linux/arch/arm64/kvm/guest.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012,2013 - ARM Ltd
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 *
   6 * Derived from arch/arm/kvm/guest.c:
   7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   9 */
  10
  11#include <linux/bits.h>
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/nospec.h>
  15#include <linux/kvm_host.h>
  16#include <linux/module.h>
  17#include <linux/stddef.h>
  18#include <linux/string.h>
  19#include <linux/vmalloc.h>
  20#include <linux/fs.h>
  21#include <kvm/arm_psci.h>
  22#include <asm/cputype.h>
  23#include <linux/uaccess.h>
  24#include <asm/fpsimd.h>
  25#include <asm/kvm.h>
  26#include <asm/kvm_emulate.h>
  27#include <asm/sigcontext.h>
  28
  29#include "trace.h"
  30
  31const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
  32        KVM_GENERIC_VM_STATS()
  33};
  34
  35const struct kvm_stats_header kvm_vm_stats_header = {
  36        .name_size = KVM_STATS_NAME_SIZE,
  37        .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
  38        .id_offset =  sizeof(struct kvm_stats_header),
  39        .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  40        .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  41                       sizeof(kvm_vm_stats_desc),
  42};
  43
  44const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  45        KVM_GENERIC_VCPU_STATS(),
  46        STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
  47        STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
  48        STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
  49        STATS_DESC_COUNTER(VCPU, mmio_exit_user),
  50        STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
  51        STATS_DESC_COUNTER(VCPU, signal_exits),
  52        STATS_DESC_COUNTER(VCPU, exits)
  53};
  54
  55const struct kvm_stats_header kvm_vcpu_stats_header = {
  56        .name_size = KVM_STATS_NAME_SIZE,
  57        .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  58        .id_offset = sizeof(struct kvm_stats_header),
  59        .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  60        .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  61                       sizeof(kvm_vcpu_stats_desc),
  62};
  63
  64static bool core_reg_offset_is_vreg(u64 off)
  65{
  66        return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
  67                off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
  68}
  69
  70static u64 core_reg_offset_from_id(u64 id)
  71{
  72        return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
  73}
  74
  75static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
  76{
  77        int size;
  78
  79        switch (off) {
  80        case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
  81             KVM_REG_ARM_CORE_REG(regs.regs[30]):
  82        case KVM_REG_ARM_CORE_REG(regs.sp):
  83        case KVM_REG_ARM_CORE_REG(regs.pc):
  84        case KVM_REG_ARM_CORE_REG(regs.pstate):
  85        case KVM_REG_ARM_CORE_REG(sp_el1):
  86        case KVM_REG_ARM_CORE_REG(elr_el1):
  87        case KVM_REG_ARM_CORE_REG(spsr[0]) ...
  88             KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
  89                size = sizeof(__u64);
  90                break;
  91
  92        case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
  93             KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
  94                size = sizeof(__uint128_t);
  95                break;
  96
  97        case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
  98        case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
  99                size = sizeof(__u32);
 100                break;
 101
 102        default:
 103                return -EINVAL;
 104        }
 105
 106        if (!IS_ALIGNED(off, size / sizeof(__u32)))
 107                return -EINVAL;
 108
 109        /*
 110         * The KVM_REG_ARM64_SVE regs must be used instead of
 111         * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
 112         * SVE-enabled vcpus:
 113         */
 114        if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
 115                return -EINVAL;
 116
 117        return size;
 118}
 119
 120static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 121{
 122        u64 off = core_reg_offset_from_id(reg->id);
 123        int size = core_reg_size_from_offset(vcpu, off);
 124
 125        if (size < 0)
 126                return NULL;
 127
 128        if (KVM_REG_SIZE(reg->id) != size)
 129                return NULL;
 130
 131        switch (off) {
 132        case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
 133             KVM_REG_ARM_CORE_REG(regs.regs[30]):
 134                off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
 135                off /= 2;
 136                return &vcpu->arch.ctxt.regs.regs[off];
 137
 138        case KVM_REG_ARM_CORE_REG(regs.sp):
 139                return &vcpu->arch.ctxt.regs.sp;
 140
 141        case KVM_REG_ARM_CORE_REG(regs.pc):
 142                return &vcpu->arch.ctxt.regs.pc;
 143
 144        case KVM_REG_ARM_CORE_REG(regs.pstate):
