linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2020 Google LLC
   4 * Author: Quentin Perret <qperret@google.com>
   5 */
   6
   7#include <linux/kvm_host.h>
   8#include <asm/kvm_emulate.h>
   9#include <asm/kvm_hyp.h>
  10#include <asm/kvm_mmu.h>
  11#include <asm/kvm_pgtable.h>
  12#include <asm/stage2_pgtable.h>
  13
  14#include <hyp/switch.h>
  15
  16#include <nvhe/gfp.h>
  17#include <nvhe/memory.h>
  18#include <nvhe/mem_protect.h>
  19#include <nvhe/mm.h>
  20
  21#define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
  22
  23extern unsigned long hyp_nr_cpus;
  24struct host_kvm host_kvm;
  25
  26static struct hyp_pool host_s2_pool;
  27
  28/*
  29 * Copies of the host's CPU features registers holding sanitized values.
  30 */
  31u64 id_aa64mmfr0_el1_sys_val;
  32u64 id_aa64mmfr1_el1_sys_val;
  33
  34const u8 pkvm_hyp_id = 1;
  35
  36static void *host_s2_zalloc_pages_exact(size_t size)
  37{
  38        void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
  39
  40        hyp_split_page(hyp_virt_to_page(addr));
  41
  42        /*
  43         * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
  44         * so there should be no need to free any of the tail pages to make the
  45         * allocation exact.
  46         */
  47        WARN_ON(size != (PAGE_SIZE << get_order(size)));
  48
  49        return addr;
  50}
  51
  52static void *host_s2_zalloc_page(void *pool)
  53{
  54        return hyp_alloc_pages(pool, 0);
  55}
  56
  57static void host_s2_get_page(void *addr)
  58{
  59        hyp_get_page(&host_s2_pool, addr);
  60}
  61
  62static void host_s2_put_page(void *addr)
  63{
  64        hyp_put_page(&host_s2_pool, addr);
  65}
  66
  67static int prepare_s2_pool(void *pgt_pool_base)
  68{
  69        unsigned long nr_pages, pfn;
  70        int ret;
  71
  72        pfn = hyp_virt_to_pfn(pgt_pool_base);
  73        nr_pages = host_s2_pgtable_pages();
  74        ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
  75        if (ret)
  76                return ret;
  77
  78        host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
  79                .zalloc_pages_exact = host_s2_zalloc_pages_exact,
  80                .zalloc_page = host_s2_zalloc_page,
  81                .phys_to_virt = hyp_phys_to_virt,
  82                .virt_to_phys = hyp_virt_to_phys,
  83                .page_count = hyp_page_count,
  84                .get_page = host_s2_get_page,
  85                .put_page = host_s2_put_page,
  86        };
  87
  88        return 0;
  89}
  90
  91static void prepare_host_vtcr(void)
  92{
  93        u32 parange, phys_shift;
  94
  95        /* The host stage 2 is id-mapped, so use parange for T0SZ */
  96        parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
  97        phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
  98
  99        host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
 100                                          id_aa64mmfr1_el1_sys_val, phys_shift);
 101}
 102
 103static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
 104
 105int kvm_host_prepare_stage2(void *pgt_pool_base)
 106{
 107        struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
 108        int ret;
 109
 110        prepare_host_vtcr();
 111        hyp_spin_lock_init(&host_kvm.lock);
 112
 113        ret = prepare_s2_pool(pgt_pool_base);
 114        if (ret)
 115                return ret;
 116
 117        ret = __kvm_pgtable_stage2_init(&host_kvm.pgt, &host_kvm.arch,
 118                                        &host_kvm.mm_ops, KVM_HOST_S2_FLAGS,
 119                                        host_stage2_force_pte_cb);
 120        if (ret)
 121                return ret;
 122
 123        mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
 124        mmu->arch = &host_kvm.arch;
 125        mmu->pgt = &host_kvm.pgt;
 126        WRITE_ONCE(mmu->vmid.vmid_gen, 0);
 127        WRITE_ONCE(mmu->vmid.vmid, 0);
 128
 129        return 0;
 130}
 131
 132int __pkvm_prot_finalize(void)
 133{
 134        struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
 135        struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
 136
 137        params->vttbr = kvm_get_vttbr(mmu);
 138        params->vtcr = host_kvm.arch.vtcr;
 139        params->hcr_el2 |= HCR_VM;
 140        kvm_flush_dcache_to_poc(params, sizeof(*params));
 141
 142        write_sysreg(params->hcr_el2, hcr_el2);
 143        __load_stage2(&host_kvm.arch.mmu, &host_kvm.arch);
 144
 145        /*
 146         * Make sure to have an ISB before the TLB maintenance below but only
 147         * when __load_stage2() doesn't include one already.
