2057int kvm_arch_init(void *opaque)
2058{
2059        int err;
2060        bool in_hyp_mode;
2061
2062        if (!is_hyp_mode_available()) {
2063                kvm_info("HYP mode not available\n");
2064                return -ENODEV;
2065        }
2066
2067        in_hyp_mode = is_kernel_in_hyp_mode();
2068
2069        if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2070            cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2071                kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2072                         "Only trusted guests should be used on this system.\n");
2073
2074        err = kvm_set_ipa_limit();
2075        if (err)
2076                return err;
2077
2078        err = kvm_arm_init_sve();
2079        if (err)
2080                return err;
2081
2082        if (!in_hyp_mode) {
2083                err = init_hyp_mode();
2084                if (err)
2085                        goto out_err;
2086        }
2087
2088        err = kvm_init_vector_slots();
2089        if (err) {
2090                kvm_err("Cannot initialise vector slots\n");
2091                goto out_err;
2092        }
2093
2094        err = init_subsystems();
2095        if (err)
2096                goto out_hyp;
2097
2098        if (!in_hyp_mode) {
2099                err = finalize_hyp_mode();
2100                if (err) {
2101                        kvm_err("Failed to finalize Hyp protection\n");
2102                        goto out_hyp;
2103                }
2104        }
2105
2106        if (is_protected_kvm_enabled()) {
2107                kvm_info("Protected nVHE mode initialized successfully\n");
2108        } else if (in_hyp_mode) {
2109                kvm_info("VHE mode initialized successfully\n");
2110        } else {
2111                kvm_info("Hyp mode initialized successfully\n");
2112        }
2113
2114        return 0;
2115
2116out_hyp:
2117        hyp_cpu_pm_exit();
2118        if (!in_hyp_mode)
2119                teardown_hyp_mode();
2120out_err:
2121        return err;
2122}
2123
2124/* NOP: Compiling as a module not supported */
2125void kvm_arch_exit(void)
2126{
2127        kvm_perf_teardown();
2128}
2129
2130static int __init early_kvm_mode_cfg(char *arg)
2131{
2132        if (!arg)
2133                return -EINVAL;
2134
2135        if (strcmp(arg, "protected") == 0) {
2136                kvm_mode = KVM_MODE_PROTECTED;
2137                return 0;
2138        }
2139
2140        if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2141                return 0;
2142
2143        return -EINVAL;
2144}
2145early_param("kvm-arm.mode", early_kvm_mode_cfg);
2146
2147enum kvm_mode kvm_get_mode(void)
2148{
2149        return kvm_mode;
2150}
2151
2152static int arm_init(void)
2153{
2154        int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2155        return rc;
2156}
2157
2158module_init(arm_init);
2159