 145                return &vcpu->arch.ctxt.regs.pstate;
 146
 147        case KVM_REG_ARM_CORE_REG(sp_el1):
 148                return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
 149
 150        case KVM_REG_ARM_CORE_REG(elr_el1):
 151                return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
 152
 153        case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
 154                return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
 155
 156        case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
 157                return &vcpu->arch.ctxt.spsr_abt;
 158
 159        case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
 160                return &vcpu->arch.ctxt.spsr_und;
 161
 162        case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
 163                return &vcpu->arch.ctxt.spsr_irq;
 164
 165        case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
 166                return &vcpu->arch.ctxt.spsr_fiq;
 167
 168        case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
 169             KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
 170                off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
 171                off /= 4;
 172                return &vcpu->arch.ctxt.fp_regs.vregs[off];
 173
 174        case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 175                return &vcpu->arch.ctxt.fp_regs.fpsr;
 176
 177        case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 178                return &vcpu->arch.ctxt.fp_regs.fpcr;
 179
 180        default:
 181                return NULL;
 182        }
 183}
 184
 185static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 186{
 187        /*
 188         * Because the kvm_regs structure is a mix of 32, 64 and
 189         * 128bit fields, we index it as if it was a 32bit
 190         * array. Hence below, nr_regs is the number of entries, and
 191         * off the index in the "array".
 192         */
 193        __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 194        int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 195        void *addr;
 196        u32 off;
 197
 198        /* Our ID is an index into the kvm_regs struct. */
 199        off = core_reg_offset_from_id(reg->id);
 200        if (off >= nr_regs ||
 201            (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 202                return -ENOENT;
 203
 204        addr = core_reg_addr(vcpu, reg);
 205        if (!addr)
 206                return -EINVAL;
 207
 208        if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
 209                return -EFAULT;
 210
 211        return 0;
 212}
 213
 214static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 215{
 216        __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 217        int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 218        __uint128_t tmp;
 219        void *valp = &tmp, *addr;
 220        u64 off;
 221        int err = 0;
 222
 223        /* Our ID is an index into the kvm_regs struct. */
 224        off = core_reg_offset_from_id(reg->id);
 225        if (off >= nr_regs ||
 226            (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 227                return -ENOENT;
 228
 229        addr = core_reg_addr(vcpu, reg);
 230        if (!addr)
 231                return -EINVAL;
 232
 233        if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
 234                return -EINVAL;
 235
 236        if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
 237                err = -EFAULT;
 238                goto out;
 239        }
 240
 241        if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
 242                u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
 243                switch (mode) {
 244                case PSR_AA32_MODE_USR:
 245                        if (!system_supports_32bit_el0())
 246                                return -EINVAL;
 247                        break;
 248                case PSR_AA32_MODE_FIQ:
 249                case PSR_AA32_MODE_IRQ:
 250                case PSR_AA32_MODE_SVC:
 251                case PSR_AA32_MODE_ABT:
 252                case PSR_AA32_MODE_UND:
 253                        if (!vcpu_el1_is_32bit(vcpu))
 254                                return -EINVAL;
 255                        break;
 256                case PSR_MODE_EL0t:
 257                case PSR_MODE_EL1t:
 258                case PSR_MODE_EL1h:
 259                        if (vcpu_el1_is_32bit(vcpu))
 260                                return -EINVAL;
 261                        break;
 262                default:
 263                        err = -EINVAL;
 264                        goto out;
 265                }
 266        }
 267
 268        memcpy(addr, valp, KVM_REG_SIZE(reg->id));
 269
 270        if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
 271                int i, nr_reg;
 272
 273                switch (*vcpu_cpsr(vcpu)) {
 274                /*
 275                 * Either we are dealing with user mode, and only the
 276                 * first 15 registers (+ PC) must be narrowed to 32bit.
