linux/arch/arm64/kvm/mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   5 */
   6
   7#include <linux/mman.h>
   8#include <linux/kvm_host.h>
   9#include <linux/io.h>
  10#include <linux/hugetlb.h>
  11#include <linux/sched/signal.h>
  12#include <trace/events/kvm.h>
  13#include <asm/pgalloc.h>
  14#include <asm/cacheflush.h>
  15#include <asm/kvm_arm.h>
  16#include <asm/kvm_mmu.h>
  17#include <asm/kvm_pgtable.h>
  18#include <asm/kvm_ras.h>
  19#include <asm/kvm_asm.h>
  20#include <asm/kvm_emulate.h>
  21#include <asm/virt.h>
  22
  23#include "trace.h"
  24
  25static struct kvm_pgtable *hyp_pgtable;
  26static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
  27
  28static unsigned long hyp_idmap_start;
  29static unsigned long hyp_idmap_end;
  30static phys_addr_t hyp_idmap_vector;
  31
  32static unsigned long io_map_base;
  33
  34
  35/*
  36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
  37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
  38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
  39 * long will also starve other vCPUs. We have to also make sure that the page
  40 * tables are not freed while we released the lock.
  41 */
  42static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
  43                              phys_addr_t end,
  44                              int (*fn)(struct kvm_pgtable *, u64, u64),
  45                              bool resched)
  46{
  47        int ret;
  48        u64 next;
  49
  50        do {
  51                struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
  52                if (!pgt)
  53                        return -EINVAL;
  54
  55                next = stage2_pgd_addr_end(kvm, addr, end);
  56                ret = fn(pgt, addr, next - addr);
  57                if (ret)
  58                        break;
  59
  60                if (resched && next != end)
  61                        cond_resched_lock(&kvm->mmu_lock);
  62        } while (addr = next, addr != end);
  63
  64        return ret;
  65}
  66
  67#define stage2_apply_range_resched(kvm, addr, end, fn)                  \
  68        stage2_apply_range(kvm, addr, end, fn, true)
  69
  70static bool memslot_is_logging(struct kvm_memory_slot *memslot)
  71{
  72        return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
  73}
  74
  75/**
  76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
  77 * @kvm:        pointer to kvm structure.
  78 *
  79 * Interface to HYP function to flush all VM TLB entries
  80 */
  81void kvm_flush_remote_tlbs(struct kvm *kvm)
  82{
  83        ++kvm->stat.generic.remote_tlb_flush_requests;
  84        kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
  85}
  86
  87static bool kvm_is_device_pfn(unsigned long pfn)
  88{
  89        return !pfn_is_map_memory(pfn);
  90}
  91
  92static void *stage2_memcache_zalloc_page(void *arg)
  93{
  94        struct kvm_mmu_memory_cache *mc = arg;
  95
  96        /* Allocated with __GFP_ZERO, so no need to zero */
  97        return kvm_mmu_memory_cache_alloc(mc);
  98}
  99
 100static void *kvm_host_zalloc_pages_exact(size_t size)
 101{
 102        return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 103}
 104
 105static void kvm_host_get_page(void *addr)
 106{
 107        get_page(virt_to_page(addr));
 108}
 109
 110static void kvm_host_put_page(void *addr)
 111{
 112        put_page(virt_to_page(addr));
 113}
 114
 115static int kvm_host_page_count(void *addr)
 116{
 117        return page_count(virt_to_page(addr));
 118}
 119
 120static phys_addr_t kvm_host_pa(void *addr)
 121{
 122        return __pa(addr);
 123}
 124
 125static void *kvm_host_va(phys_addr_t phys)
 126{
 127        return __va(phys);
 128}
 129
 130static void clean_dcache_guest_page(void *va, size_t size)
 131{
 132        __clean_dcache_guest_page(va, size);
 133}
 134
 135static void invalidate_icache_guest_page(void *va, size_t size)
 136{
 137        __invalidate_icache_guest_page(va, size);
 138}
 139
 140/*
 141 * Unmapping vs dcache management:
 142 *
 143 * If a guest maps certain memory pages as uncached, all writes will
 144 * bypass the data cache and go directly to RAM.  However, the CPUs
 145 * can still speculate reads (not writes) and fill cache lines with
 146 * data.
 147 *
 148 * Those cache lines will be *clean* cache lines though, so a
 149 * clean+invalidate operation is equivalent to an invalidate
 150 * operation, because no cache lines are marked dirty.
 151 *
 152 * Those clean cache lines could be filled prior to an uncached write
 153 * by the guest, and the cache coherent IO subsystem would therefore
 154 * end up writing old data to disk.
 155 *
 156 * This is why right after unmapping a page/section and invalidating
 157 * the corresponding TLBs, we flush to make sure the IO subsystem will
 158 * never hit in the cache.
 159 *
 160 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 161 * we then fully enforce cacheability of RAM, no matter what the guest
 162 * does.
 163 */
 164/**
 165 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 166 * @mmu:   The KVM stage-2 MMU pointer
 167 * @start: The intermediate physical base address of the range to unmap
 168 * @size:  The size of the area to unmap
 169 * @may_block: Whether or not we are permitted to block
 170 *
 171 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 172 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 173 * destroying the VM), otherwise another faulting VCPU may come in and mess
 174 * with things behind our backs.
 175 */
 176static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
 177                                 bool may_block)
 178{
 179        struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
 180        phys_addr_t end = start + size;
 181
 182        assert_spin_locked(&kvm->mmu_lock);
 183        WARN_ON(size & ~PAGE_MASK);
 184        WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
 185                                   may_block));
 186}
 187
 188static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
 189{
 190        __unmap_stage2_range(mmu, start, size, true);
 191}
 192
 193static void stage2_flush_memslot(struct kvm *kvm,
 194                                 struct kvm_memory_slot *memslot)
 195{
 196        phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 197        phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
 198
 199        stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
 200}
 201
 202/**
 203 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 204 * @kvm: The struct kvm pointer
 205 *
 206 * Go through the stage 2 page tables and invalidate any cache lines
 207 * backing memory already mapped to the VM.