 148         */
 149        asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
 150
 151        /* Invalidate stale HCR bits that may be cached in TLBs */
 152        __tlbi(vmalls12e1);
 153        dsb(nsh);
 154        isb();
 155
 156        return 0;
 157}
 158
 159static int host_stage2_unmap_dev_all(void)
 160{
 161        struct kvm_pgtable *pgt = &host_kvm.pgt;
 162        struct memblock_region *reg;
 163        u64 addr = 0;
 164        int i, ret;
 165
 166        /* Unmap all non-memory regions to recycle the pages */
 167        for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
 168                reg = &hyp_memory[i];
 169                ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
 170                if (ret)
 171                        return ret;
 172        }
 173        return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
 174}
 175
 176struct kvm_mem_range {
 177        u64 start;
 178        u64 end;
 179};
 180
 181static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
 182{
 183        int cur, left = 0, right = hyp_memblock_nr;
 184        struct memblock_region *reg;
 185        phys_addr_t end;
 186
 187        range->start = 0;
 188        range->end = ULONG_MAX;
 189
 190        /* The list of memblock regions is sorted, binary search it */
 191        while (left < right) {
 192                cur = (left + right) >> 1;
 193                reg = &hyp_memory[cur];
 194                end = reg->base + reg->size;
 195                if (addr < reg->base) {
 196                        right = cur;
 197                        range->end = reg->base;
 198                } else if (addr >= end) {
 199                        left = cur + 1;
 200                        range->start = end;
 201                } else {
 202                        range->start = reg->base;
 203                        range->end = end;
 204                        return true;
 205                }
 206        }
 207
 208        return false;
 209}
 210
 211bool addr_is_memory(phys_addr_t phys)
 212{
 213        struct kvm_mem_range range;
 214
 215        return find_mem_range(phys, &range);
 216}
 217
 218static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
 219{
 220        return range->start <= addr && addr < range->end;
 221}
 222
 223static bool range_is_memory(u64 start, u64 end)
 224{
 225        struct kvm_mem_range r;
 226
 227        if (!find_mem_range(start, &r))
 228                return false;
 229
 230        return is_in_mem_range(end - 1, &r);
 231}
 232
 233static inline int __host_stage2_idmap(u64 start, u64 end,
 234                                      enum kvm_pgtable_prot prot)
 235{
 236        return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
 237                                      prot, &host_s2_pool);
 238}
 239
 240/*
 241 * The pool has been provided with enough pages to cover all of memory with
 242 * page granularity, but it is difficult to know how much of the MMIO range
 243 * we will need to cover upfront, so we may need to 'recycle' the pages if we
 244 * run out.
 245 */
 246#define host_stage2_try(fn, ...)                                        \
 247        ({                                                              \
 248                int __ret;                                              \
 249                hyp_assert_lock_held(&host_kvm.lock);                   \
 250                __ret = fn(__VA_ARGS__);                                \
 251                if (__ret == -ENOMEM) {                                 \
 252                        __ret = host_stage2_unmap_dev_all();            \
 253                        if (!__ret)                                     \
 254                                __ret = fn(__VA_ARGS__);                \
 255                }                                                       \
 256                __ret;                                                  \
 257         })
 258
 259static inline bool range_included(struct kvm_mem_range *child,
 260                                  struct kvm_mem_range *parent)
 261{
 262        return parent->start <= child->start && child->end <= parent->end;
 263}
 264
 265static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
 266{
 267        struct kvm_mem_range cur;
 268        kvm_pte_t pte;
 269        u32 level;
 270        int ret;
 271
 272        hyp_assert_lock_held(&host_kvm.lock);
 273        ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, &level);
 274        if (ret)
 275                return ret;
 276
 277        if (kvm_pte_valid(pte))
 278                return -EAGAIN;
 279
 280        if (pte)
 281                return -EPERM;
 282
 283        do {
 284                u64 granule = kvm_granule_size(level);
 285                cur.start = ALIGN_DOWN(addr, granule);
 286                cur.end = cur.start + granule;
 287                level++;
 288        } while ((level < KVM_PGTABLE_MAX_LEVELS) &&
 289                        !(kvm_level_supports_block_mapping(level) &&
 290                          range_included(&cur, range)));
 291
 292        *range = cur;
 293
 294        return 0;
 295}
 296
 297int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
 298                             enum kvm_pgtable_prot prot)
 299{
 300        hyp_assert_lock_held(&host_kvm.lock);
 301
 302        return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
 303}
 304
 305int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
 306{
 307        hyp_assert_lock_held(&host_kvm.lock);
 308
 309        return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_kvm.pgt,
 310                               addr, size, &host_s2_pool, owner_id);
 311}
 312
 313static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
 314{
 315        /*
 316         * Block mappings must be used with care in the host stage-2 as a
 317         * kvm_pgtable_stage2_map() operation targeting a page in the range of
 318         * an existing block will delete the block under the assumption that
 319         * mappings in the rest of the block range can always be rebuilt lazily.