 277                 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
 278                 */
 279                case PSR_AA32_MODE_USR:
 280                case PSR_AA32_MODE_SYS:
 281                        nr_reg = 15;
 282                        break;
 283
 284                /*
 285                 * Otherwide, this is a priviledged mode, and *all* the
 286                 * registers must be narrowed to 32bit.
 287                 */
 288                default:
 289                        nr_reg = 31;
 290                        break;
 291                }
 292
 293                for (i = 0; i < nr_reg; i++)
 294                        vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
 295
 296                *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
 297        }
 298out:
 299        return err;
 300}
 301
 302#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
 303#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
 304#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
 305
 306static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 307{
 308        unsigned int max_vq, vq;
 309        u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 310
 311        if (!vcpu_has_sve(vcpu))
 312                return -ENOENT;
 313
 314        if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
 315                return -EINVAL;
 316
 317        memset(vqs, 0, sizeof(vqs));
 318
 319        max_vq = vcpu_sve_max_vq(vcpu);
 320        for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 321                if (sve_vq_available(vq))
 322                        vqs[vq_word(vq)] |= vq_mask(vq);
 323
 324        if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
 325                return -EFAULT;
 326
 327        return 0;
 328}
 329
 330static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 331{
 332        unsigned int max_vq, vq;
 333        u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 334
 335        if (!vcpu_has_sve(vcpu))
 336                return -ENOENT;
 337
 338        if (kvm_arm_vcpu_sve_finalized(vcpu))
 339                return -EPERM; /* too late! */
 340
 341        if (WARN_ON(vcpu->arch.sve_state))
 342                return -EINVAL;
 343
 344        if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
 345                return -EFAULT;
 346
 347        max_vq = 0;
 348        for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
 349                if (vq_present(vqs, vq))
 350                        max_vq = vq;
 351
 352        if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
 353                return -EINVAL;
 354
 355        /*
 356         * Vector lengths supported by the host can't currently be
 357         * hidden from the guest individually: instead we can only set a
 358         * maximum via ZCR_EL2.LEN.  So, make sure the available vector
 359         * lengths match the set requested exactly up to the requested
 360         * maximum:
 361         */
 362        for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 363                if (vq_present(vqs, vq) != sve_vq_available(vq))
 364                        return -EINVAL;
 365
 366        /* Can't run with no vector lengths at all: */
 367        if (max_vq < SVE_VQ_MIN)
 368                return -EINVAL;
 369
 370        /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
 371        vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
 372
 373        return 0;
 374}
 375
 376#define SVE_REG_SLICE_SHIFT     0
 377#define SVE_REG_SLICE_BITS      5
 378#define SVE_REG_ID_SHIFT        (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
 379#define SVE_REG_ID_BITS         5
 380
 381#define SVE_REG_SLICE_MASK                                      \
 382        GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,   \
 383                SVE_REG_SLICE_SHIFT)
 384#define SVE_REG_ID_MASK                                                 \
 385        GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
 386
 387#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
 388
 389#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
 390#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
 391
 392/*
 393 * Number of register slices required to cover each whole SVE register.
 394 * NOTE: Only the first slice every exists, for now.