 208 */
 209static void stage2_flush_vm(struct kvm *kvm)
 210{
 211        struct kvm_memslots *slots;
 212        struct kvm_memory_slot *memslot;
 213        int idx;
 214
 215        idx = srcu_read_lock(&kvm->srcu);
 216        spin_lock(&kvm->mmu_lock);
 217
 218        slots = kvm_memslots(kvm);
 219        kvm_for_each_memslot(memslot, slots)
 220                stage2_flush_memslot(kvm, memslot);
 221
 222        spin_unlock(&kvm->mmu_lock);
 223        srcu_read_unlock(&kvm->srcu, idx);
 224}
 225
 226/**
 227 * free_hyp_pgds - free Hyp-mode page tables
 228 */
 229void free_hyp_pgds(void)
 230{
 231        mutex_lock(&kvm_hyp_pgd_mutex);
 232        if (hyp_pgtable) {
 233                kvm_pgtable_hyp_destroy(hyp_pgtable);
 234                kfree(hyp_pgtable);
 235                hyp_pgtable = NULL;
 236        }
 237        mutex_unlock(&kvm_hyp_pgd_mutex);
 238}
 239
 240static bool kvm_host_owns_hyp_mappings(void)
 241{
 242        if (static_branch_likely(&kvm_protected_mode_initialized))
 243                return false;
 244
 245        /*
 246         * This can happen at boot time when __create_hyp_mappings() is called
 247         * after the hyp protection has been enabled, but the static key has
 248         * not been flipped yet.
 249         */
 250        if (!hyp_pgtable && is_protected_kvm_enabled())
 251                return false;
 252
 253        WARN_ON(!hyp_pgtable);
 254
 255        return true;
 256}
 257
 258static int __create_hyp_mappings(unsigned long start, unsigned long size,
 259                                 unsigned long phys, enum kvm_pgtable_prot prot)
 260{
 261        int err;
 262
 263        if (WARN_ON(!kvm_host_owns_hyp_mappings()))
 264                return -EINVAL;
 265
 266        mutex_lock(&kvm_hyp_pgd_mutex);
 267        err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
 268        mutex_unlock(&kvm_hyp_pgd_mutex);
 269
 270        return err;
 271}
 272
 273static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
 274{
 275        if (!is_vmalloc_addr(kaddr)) {
 276                BUG_ON(!virt_addr_valid(kaddr));
 277                return __pa(kaddr);
 278        } else {
 279                return page_to_phys(vmalloc_to_page(kaddr)) +
 280                       offset_in_page(kaddr);
 281        }
 282}
 283
 284static int pkvm_share_hyp(phys_addr_t start, phys_addr_t end)
 285{
 286        phys_addr_t addr;
 287        int ret;
 288
 289        for (addr = ALIGN_DOWN(start, PAGE_SIZE); addr < end; addr += PAGE_SIZE) {
 290                ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp,
 291                                        __phys_to_pfn(addr));
 292                if (ret)
 293                        return ret;
 294        }
 295
 296        return 0;
 297}
 298
 299/**
 300 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
 301 * @from:       The virtual kernel start address of the range
 302 * @to:         The virtual kernel end address of the range (exclusive)
 303 * @prot:       The protection to be applied to this range
 304 *
 305 * The same virtual address as the kernel virtual address is also used
 306 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 307 * physical pages.
 308 */
 309int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
 310{
 311        phys_addr_t phys_addr;
 312        unsigned long virt_addr;
 313        unsigned long start = kern_hyp_va((unsigned long)from);
 314        unsigned long end = kern_hyp_va((unsigned long)to);
 315
 316        if (is_kernel_in_hyp_mode())
 317                return 0;
 318
 319        if (!kvm_host_owns_hyp_mappings()) {
 320                if (WARN_ON(prot != PAGE_HYP))
 321                        return -EPERM;
 322                return pkvm_share_hyp(kvm_kaddr_to_phys(from),
 323                                      kvm_kaddr_to_phys(to));
 324        }
 325
 326        start = start & PAGE_MASK;
 327        end = PAGE_ALIGN(end);
 328
 329        for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
 330                int err;
 331
 332                phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
 333                err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
 334                                            prot);
 335                if (err)
 336                        return err;
 337        }
 338
 339        return 0;
 340}
 341
 342static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
 343                                        unsigned long *haddr,
 344                                        enum kvm_pgtable_prot prot)
 345{
 346        unsigned long base;
 347        int ret = 0;
 348
 349        if (!kvm_host_owns_hyp_mappings()) {
 350                base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
 351                                         phys_addr, size, prot);
 352                if (IS_ERR_OR_NULL((void *)base))
 353                        return PTR_ERR((void *)base);
 354                *haddr = base;
 355
 356                return 0;
 357        }
 358
 359        mutex_lock(&kvm_hyp_pgd_mutex);
 360
 361        /*
 362         * This assumes that we have enough space below the idmap
 363         * page to allocate our VAs. If not, the check below will
 364         * kick. A potential alternative would be to detect that
 365         * overflow and switch to an allocation above the idmap.
 366         *
 367         * The allocated size is always a multiple of PAGE_SIZE.
 368         */
 369        size = PAGE_ALIGN(size + offset_in_page(phys_addr));
 370        base = io_map_base - size;
 371
 372        /*
 373         * Verify that BIT(VA_BITS - 1) hasn't been flipped by
 374         * allocating the new area, as it would indicate we've
 375         * overflowed the idmap/IO address range.