 320         * That assumption is correct for the host stage-2 with RWX mappings
 321         * targeting memory or RW mappings targeting MMIO ranges (see
 322         * host_stage2_idmap() below which implements some of the host memory
 323         * abort logic). However, this is not safe for any other mappings where
 324         * the host stage-2 page-table is in fact the only place where this
 325         * state is stored. In all those cases, it is safer to use page-level
 326         * mappings, hence avoiding to lose the state because of side-effects in
 327         * kvm_pgtable_stage2_map().
 328         */
 329        if (range_is_memory(addr, end))
 330                return prot != PKVM_HOST_MEM_PROT;
 331        else
 332                return prot != PKVM_HOST_MMIO_PROT;
 333}
 334
 335static int host_stage2_idmap(u64 addr)
 336{
 337        struct kvm_mem_range range;
 338        bool is_memory = find_mem_range(addr, &range);
 339        enum kvm_pgtable_prot prot;
 340        int ret;
 341
 342        prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
 343
 344        hyp_spin_lock(&host_kvm.lock);
 345        ret = host_stage2_adjust_range(addr, &range);
 346        if (ret)
 347                goto unlock;
 348
 349        ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
 350unlock:
 351        hyp_spin_unlock(&host_kvm.lock);
 352
 353        return ret;
 354}
 355
 356static inline bool check_prot(enum kvm_pgtable_prot prot,
 357                              enum kvm_pgtable_prot required,
 358                              enum kvm_pgtable_prot denied)
 359{
 360        return (prot & (required | denied)) == required;
 361}
 362
 363int __pkvm_host_share_hyp(u64 pfn)
 364{
 365        phys_addr_t addr = hyp_pfn_to_phys(pfn);
 366        enum kvm_pgtable_prot prot, cur;
 367        void *virt = __hyp_va(addr);
 368        enum pkvm_page_state state;
 369        kvm_pte_t pte;
 370        int ret;
 371
 372        if (!addr_is_memory(addr))
 373                return -EINVAL;
 374
 375        hyp_spin_lock(&host_kvm.lock);
 376        hyp_spin_lock(&pkvm_pgd_lock);
 377
 378        ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, NULL);
 379        if (ret)
 380                goto unlock;
 381        if (!pte)
 382                goto map_shared;
 383
 384        /*
 385         * Check attributes in the host stage-2 PTE. We need the page to be:
 386         *  - mapped RWX as we're sharing memory;
 387         *  - not borrowed, as that implies absence of ownership.
 388         * Otherwise, we can't let it got through
 389         */
 390        cur = kvm_pgtable_stage2_pte_prot(pte);
 391        prot = pkvm_mkstate(0, PKVM_PAGE_SHARED_BORROWED);
 392        if (!check_prot(cur, PKVM_HOST_MEM_PROT, prot)) {
 393                ret = -EPERM;
 394                goto unlock;
 395        }
 396
 397        state = pkvm_getstate(cur);
 398        if (state == PKVM_PAGE_OWNED)
 399                goto map_shared;
 400
 401        /*
 402         * Tolerate double-sharing the same page, but this requires
 403         * cross-checking the hypervisor stage-1.
 404         */
 405        if (state != PKVM_PAGE_SHARED_OWNED) {
 406                ret = -EPERM;
 407                goto unlock;
 408        }
 409
 410        ret = kvm_pgtable_get_leaf(&pkvm_pgtable, (u64)virt, &pte, NULL);
 411        if (ret)
 412                goto unlock;
 413
 414        /*
 415         * If the page has been shared with the hypervisor, it must be
 416         * already mapped as SHARED_BORROWED in its stage-1.
 417         */
 418        cur = kvm_pgtable_hyp_pte_prot(pte);
 419        prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_SHARED_BORROWED);
 420        if (!check_prot(cur, prot, ~prot))
 421                ret = -EPERM;
 422        goto unlock;
 423
 424map_shared:
 425        /*
 426         * If the page is not yet shared, adjust mappings in both page-tables
 427         * while both locks are held.
 428         */
 429        prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_SHARED_BORROWED);
 430        ret = pkvm_create_mappings_locked(virt, virt + PAGE_SIZE, prot);
 431        BUG_ON(ret);
 432
 433        prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, PKVM_PAGE_SHARED_OWNED);
 434        ret = host_stage2_idmap_locked(addr, PAGE_SIZE, prot);
 435        BUG_ON(ret);
 436
 437unlock:
 438        hyp_spin_unlock(&pkvm_pgd_lock);
 439        hyp_spin_unlock(&host_kvm.lock);
 440
 441        return ret;
 442}
 443
 444void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
 445{
 446        struct kvm_vcpu_fault_info fault;
 447        u64 esr, addr;
 448        int ret = 0;
 449
 450        esr = read_sysreg_el2(SYS_ESR);
 451        BUG_ON(!__get_fault_info(esr, &fault));
 452
 453        addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
 454        ret = host_stage2_idmap(addr);
 455        BUG_ON(ret && ret != -EAGAIN);
 456}
 457