 395 * If you are tempted to modify this, you must also rework sve_reg_to_region()
 396 * to match:
 397 */
 398#define vcpu_sve_slices(vcpu) 1
 399
 400/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
 401struct sve_state_reg_region {
 402        unsigned int koffset;   /* offset into sve_state in kernel memory */
 403        unsigned int klen;      /* length in kernel memory */
 404        unsigned int upad;      /* extra trailing padding in user memory */
 405};
 406
 407/*
 408 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
 409 * register copy
 410 */
 411static int sve_reg_to_region(struct sve_state_reg_region *region,
 412                             struct kvm_vcpu *vcpu,
 413                             const struct kvm_one_reg *reg)
 414{
 415        /* reg ID ranges for Z- registers */
 416        const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
 417        const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
 418                                                       SVE_NUM_SLICES - 1);
 419
 420        /* reg ID ranges for P- registers and FFR (which are contiguous) */
 421        const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
 422        const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
 423
 424        unsigned int vq;
 425        unsigned int reg_num;
 426
 427        unsigned int reqoffset, reqlen; /* User-requested offset and length */
 428        unsigned int maxlen; /* Maximum permitted length */
 429
 430        size_t sve_state_size;
 431
 432        const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
 433                                                        SVE_NUM_SLICES - 1);
 434
 435        /* Verify that the P-regs and FFR really do have contiguous IDs: */
 436        BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
 437
 438        /* Verify that we match the UAPI header: */
 439        BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
 440
 441        reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
 442
 443        if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
 444                if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 445                        return -ENOENT;
 446
 447                vq = vcpu_sve_max_vq(vcpu);
 448
 449                reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
 450                                SVE_SIG_REGS_OFFSET;
 451                reqlen = KVM_SVE_ZREG_SIZE;
 452                maxlen = SVE_SIG_ZREG_SIZE(vq);
 453        } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
 454                if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 455                        return -ENOENT;
 456
 457                vq = vcpu_sve_max_vq(vcpu);
 458
 459                reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
 460                                SVE_SIG_REGS_OFFSET;
 461                reqlen = KVM_SVE_PREG_SIZE;
 462                maxlen = SVE_SIG_PREG_SIZE(vq);
 463        } else {
 464                return -EINVAL;
 465        }
 466
 467        sve_state_size = vcpu_sve_state_size(vcpu);
 468        if (WARN_ON(!sve_state_size))
 469                return -EINVAL;
 470
 471        region->koffset = array_index_nospec(reqoffset, sve_state_size);
 472        region->klen = min(maxlen, reqlen);
 473        region->upad = reqlen - region->klen;
 474
 475        return 0;
 476}
 477
 478static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 479{
 480        int ret;
 481        struct sve_state_reg_region region;
 482        char __user *uptr = (char __user *)reg->addr;
 483
 484        /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 485        if (reg->id == KVM_REG_ARM64_SVE_VLS)
 486                return get_sve_vls(vcpu, reg);
 487
 488        /* Try to interpret reg ID as an architectural SVE register... */
 489        ret = sve_reg_to_region(&region, vcpu, reg);
 490        if (ret)
 491                return ret;
 492
 493        if (!kvm_arm_vcpu_sve_finalized(vcpu))
 494                return -EPERM;
 495
 496        if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
 497                         region.klen) ||
 498            clear_user(uptr + region.klen, region.upad))
 499                return -EFAULT;
 500
 501        return 0;
 502}
 503
 504static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 505{
 506        int ret;
 507        struct sve_state_reg_region region;
 508        const char __user *uptr = (const char __user *)reg->addr;
 509
 510        /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 511        if (reg->id == KVM_REG_ARM64_SVE_VLS)
 512                return set_sve_vls(vcpu, reg);
 513
 514        /* Try to interpret reg ID as an architectural SVE register... */
 515        ret = sve_reg_to_region(&region, vcpu, reg);
 516        if (ret)
 517                return ret;
 518
 519        if (!kvm_arm_vcpu_sve_finalized(vcpu))
 520                return -EPERM;
 521
 522        if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
 523                           region.klen))
 524                return -EFAULT;
 525
 526        return 0;
 527}
 528
 529int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 530{
 531        return -EINVAL;
 532}
 533
 534int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 535{