 376         */
 377        if ((base ^ io_map_base) & BIT(VA_BITS - 1))
 378                ret = -ENOMEM;
 379        else
 380                io_map_base = base;
 381
 382        mutex_unlock(&kvm_hyp_pgd_mutex);
 383
 384        if (ret)
 385                goto out;
 386
 387        ret = __create_hyp_mappings(base, size, phys_addr, prot);
 388        if (ret)
 389                goto out;
 390
 391        *haddr = base + offset_in_page(phys_addr);
 392out:
 393        return ret;
 394}
 395
 396/**
 397 * create_hyp_io_mappings - Map IO into both kernel and HYP
 398 * @phys_addr:  The physical start address which gets mapped
 399 * @size:       Size of the region being mapped
 400 * @kaddr:      Kernel VA for this mapping
 401 * @haddr:      HYP VA for this mapping
 402 */
 403int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
 404                           void __iomem **kaddr,
 405                           void __iomem **haddr)
 406{
 407        unsigned long addr;
 408        int ret;
 409
 410        *kaddr = ioremap(phys_addr, size);
 411        if (!*kaddr)
 412                return -ENOMEM;
 413
 414        if (is_kernel_in_hyp_mode()) {
 415                *haddr = *kaddr;
 416                return 0;
 417        }
 418
 419        ret = __create_hyp_private_mapping(phys_addr, size,
 420                                           &addr, PAGE_HYP_DEVICE);
 421        if (ret) {
 422                iounmap(*kaddr);
 423                *kaddr = NULL;
 424                *haddr = NULL;
 425                return ret;
 426        }
 427
 428        *haddr = (void __iomem *)addr;
 429        return 0;
 430}
 431
 432/**
 433 * create_hyp_exec_mappings - Map an executable range into HYP
 434 * @phys_addr:  The physical start address which gets mapped
 435 * @size:       Size of the region being mapped
 436 * @haddr:      HYP VA for this mapping
 437 */
 438int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
 439                             void **haddr)
 440{
 441        unsigned long addr;
 442        int ret;
 443
 444        BUG_ON(is_kernel_in_hyp_mode());
 445
 446        ret = __create_hyp_private_mapping(phys_addr, size,
 447                                           &addr, PAGE_HYP_EXEC);
 448        if (ret) {
 449                *haddr = NULL;
 450                return ret;
 451        }
 452
 453        *haddr = (void *)addr;
 454        return 0;
 455}
 456
 457static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
 458        /* We shouldn't need any other callback to walk the PT */
 459        .phys_to_virt           = kvm_host_va,
 460};
 461
 462static int get_user_mapping_size(struct kvm *kvm, u64 addr)
 463{
 464        struct kvm_pgtable pgt = {
 465                .pgd            = (kvm_pte_t *)kvm->mm->pgd,
 466                .ia_bits        = VA_BITS,
 467                .start_level    = (KVM_PGTABLE_MAX_LEVELS -
 468                                   CONFIG_PGTABLE_LEVELS),
 469                .mm_ops         = &kvm_user_mm_ops,
 470        };
 471        kvm_pte_t pte = 0;      /* Keep GCC quiet... */
 472        u32 level = ~0;
 473        int ret;
 474
 475        ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
 476        VM_BUG_ON(ret);
 477        VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
 478        VM_BUG_ON(!(pte & PTE_VALID));
 479
 480        return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
 481}
 482
 483static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
 484        .zalloc_page            = stage2_memcache_zalloc_page,
 485        .zalloc_pages_exact     = kvm_host_zalloc_pages_exact,
 486        .free_pages_exact       = free_pages_exact,
 487        .get_page               = kvm_host_get_page,
 488        .put_page               = kvm_host_put_page,
 489        .page_count             = kvm_host_page_count,
 490        .phys_to_virt           = kvm_host_va,
 491        .virt_to_phys           = kvm_host_pa,
 492        .dcache_clean_inval_poc = clean_dcache_guest_page,
 493        .icache_inval_pou       = invalidate_icache_guest_page,
 494};
 495
 496/**
 497 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
 498 * @kvm:        The pointer to the KVM structure
 499 * @mmu:        The pointer to the s2 MMU structure
 500 *
 501 * Allocates only the stage-2 HW PGD level table(s).
 502 * Note we don't need locking here as this is only called when the VM is
 503 * created, which can only be done once.
 504 */
 505int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
 506{
 507        int cpu, err;
 508        struct kvm_pgtable *pgt;
 509
 510        if (mmu->pgt != NULL) {
 511                kvm_err("kvm_arch already initialized?\n");
 512                return -EINVAL;
 513        }
 514
 515        pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
 516        if (!pgt)
 517                return -ENOMEM;
 518
 519        err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops);
 520        if (err)
 521                goto out_free_pgtable;
 522
 523        mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
 524        if (!mmu->last_vcpu_ran) {
 525                err = -ENOMEM;
 526                goto out_destroy_pgtable;
 527        }
 528
 529        for_each_possible_cpu(cpu)
 530                *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
 531
 532        mmu->arch = &kvm->arch;
 533        mmu->pgt = pgt;
 534        mmu->pgd_phys = __pa(pgt->pgd);
 535        WRITE_ONCE(mmu->vmid.vmid_gen, 0);
 536        return 0;
 537
 538out_destroy_pgtable:
 539        kvm_pgtable_stage2_destroy(pgt);
 540out_free_pgtable:
 541        kfree(pgt);
 542        return err;
 543}
 544
 545static void stage2_unmap_memslot(struct kvm *kvm,
 546                                 struct kvm_memory_slot *memslot)
 547{
 548        hva_t hva = memslot->userspace_addr;
 549        phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 550        phys_addr_t size = PAGE_SIZE * memslot->npages;
 551        hva_t reg_end = hva + size;
 552
 553        /*
 554         * A memory region could potentially cover multiple VMAs, and any holes
 555         * between them, so iterate over all of them to find out if we should
 556         * unmap any of them.
 557         *
 558         *     +--------------------------------------------+
 559         * +---------------+----------------+   +----------------+
 560         * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
 561         * +---------------+----------------+   +----------------+
 562         *     |               memory region                |
 563         *     +--------------------------------------------+
 564         */
 565        do {
 566                struct vm_area_struct *vma;
 567                hva_t vm_start, vm_end;
 568
 569                vma = find_vma_intersection(current->mm, hva, reg_end);
 570                if (!vma)
 571                        break;
 572
 573                /*
 574                 * Take the intersection of this VMA with the memory region
 575                 */
 576                vm_start = max(hva, vma->vm_start);
 577                vm_end = min(reg_end, vma->vm_end);
 578
 579                if (!(vma->vm_flags & VM_PFNMAP)) {
 580                        gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
 581                        unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
 582                }
 583                hva = vm_end;
 584        } while (hva < reg_end);
 585}
 586
 587/**
 588 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 589 * @kvm: The struct kvm pointer
 590 *
 591 * Go through the memregions and unmap any regular RAM
 592 * backing memory already mapped to the VM.