 536        return -EINVAL;
 537}
 538
 539static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
 540                                 u64 __user *uindices)
 541{
 542        unsigned int i;
 543        int n = 0;
 544
 545        for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
 546                u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
 547                int size = core_reg_size_from_offset(vcpu, i);
 548
 549                if (size < 0)
 550                        continue;
 551
 552                switch (size) {
 553                case sizeof(__u32):
 554                        reg |= KVM_REG_SIZE_U32;
 555                        break;
 556
 557                case sizeof(__u64):
 558                        reg |= KVM_REG_SIZE_U64;
 559                        break;
 560
 561                case sizeof(__uint128_t):
 562                        reg |= KVM_REG_SIZE_U128;
 563                        break;
 564
 565                default:
 566                        WARN_ON(1);
 567                        continue;
 568                }
 569
 570                if (uindices) {
 571                        if (put_user(reg, uindices))
 572                                return -EFAULT;
 573                        uindices++;
 574                }
 575
 576                n++;
 577        }
 578
 579        return n;
 580}
 581
 582static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
 583{
 584        return copy_core_reg_indices(vcpu, NULL);
 585}
 586
 587/**
 588 * ARM64 versions of the TIMER registers, always available on arm64
 589 */
 590
 591#define NUM_TIMER_REGS 3
 592
 593static bool is_timer_reg(u64 index)
 594{
 595        switch (index) {
 596        case KVM_REG_ARM_TIMER_CTL:
 597        case KVM_REG_ARM_TIMER_CNT:
 598        case KVM_REG_ARM_TIMER_CVAL:
 599                return true;
 600        }
 601        return false;
 602}
 603
 604static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 605{
 606        if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
 607                return -EFAULT;
 608        uindices++;
 609        if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
 610                return -EFAULT;
 611        uindices++;
 612        if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
 613                return -EFAULT;
 614
 615        return 0;
 616}
 617
 618static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 619{
 620        void __user *uaddr = (void __user *)(long)reg->addr;
 621        u64 val;
 622        int ret;
 623
 624        ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
 625        if (ret != 0)
 626                return -EFAULT;
 627
 628        return kvm_arm_timer_set_reg(vcpu, reg->id, val);
 629}
 630
 631static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 632{
 633        void __user *uaddr = (void __user *)(long)reg->addr;
 634        u64 val;
 635
 636        val = kvm_arm_timer_get_reg(vcpu, reg->id);
 637        return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
 638}
 639
 640static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
 641{
 642        const unsigned int slices = vcpu_sve_slices(vcpu);
 643
 644        if (!vcpu_has_sve(vcpu))
 645                return 0;
 646
 647        /* Policed by KVM_GET_REG_LIST: */
 648        WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 649
 650        return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
 651                + 1; /* KVM_REG_ARM64_SVE_VLS */
 652}
 653
 654static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
 655                                u64 __user *uindices)
 656{
 657        const unsigned int slices = vcpu_sve_slices(vcpu);
 658        u64 reg;
 659        unsigned int i, n;
 660        int num_regs = 0;
 661
 662        if (!vcpu_has_sve(vcpu))
 663                return 0;
 664
 665        /* Policed by KVM_GET_REG_LIST: */
 666        WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 667
 668        /*
 669         * Enumerate this first, so that userspace can save/restore in
 670         * the order reported by KVM_GET_REG_LIST:
 671         */
 672        reg = KVM_REG_ARM64_SVE_VLS;
 673        if (put_user(reg, uindices++))
 674                return -EFAULT;
 675        ++num_regs;
 676
 677        for (i = 0; i < slices; i++) {
 678                for (n = 0; n < SVE_NUM_ZREGS; n++) {
 679                        reg = KVM_REG_ARM64_SVE_ZREG(n, i);
 680                        if (put_user(reg, uindices++))
 681                                return -EFAULT;
 682                        num_regs++;
 683                }
 684
 685                for (n = 0; n < SVE_NUM_PREGS; n++) {
 686                        reg = KVM_REG_ARM64_SVE_PREG(n, i);
 687                        if (put_user(reg, uindices++))
 688                                return -EFAULT;
 689                        num_regs++;
 690                }
 691
 692                reg = KVM_REG_ARM64_SVE_FFR(i);
 693                if (put_user(reg, uindices++))
 694                        return -EFAULT;
 695                num_regs++;
 696        }
 697
 698        return num_regs;
 699}
 700
 701/**
 702 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
 703 *
 704 * This is for all registers.