 593 */
 594void stage2_unmap_vm(struct kvm *kvm)
 595{
 596        struct kvm_memslots *slots;
 597        struct kvm_memory_slot *memslot;
 598        int idx;
 599
 600        idx = srcu_read_lock(&kvm->srcu);
 601        mmap_read_lock(current->mm);
 602        spin_lock(&kvm->mmu_lock);
 603
 604        slots = kvm_memslots(kvm);
 605        kvm_for_each_memslot(memslot, slots)
 606                stage2_unmap_memslot(kvm, memslot);
 607
 608        spin_unlock(&kvm->mmu_lock);
 609        mmap_read_unlock(current->mm);
 610        srcu_read_unlock(&kvm->srcu, idx);
 611}
 612
 613void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
 614{
 615        struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
 616        struct kvm_pgtable *pgt = NULL;
 617
 618        spin_lock(&kvm->mmu_lock);
 619        pgt = mmu->pgt;
 620        if (pgt) {
 621                mmu->pgd_phys = 0;
 622                mmu->pgt = NULL;
 623                free_percpu(mmu->last_vcpu_ran);
 624        }
 625        spin_unlock(&kvm->mmu_lock);
 626
 627        if (pgt) {
 628                kvm_pgtable_stage2_destroy(pgt);
 629                kfree(pgt);
 630        }
 631}
 632
 633/**
 634 * kvm_phys_addr_ioremap - map a device range to guest IPA
 635 *
 636 * @kvm:        The KVM pointer
 637 * @guest_ipa:  The IPA at which to insert the mapping
 638 * @pa:         The physical address of the device
 639 * @size:       The size of the mapping
 640 * @writable:   Whether or not to create a writable mapping
 641 */
 642int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
 643                          phys_addr_t pa, unsigned long size, bool writable)
 644{
 645        phys_addr_t addr;
 646        int ret = 0;
 647        struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
 648        struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
 649        enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
 650                                     KVM_PGTABLE_PROT_R |
 651                                     (writable ? KVM_PGTABLE_PROT_W : 0);
 652
 653        size += offset_in_page(guest_ipa);
 654        guest_ipa &= PAGE_MASK;
 655
 656        for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
 657                ret = kvm_mmu_topup_memory_cache(&cache,
 658                                                 kvm_mmu_cache_min_pages(kvm));
 659                if (ret)
 660                        break;
 661
 662                spin_lock(&kvm->mmu_lock);
 663                ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
 664                                             &cache);
 665                spin_unlock(&kvm->mmu_lock);
 666                if (ret)
 667                        break;
 668
 669                pa += PAGE_SIZE;
 670        }
 671
 672        kvm_mmu_free_memory_cache(&cache);
 673        return ret;
 674}
 675
 676/**
 677 * stage2_wp_range() - write protect stage2 memory region range
 678 * @mmu:        The KVM stage-2 MMU pointer
 679 * @addr:       Start address of range
 680 * @end:        End address of range
 681 */
 682static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
 683{
 684        struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
 685        stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
 686}
 687
 688/**
 689 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 690 * @kvm:        The KVM pointer
 691 * @slot:       The memory slot to write protect
 692 *
 693 * Called to start logging dirty pages after memory region
 694 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 695 * all present PUD, PMD and PTEs are write protected in the memory region.
 696 * Afterwards read of dirty page log can be called.
 697 *
 698 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 699 * serializing operations for VM memory regions.
 700 */
 701static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
 702{
 703        struct kvm_memslots *slots = kvm_memslots(kvm);
 704        struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
 705        phys_addr_t start, end;
 706
 707        if (WARN_ON_ONCE(!memslot))
 708                return;
 709
 710        start = memslot->base_gfn << PAGE_SHIFT;
 711        end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
 712
 713        spin_lock(&kvm->mmu_lock);
 714        stage2_wp_range(&kvm->arch.mmu, start, end);
 715        spin_unlock(&kvm->mmu_lock);
 716        kvm_flush_remote_tlbs(kvm);
 717}
 718
 719/**
 720 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
 721 * @kvm:        The KVM pointer
 722 * @slot:       The memory slot associated with mask
 723 * @gfn_offset: The gfn offset in memory slot
 724 * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
 725 *              slot to be write protected
 726 *
 727 * Walks bits set in mask write protects the associated pte's. Caller must
 728 * acquire kvm_mmu_lock.
 729 */
 730static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
 731                struct kvm_memory_slot *slot,
 732                gfn_t gfn_offset, unsigned long mask)
 733{
 734        phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
 735        phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
 736        phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
 737
 738        stage2_wp_range(&kvm->arch.mmu, start, end);
 739}
 740
 741/*
 742 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 743 * dirty pages.
 744 *
 745 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 746 * enable dirty logging for them.
 747 */
 748void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 749                struct kvm_memory_slot *slot,
 750                gfn_t gfn_offset, unsigned long mask)
 751{
 752        kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
 753}
 754
 755static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
 756{
 757        send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
 758}
 759
 760static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
 761                                               unsigned long hva,
 762                                               unsigned long map_size)
 763{
 764        gpa_t gpa_start;
 765        hva_t uaddr_start, uaddr_end;
 766        size_t size;
 767
 768        /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
 769        if (map_size == PAGE_SIZE)
 770                return true;
 771
 772        size = memslot->npages * PAGE_SIZE;
 773
 774        gpa_start = memslot->base_gfn << PAGE_SHIFT;
 775
 776        uaddr_start = memslot->userspace_addr;
 777        uaddr_end = uaddr_start + size;
 778
 779        /*
 780         * Pages belonging to memslots that don't have the same alignment
 781         * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
 782         * PMD/PUD entries, because we'll end up mapping the wrong pages.
 783         *
 784         * Consider a layout like the following:
 785         *
 786         *    memslot->userspace_addr:
 787         *    +-----+--------------------+--------------------+---+
 788         *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
 789         *    +-----+--------------------+--------------------+---+
 790         *
 791         *    memslot->base_gfn << PAGE_SHIFT:
 792         *      +---+--------------------+--------------------+-----+
 793         *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
 794         *      +---+--------------------+--------------------+-----+
 795         *
 796         * If we create those stage-2 blocks, we'll end up with this incorrect
 797         * mapping:
 798         *   d -> f
 799         *   e -> g
 800         *   f -> h
 801         */
 802        if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
 803                return false;
 804
 805        /*
 806         * Next, let's make sure we're not trying to map anything not covered
 807         * by the memslot. This means we have to prohibit block size mappings
 808         * for the beginning and end of a non-block aligned and non-block sized
 809         * memory slot (illustrated by the head and tail parts of the
 810         * userspace view above containing pages 'abcde' and 'xyz',
 811         * respectively).