 705 */
 706unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
 707{
 708        unsigned long res = 0;
 709
 710        res += num_core_regs(vcpu);
 711        res += num_sve_regs(vcpu);
 712        res += kvm_arm_num_sys_reg_descs(vcpu);
 713        res += kvm_arm_get_fw_num_regs(vcpu);
 714        res += NUM_TIMER_REGS;
 715
 716        return res;
 717}
 718
 719/**
 720 * kvm_arm_copy_reg_indices - get indices of all registers.
 721 *
 722 * We do core registers right here, then we append system regs.
 723 */
 724int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 725{
 726        int ret;
 727
 728        ret = copy_core_reg_indices(vcpu, uindices);
 729        if (ret < 0)
 730                return ret;
 731        uindices += ret;
 732
 733        ret = copy_sve_reg_indices(vcpu, uindices);
 734        if (ret < 0)
 735                return ret;
 736        uindices += ret;
 737
 738        ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
 739        if (ret < 0)
 740                return ret;
 741        uindices += kvm_arm_get_fw_num_regs(vcpu);
 742
 743        ret = copy_timer_indices(vcpu, uindices);
 744        if (ret < 0)
 745                return ret;
 746        uindices += NUM_TIMER_REGS;
 747
 748        return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
 749}
 750
 751int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 752{
 753        /* We currently use nothing arch-specific in upper 32 bits */
 754        if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 755                return -EINVAL;
 756
 757        switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 758        case KVM_REG_ARM_CORE:  return get_core_reg(vcpu, reg);
 759        case KVM_REG_ARM_FW:    return kvm_arm_get_fw_reg(vcpu, reg);
 760        case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
 761        }
 762
 763        if (is_timer_reg(reg->id))
 764                return get_timer_reg(vcpu, reg);
 765
 766        return kvm_arm_sys_reg_get_reg(vcpu, reg);
 767}
 768
 769int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 770{
 771        /* We currently use nothing arch-specific in upper 32 bits */
 772        if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 773                return -EINVAL;
 774
 775        switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 776        case KVM_REG_ARM_CORE:  return set_core_reg(vcpu, reg);
 777        case KVM_REG_ARM_FW:    return kvm_arm_set_fw_reg(vcpu, reg);
 778        case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
 779        }
 780
 781        if (is_timer_reg(reg->id))
 782                return set_timer_reg(vcpu, reg);
 783
 784        return kvm_arm_sys_reg_set_reg(vcpu, reg);
 785}
 786
 787int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 788                                  struct kvm_sregs *sregs)
 789{
 790        return -EINVAL;
 791}
 792
 793int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 794                                  struct kvm_sregs *sregs)
 795{
 796        return -EINVAL;
 797}
 798
 799int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
 800                              struct kvm_vcpu_events *events)
 801{
 802        events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
 803        events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
 804
 805        if (events->exception.serror_pending && events->exception.serror_has_esr)
 806                events->exception.serror_esr = vcpu_get_vsesr(vcpu);
 807
 808        /*
 809         * We never return a pending ext_dabt here because we deliver it to
 810         * the virtual CPU directly when setting the event and it's no longer
 811         * 'pending' at this point.
 812         */
 813
 814        return 0;
 815}
 816
 817int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
 818                              struct kvm_vcpu_events *events)
 819{
 820        bool serror_pending = events->exception.serror_pending;
 821        bool has_esr = events->exception.serror_has_esr;
 822        bool ext_dabt_pending = events->exception.ext_dabt_pending;
 823
 824        if (serror_pending && has_esr) {
 825                if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
 826                        return -EINVAL;
 827
 828                if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
 829                        kvm_set_sei_esr(vcpu, events->exception.serror_esr);
 830                else
 831                        return -EINVAL;
 832        } else if (serror_pending) {
 833                kvm_inject_vabt(vcpu);
 834        }
 835
 836        if (ext_dabt_pending)
 837                kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
 838
 839        return 0;
 840}
 841
 842u32 __attribute_const__ kvm_target_cpu(void)
 843{
 844        unsigned long implementor = read_cpuid_implementor();
 845        unsigned long part_number = read_cpuid_part_number();
 846
 847        switch (implementor) {
 848        case ARM_CPU_IMP_ARM:
 849                switch (part_number) {
 850                case ARM_CPU_PART_AEM_V8:
 851                        return KVM_ARM_TARGET_AEM_V8;
 852                case ARM_CPU_PART_FOUNDATION:
 853                        return KVM_ARM_TARGET_FOUNDATION_V8;
 854                case ARM_CPU_PART_CORTEX_A53:
 855                        return KVM_ARM_TARGET_CORTEX_A53;
 856                case ARM_CPU_PART_CORTEX_A57:
 857                        return KVM_ARM_TARGET_CORTEX_A57;
 858                }
 859                break;
 860        case ARM_CPU_IMP_APM:
 861                switch (part_number) {
 862                case APM_CPU_PART_POTENZA:
 863                        return KVM_ARM_TARGET_XGENE_POTENZA;
 864                }
 865                break;
 866        }
 867
 868        /* Return a default generic target */
 869        return KVM_ARM_TARGET_GENERIC_V8;
 870}
 871
 872int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
 873{
 874        u32 target = kvm_target_cpu();
 875
 876        if (target < 0)
 877                return -ENODEV;
 878
 879        memset(init, 0, sizeof(*init));
 880
 881        /*
 882         * For now, we don't return any features.
 883         * In future, we might use features to return target
 884         * specific features available for the preferred
 885         * target type.
 886         */
 887        init->target = (__u32)target;
 888
 889        return 0;
 890}
 891
 892int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 893{
 894        return -EINVAL;
 895}
 896
 897int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 898{
 899        return -EINVAL;
 900}
 901
 902int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 903                                  struct kvm_translation *tr)
 904{
 905        return -EINVAL;
 906}
 907
 908/**
 909 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
 910 * @kvm:        pointer to the KVM struct
 911 * @kvm_guest_debug: the ioctl data buffer
 912 *
 913 * This sets up and enables the VM for guest debugging. Userspace
 914 * passes in a control flag to enable different debug types and
 915 * potentially other architecture specific information in the rest of
 916 * the structure.
 917 */
 918int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 919                                        struct kvm_guest_debug *dbg)
 920{
 921        int ret = 0;
 922
 923        trace_kvm_set_guest_debug(vcpu, dbg->control);
 924
 925        if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
 926                ret = -EINVAL;
 927                goto out;
 928        }
 929
 930        if (dbg->control & KVM_GUESTDBG_ENABLE) {
 931                vcpu->guest_debug = dbg->control;
 932
 933                /* Hardware assisted Break and Watch points */
 934                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
 935                        vcpu->arch.external_debug_state = dbg->arch;
 936                }
 937
 938        } else {
 939                /* If not enabled clear all flags */
 940                vcpu->guest_debug = 0;
 941        }
 942
 943out:
 944        return ret;
 945}
 946
 947int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
 948                               struct kvm_device_attr *attr)
 949{
 950        int ret;
 951
 952        switch (attr->group) {
 953        case KVM_ARM_VCPU_PMU_V3_CTRL:
 954                ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
 955                break;
 956        case KVM_ARM_VCPU_TIMER_CTRL:
 957                ret = kvm_arm_timer_set_attr(vcpu, attr);
 958                break;
 959        case KVM_ARM_VCPU_PVTIME_CTRL:
 960                ret = kvm_arm_pvtime_set_attr(vcpu, attr);