 812         *
 813         * Note that it doesn't matter if we do the check using the
 814         * userspace_addr or the base_gfn, as both are equally aligned (per
 815         * the check above) and equally sized.
 816         */
 817        return (hva & ~(map_size - 1)) >= uaddr_start &&
 818               (hva & ~(map_size - 1)) + map_size <= uaddr_end;
 819}
 820
 821/*
 822 * Check if the given hva is backed by a transparent huge page (THP) and
 823 * whether it can be mapped using block mapping in stage2. If so, adjust
 824 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
 825 * supported. This will need to be updated to support other THP sizes.
 826 *
 827 * Returns the size of the mapping.
 828 */
 829static unsigned long
 830transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
 831                            unsigned long hva, kvm_pfn_t *pfnp,
 832                            phys_addr_t *ipap)
 833{
 834        kvm_pfn_t pfn = *pfnp;
 835
 836        /*
 837         * Make sure the adjustment is done only for THP pages. Also make
 838         * sure that the HVA and IPA are sufficiently aligned and that the
 839         * block map is contained within the memslot.
 840         */
 841        if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
 842            get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
 843                /*
 844                 * The address we faulted on is backed by a transparent huge
 845                 * page.  However, because we map the compound huge page and
 846                 * not the individual tail page, we need to transfer the
 847                 * refcount to the head page.  We have to be careful that the
 848                 * THP doesn't start to split while we are adjusting the
 849                 * refcounts.
 850                 *
 851                 * We are sure this doesn't happen, because mmu_notifier_retry
 852                 * was successful and we are holding the mmu_lock, so if this
 853                 * THP is trying to split, it will be blocked in the mmu
 854                 * notifier before touching any of the pages, specifically
 855                 * before being able to call __split_huge_page_refcount().
 856                 *
 857                 * We can therefore safely transfer the refcount from PG_tail
 858                 * to PG_head and switch the pfn from a tail page to the head
 859                 * page accordingly.
 860                 */
 861                *ipap &= PMD_MASK;
 862                kvm_release_pfn_clean(pfn);
 863                pfn &= ~(PTRS_PER_PMD - 1);
 864                get_page(pfn_to_page(pfn));
 865                *pfnp = pfn;
 866
 867                return PMD_SIZE;
 868        }
 869
 870        /* Use page mapping if we cannot use block mapping. */
 871        return PAGE_SIZE;
 872}
 873
 874static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
 875{
 876        unsigned long pa;
 877
 878        if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
 879                return huge_page_shift(hstate_vma(vma));
 880
 881        if (!(vma->vm_flags & VM_PFNMAP))
 882                return PAGE_SHIFT;
 883
 884        VM_BUG_ON(is_vm_hugetlb_page(vma));
 885
 886        pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
 887
 888#ifndef __PAGETABLE_PMD_FOLDED
 889        if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
 890            ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
 891            ALIGN(hva, PUD_SIZE) <= vma->vm_end)
 892                return PUD_SHIFT;
 893#endif
 894
 895        if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
 896            ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
 897            ALIGN(hva, PMD_SIZE) <= vma->vm_end)
 898                return PMD_SHIFT;
 899
 900        return PAGE_SHIFT;
 901}
 902
 903/*
 904 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
 905 * able to see the page's tags and therefore they must be initialised first. If
 906 * PG_mte_tagged is set, tags have already been initialised.
 907 *
 908 * The race in the test/set of the PG_mte_tagged flag is handled by:
 909 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
 910 *   racing to santise the same page
 911 * - mmap_lock protects between a VM faulting a page in and the VMM performing
 912 *   an mprotect() to add VM_MTE
 913 */
 914static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
 915                             unsigned long size)
 916{
 917        unsigned long i, nr_pages = size >> PAGE_SHIFT;
 918        struct page *page;
 919
 920        if (!kvm_has_mte(kvm))
 921                return 0;
 922
 923        /*
 924         * pfn_to_online_page() is used to reject ZONE_DEVICE pages
 925         * that may not support tags.
 926         */
 927        page = pfn_to_online_page(pfn);
 928
 929        if (!page)
 930                return -EFAULT;
 931
 932        for (i = 0; i < nr_pages; i++, page++) {
 933                if (!test_bit(PG_mte_tagged, &page->flags)) {
 934                        mte_clear_page_tags(page_address(page));
 935                        set_bit(PG_mte_tagged, &page->flags);
 936                }
 937        }
 938
 939        return 0;
 940}
 941
 942static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
 943                          struct kvm_memory_slot *memslot, unsigned long hva,
 944                          unsigned long fault_status)
 945{
 946        int ret = 0;
 947        bool write_fault, writable, force_pte = false;
 948        bool exec_fault;
 949        bool device = false;
 950        bool shared;
 951        unsigned long mmu_seq;
 952        struct kvm *kvm = vcpu->kvm;
 953        struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 954        struct vm_area_struct *vma;
 955        short vma_shift;
 956        gfn_t gfn;
 957        kvm_pfn_t pfn;
 958        bool logging_active = memslot_is_logging(memslot);
 959        unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
 960        unsigned long vma_pagesize, fault_granule;
 961        enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
 962        struct kvm_pgtable *pgt;
 963
 964        fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
 965        write_fault = kvm_is_write_fault(vcpu);
 966        exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
 967        VM_BUG_ON(write_fault && exec_fault);
 968
 969        if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
 970                kvm_err("Unexpected L2 read permission error\n");
 971                return -EFAULT;
 972        }
 973
 974        /*
 975         * Let's check if we will get back a huge page backed by hugetlbfs, or
 976         * get block mapping for device MMIO region.