 961                break;
 962        default:
 963                ret = -ENXIO;
 964                break;
 965        }
 966
 967        return ret;
 968}
 969
 970int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
 971                               struct kvm_device_attr *attr)
 972{
 973        int ret;
 974
 975        switch (attr->group) {
 976        case KVM_ARM_VCPU_PMU_V3_CTRL:
 977                ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
 978                break;
 979        case KVM_ARM_VCPU_TIMER_CTRL:
 980                ret = kvm_arm_timer_get_attr(vcpu, attr);
 981                break;
 982        case KVM_ARM_VCPU_PVTIME_CTRL:
 983                ret = kvm_arm_pvtime_get_attr(vcpu, attr);
 984                break;
 985        default:
 986                ret = -ENXIO;
 987                break;
 988        }
 989
 990        return ret;
 991}
 992
 993int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
 994                               struct kvm_device_attr *attr)
 995{
 996        int ret;
 997
 998        switch (attr->group) {
 999        case KVM_ARM_VCPU_PMU_V3_CTRL:
1000                ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1001                break;
1002        case KVM_ARM_VCPU_TIMER_CTRL:
1003                ret = kvm_arm_timer_has_attr(vcpu, attr);
1004                break;
1005        case KVM_ARM_VCPU_PVTIME_CTRL:
1006                ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1007                break;
1008        default:
1009                ret = -ENXIO;
1010                break;
1011        }
1012
1013        return ret;
1014}
1015
1016long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1017                                struct kvm_arm_copy_mte_tags *copy_tags)
1018{
1019        gpa_t guest_ipa = copy_tags->guest_ipa;
1020        size_t length = copy_tags->length;
1021        void __user *tags = copy_tags->addr;
1022        gpa_t gfn;
1023        bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1024        int ret = 0;
1025
1026        if (!kvm_has_mte(kvm))
1027                return -EINVAL;
1028
1029        if (copy_tags->reserved[0] || copy_tags->reserved[1])
1030                return -EINVAL;
1031
1032        if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1033                return -EINVAL;
1034
1035        if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1036                return -EINVAL;
1037
1038        gfn = gpa_to_gfn(guest_ipa);
1039
1040        mutex_lock(&kvm->slots_lock);
1041
1042        while (length > 0) {
1043                kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1044                void *maddr;
1045                unsigned long num_tags;
1046                struct page *page;
1047
1048                if (is_error_noslot_pfn(pfn)) {
1049                        ret = -EFAULT;
1050                        goto out;
1051                }
1052
1053                page = pfn_to_online_page(pfn);
1054                if (!page) {
1055                        /* Reject ZONE_DEVICE memory */
1056                        ret = -EFAULT;
1057                        goto out;
1058                }
1059                maddr = page_address(page);
1060
1061                if (!write) {
1062                        if (test_bit(PG_mte_tagged, &page->flags))
1063                                num_tags = mte_copy_tags_to_user(tags, maddr,
1064                                                        MTE_GRANULES_PER_PAGE);
1065                        else
1066                                /* No tags in memory, so write zeros */
1067                                num_tags = MTE_GRANULES_PER_PAGE -
1068                                        clear_user(tags, MTE_GRANULES_PER_PAGE);
1069                        kvm_release_pfn_clean(pfn);
1070                } else {
1071                        num_tags = mte_copy_tags_from_user(maddr, tags,
1072                                                        MTE_GRANULES_PER_PAGE);
1073
1074                        /*
1075                         * Set the flag after checking the write
1076                         * completed fully
1077                         */
1078                        if (num_tags == MTE_GRANULES_PER_PAGE)
1079                                set_bit(PG_mte_tagged, &page->flags);
1080
1081                        kvm_release_pfn_dirty(pfn);
1082                }
1083
1084                if (num_tags != MTE_GRANULES_PER_PAGE) {
1085                        ret = -EFAULT;
1086                        goto out;
1087                }
1088
1089                gfn++;
1090                tags += num_tags;
1091                length -= PAGE_SIZE;
1092        }
1093
1094out:
1095        mutex_unlock(&kvm->slots_lock);
1096        /* If some data has been copied report the number of bytes copied */
1097        if (length != copy_tags->length)
1098                return copy_tags->length - length;
1099        return ret;
1100}
1101