 977         */
 978        mmap_read_lock(current->mm);
 979        vma = vma_lookup(current->mm, hva);
 980        if (unlikely(!vma)) {
 981                kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
 982                mmap_read_unlock(current->mm);
 983                return -EFAULT;
 984        }
 985
 986        /*
 987         * logging_active is guaranteed to never be true for VM_PFNMAP
 988         * memslots.
 989         */
 990        if (logging_active) {
 991                force_pte = true;
 992                vma_shift = PAGE_SHIFT;
 993        } else {
 994                vma_shift = get_vma_page_shift(vma, hva);
 995        }
 996
 997        shared = (vma->vm_flags & VM_SHARED);
 998
 999        switch (vma_shift) {
1000#ifndef __PAGETABLE_PMD_FOLDED
1001        case PUD_SHIFT:
1002                if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1003                        break;
1004                fallthrough;
1005#endif
1006        case CONT_PMD_SHIFT:
1007                vma_shift = PMD_SHIFT;
1008                fallthrough;
1009        case PMD_SHIFT:
1010                if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1011                        break;
1012                fallthrough;
1013        case CONT_PTE_SHIFT:
1014                vma_shift = PAGE_SHIFT;
1015                force_pte = true;
1016                fallthrough;
1017        case PAGE_SHIFT:
1018                break;
1019        default:
1020                WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1021        }
1022
1023        vma_pagesize = 1UL << vma_shift;
1024        if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1025                fault_ipa &= ~(vma_pagesize - 1);
1026
1027        gfn = fault_ipa >> PAGE_SHIFT;
1028        mmap_read_unlock(current->mm);
1029
1030        /*
1031         * Permission faults just need to update the existing leaf entry,
1032         * and so normally don't require allocations from the memcache. The
1033         * only exception to this is when dirty logging is enabled at runtime
1034         * and a write fault needs to collapse a block entry into a table.
1035         */
1036        if (fault_status != FSC_PERM || (logging_active && write_fault)) {
1037                ret = kvm_mmu_topup_memory_cache(memcache,
1038                                                 kvm_mmu_cache_min_pages(kvm));
1039                if (ret)
1040                        return ret;
1041        }
1042
1043        mmu_seq = vcpu->kvm->mmu_notifier_seq;
1044        /*
1045         * Ensure the read of mmu_notifier_seq happens before we call
1046         * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1047         * the page we just got a reference to gets unmapped before we have a
1048         * chance to grab the mmu_lock, which ensure that if the page gets
1049         * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1050         * from us again properly. This smp_rmb() interacts with the smp_wmb()
1051         * in kvm_mmu_notifier_invalidate_<page|range_end>.
1052         *
1053         * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1054         * used to avoid unnecessary overhead introduced to locate the memory
1055         * slot because it's always fixed even @gfn is adjusted for huge pages.
1056         */
1057        smp_rmb();
1058
1059        pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1060                                   write_fault, &writable, NULL);
1061        if (pfn == KVM_PFN_ERR_HWPOISON) {
1062                kvm_send_hwpoison_signal(hva, vma_shift);
1063                return 0;
1064        }
1065        if (is_error_noslot_pfn(pfn))
1066                return -EFAULT;
1067
1068        if (kvm_is_device_pfn(pfn)) {
1069                /*
1070                 * If the page was identified as device early by looking at
1071                 * the VMA flags, vma_pagesize is already representing the
1072                 * largest quantity we can map.  If instead it was mapped
1073                 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1074                 * and must not be upgraded.
1075                 *
1076                 * In both cases, we don't let transparent_hugepage_adjust()
1077                 * change things at the last minute.
1078                 */
1079                device = true;
1080        } else if (logging_active && !write_fault) {
1081                /*
1082                 * Only actually map the page as writable if this was a write
1083                 * fault.
1084                 */
1085                writable = false;
1086        }
1087
1088        if (exec_fault && device)
1089                return -ENOEXEC;
1090
1091        spin_lock(&kvm->mmu_lock);
1092        pgt = vcpu->arch.hw_mmu->pgt;
1093        if (mmu_notifier_retry(kvm, mmu_seq))
1094                goto out_unlock;
1095
1096        /*
1097         * If we are not forced to use page mapping, check if we are
1098         * backed by a THP and thus use block mapping if possible.
1099         */
1100        if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1101                if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE)
1102                        vma_pagesize = fault_granule;
1103                else
1104                        vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1105                                                                   hva, &pfn,
1106                                                                   &fault_ipa);
1107        }
1108
1109        if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1110                /* Check the VMM hasn't introduced a new VM_SHARED VMA */
1111                if (!shared)
1112                        ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1113                else
1114                        ret = -EFAULT;
1115                if (ret)
1116                        goto out_unlock;
1117        }
1118
1119        if (writable)
1120                prot |= KVM_PGTABLE_PROT_W;
1121
1122        if (exec_fault)
1123                prot |= KVM_PGTABLE_PROT_X;
1124
1125        if (device)
1126                prot |= KVM_PGTABLE_PROT_DEVICE;
1127        else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1128                prot |= KVM_PGTABLE_PROT_X;
1129
1130        /*
1131         * Under the premise of getting a FSC_PERM fault, we just need to relax
1132         * permissions only if vma_pagesize equals fault_granule. Otherwise,
1133         * kvm_pgtable_stage2_map() should be called to change block size.
1134         */
1135        if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1136                ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1137        } else {
1138                ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1139                                             __pfn_to_phys(pfn), prot,
1140                                             memcache);
1141        }
1142
1143        /* Mark the page dirty only if the fault is handled successfully */
1144        if (writable && !ret) {
1145                kvm_set_pfn_dirty(pfn);
1146                mark_page_dirty_in_slot(kvm, memslot, gfn);
1147        }
1148
1149out_unlock:
1150        spin_unlock(&kvm->mmu_lock);
1151        kvm_set_pfn_accessed(pfn);
1152        kvm_release_pfn_clean(pfn);
1153        return ret != -EAGAIN ? ret : 0;
1154}
1155
1156/* Resolve the access fault by making the page young again. */
1157static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1158{
1159        pte_t pte;
1160        kvm_pte_t kpte;
1161        struct kvm_s2_mmu *mmu;
1162
1163        trace_kvm_access_fault(fault_ipa);
1164
1165        spin_lock(&vcpu->kvm->mmu_lock);
1166        mmu = vcpu->arch.hw_mmu;
1167        kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1168        spin_unlock(&vcpu->kvm->mmu_lock);
1169
1170        pte = __pte(kpte);
1171        if (pte_valid(pte))
1172                kvm_set_pfn_accessed(pte_pfn(pte));
1173}
1174
1175/**
1176 * kvm_handle_guest_abort - handles all 2nd stage aborts
1177 * @vcpu:       the VCPU pointer
1178 *
1179 * Any abort that gets to the host is almost guaranteed to be caused by a
1180 * missing second stage translation table entry, which can mean that either the
1181 * guest simply needs more memory and we must allocate an appropriate page or it
1182 * can mean that the guest tried to access I/O memory, which is emulated by user
1183 * space. The distinction is based on the IPA causing the fault and whether this
1184 * memory region has been registered as standard RAM by user space.
1185 */
1186int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1187{
1188        unsigned long fault_status;
1189        phys_addr_t fault_ipa;
1190        struct kvm_memory_slot *memslot;
1191        unsigned long hva;
1192        bool is_iabt, write_fault, writable;
1193        gfn_t gfn;
1194        int ret, idx;
1195
1196        fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1197
1198        fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1199        is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1200
1201        /* Synchronous External Abort? */
1202        if (kvm_vcpu_abt_issea(vcpu)) {
1203                /*
1204                 * For RAS the host kernel may handle this abort.
1205                 * There is no need to pass the error into the guest.
1206                 */
1207                if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1208                        kvm_inject_vabt(vcpu);
1209
1210                return 1;
1211        }
1212
1213        trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1214                              kvm_vcpu_get_hfar(vcpu), fault_ipa);
1215
1216        /* Check the stage-2 fault is trans. fault or write fault */
1217        if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1218            fault_status != FSC_ACCESS) {
1219                kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1220                        kvm_vcpu_trap_get_class(vcpu),
1221                        (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1222                        (unsigned long)kvm_vcpu_get_esr(vcpu));
1223                return -EFAULT;
1224        }
1225
1226        idx = srcu_read_lock(&vcpu->kvm->srcu);
1227
1228        gfn = fault_ipa >> PAGE_SHIFT;
1229        memslot = gfn_to_memslot(vcpu->kvm, gfn);
1230        hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1231        write_fault = kvm_is_write_fault(vcpu);
1232        if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1233                /*
1234                 * The guest has put either its instructions or its page-tables
1235                 * somewhere it shouldn't have. Userspace won't be able to do
1236                 * anything about this (there's no syndrome for a start), so
1237                 * re-inject the abort back into the guest.
1238                 */
1239                if (is_iabt) {
1240                        ret = -ENOEXEC;
1241                        goto out;
1242                }
1243
1244                if (kvm_vcpu_abt_iss1tw(vcpu)) {
1245                        kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1246                        ret = 1;
1247                        goto out_unlock;
1248                }
1249
1250                /*
1251                 * Check for a cache maintenance operation. Since we
1252                 * ended-up here, we know it is outside of any memory
1253                 * slot. But we can't find out if that is for a device,
1254                 * or if the guest is just being stupid. The only thing
1255                 * we know for sure is that this range cannot be cached.
1256                 *
1257                 * So let's assume that the guest is just being
1258                 * cautious, and skip the instruction.
1259                 */
1260                if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1261                        kvm_incr_pc(vcpu);
1262                        ret = 1;
1263                        goto out_unlock;
1264                }
1265
1266                /*
1267                 * The IPA is reported as [MAX:12], so we need to
1268                 * complement it with the bottom 12 bits from the
1269                 * faulting VA. This is always 12 bits, irrespective
1270                 * of the page size.
1271                 */
1272                fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1273                ret = io_mem_abort(vcpu, fault_ipa);
1274                goto out_unlock;
1275        }
1276
1277        /* Userspace should not be able to register out-of-bounds IPAs */
1278        VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1279
1280        if (fault_status == FSC_ACCESS) {
1281                handle_access_fault(vcpu, fault_ipa);
1282                ret = 1;
1283                goto out_unlock;
1284        }
1285
1286        ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1287        if (ret == 0)
1288                ret = 1;
1289out:
1290        if (ret == -ENOEXEC) {
1291                kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1292                ret = 1;
1293        }
1294out_unlock:
1295        srcu_read_unlock(&vcpu->kvm->srcu, idx);
1296        return ret;
1297}
1298
1299bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1300{
1301        if (!kvm->arch.mmu.pgt)
1302                return false;
1303
1304        __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1305                             (range->end - range->start) << PAGE_SHIFT,
1306                             range->may_block);
1307
1308        return false;
1309}
1310
1311bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1312{
1313        kvm_pfn_t pfn = pte_pfn(range->pte);
1314        int ret;
1315
1316        if (!kvm->arch.mmu.pgt)
1317                return false;
1318
1319        WARN_ON(range->end - range->start != 1);
1320
1321        ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
1322        if (ret)
1323                return false;
1324
1325        /*
1326         * We've moved a page around, probably through CoW, so let's treat
1327         * it just like a translation fault and the map handler will clean
1328         * the cache to the PoC.
1329         *
1330         * The MMU notifiers will have unmapped a huge PMD before calling
1331         * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1332         * therefore we never need to clear out a huge PMD through this
1333         * calling path and a memcache is not required.
1334         */
1335        kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1336                               PAGE_SIZE, __pfn_to_phys(pfn),
1337                               KVM_PGTABLE_PROT_R, NULL);
1338
1339        return false;
1340}
1341
1342bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1343{
1344        u64 size = (range->end - range->start) << PAGE_SHIFT;
1345        kvm_pte_t kpte;
1346        pte_t pte;
1347
1348        if (!kvm->arch.mmu.pgt)
1349                return false;
1350
1351        WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1352
1353        kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1354                                        range->start << PAGE_SHIFT);
1355        pte = __pte(kpte);
1356        return pte_valid(pte) && pte_young(pte);
1357}
1358
1359bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1360{
1361        if (!kvm->arch.mmu.pgt)
1362                return false;
1363
1364        return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1365                                           range->start << PAGE_SHIFT);
1366}
1367
1368phys_addr_t kvm_mmu_get_httbr(void)
1369{
1370        return __pa(hyp_pgtable->pgd);
1371}
1372
1373phys_addr_t kvm_get_idmap_vector(void)
1374{
1375        return hyp_idmap_vector;
1376}
1377
1378static int kvm_map_idmap_text(void)
1379{
1380        unsigned long size = hyp_idmap_end - hyp_idmap_start;
1381        int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1382                                        PAGE_HYP_EXEC);
1383        if (err)
1384                kvm_err("Failed to idmap %lx-%lx\n",
1385                        hyp_idmap_start, hyp_idmap_end);
1386
1387        return err;
1388}
1389
1390static void *kvm_hyp_zalloc_page(void *arg)
1391{
1392        return (void *)get_zeroed_page(GFP_KERNEL);
1393}
1394
1395static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1396        .zalloc_page            = kvm_hyp_zalloc_page,
1397        .get_page               = kvm_host_get_page,
1398        .put_page               = kvm_host_put_page,
1399        .phys_to_virt           = kvm_host_va,
1400        .virt_to_phys           = kvm_host_pa,
1401};
1402
1403int kvm_mmu_init(u32 *hyp_va_bits)
1404{
1405        int err;
1406
1407        hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1408        hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1409        hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1410        hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1411        hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1412
1413        /*
1414         * We rely on the linker script to ensure at build time that the HYP
1415         * init code does not cross a page boundary.
1416         */
1417        BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1418
1419        *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1420        kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1421        kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1422        kvm_debug("HYP VA range: %lx:%lx\n",
1423                  kern_hyp_va(PAGE_OFFSET),
1424                  kern_hyp_va((unsigned long)high_memory - 1));
1425
1426        if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1427            hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1428            hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1429                /*
1430                 * The idmap page is intersecting with the VA space,
1431                 * it is not safe to continue further.
1432                 */
1433                kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1434                err = -EINVAL;
1435                goto out;
1436        }
1437
1438        hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1439        if (!hyp_pgtable) {
1440                kvm_err("Hyp mode page-table not allocated\n");
1441                err = -ENOMEM;
1442                goto out;
1443        }
1444
1445        err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1446        if (err)
1447                goto out_free_pgtable;
1448
1449        err = kvm_map_idmap_text();
1450        if (err)
1451                goto out_destroy_pgtable;
1452
1453        io_map_base = hyp_idmap_start;
1454        return 0;
1455
1456out_destroy_pgtable:
1457        kvm_pgtable_hyp_destroy(hyp_pgtable);
1458out_free_pgtable:
1459        kfree(hyp_pgtable);
1460        hyp_pgtable = NULL;
1461out:
1462        return err;
1463}
1464
1465void kvm_arch_commit_memory_region(struct kvm *kvm,
1466                                   const struct kvm_userspace_memory_region *mem,
1467                                   struct kvm_memory_slot *old,
1468                                   const struct kvm_memory_slot *new,
1469                                   enum kvm_mr_change change)
1470{
1471        /*
1472         * At this point memslot has been committed and there is an
1473         * allocated dirty_bitmap[], dirty pages will be tracked while the
1474         * memory slot is write protected.
1475         */
1476        if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1477                /*
1478                 * If we're with initial-all-set, we don't need to write
1479                 * protect any pages because they're all reported as dirty.
1480                 * Huge pages and normal pages will be write protect gradually.
1481                 */
1482                if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1483                        kvm_mmu_wp_memory_region(kvm, mem->slot);
1484                }
1485        }
1486}
1487
1488int kvm_arch_prepare_memory_region(struct kvm *kvm,
1489                                   struct kvm_memory_slot *memslot,
1490                                   const struct kvm_userspace_memory_region *mem,
1491                                   enum kvm_mr_change change)
1492{
1493        hva_t hva = mem->userspace_addr;
1494        hva_t reg_end = hva + mem->memory_size;
1495        int ret = 0;
1496
1497        if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1498                        change != KVM_MR_FLAGS_ONLY)
1499                return 0;
1500
1501        /*
1502         * Prevent userspace from creating a memory region outside of the IPA
1503         * space addressable by the KVM guest IPA space.
1504         */
1505        if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1506                return -EFAULT;
1507
1508        mmap_read_lock(current->mm);
1509        /*
1510         * A memory region could potentially cover multiple VMAs, and any holes
1511         * between them, so iterate over all of them.
1512         *
1513         *     +--------------------------------------------+
1514         * +---------------+----------------+   +----------------+
1515         * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1516         * +---------------+----------------+   +----------------+
1517         *     |               memory region                |
1518         *     +--------------------------------------------+
1519         */
1520        do {
1521                struct vm_area_struct *vma;
1522
1523                vma = find_vma_intersection(current->mm, hva, reg_end);
1524                if (!vma)
1525                        break;
1526
1527                /*
1528                 * VM_SHARED mappings are not allowed with MTE to avoid races
1529                 * when updating the PG_mte_tagged page flag, see
1530                 * sanitise_mte_tags for more details.
1531                 */
1532                if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) {
1533                        ret = -EINVAL;
1534                        break;
1535                }
1536
1537                if (vma->vm_flags & VM_PFNMAP) {
1538                        /* IO region dirty page logging not allowed */
1539                        if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1540                                ret = -EINVAL;
1541                                break;
1542                        }
1543                }
1544                hva = min(reg_end, vma->vm_end);
1545        } while (hva < reg_end);
1546
1547        mmap_read_unlock(current->mm);
1548        return ret;
1549}
1550
1551void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1552{
1553}
1554
1555void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1556{
1557}
1558
1559void kvm_arch_flush_shadow_all(struct kvm *kvm)
1560{
1561        kvm_free_stage2_pgd(&kvm->arch.mmu);
1562}
1563
1564void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1565                                   struct kvm_memory_slot *slot)
1566{
1567        gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1568        phys_addr_t size = slot->npages << PAGE_SHIFT;
1569
1570        spin_lock(&kvm->mmu_lock);
1571        unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1572        spin_unlock(&kvm->mmu_lock);
1573}
1574
1575/*
1576 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1577 *
1578 * Main problems:
1579 * - S/W ops are local to a CPU (not broadcast)
1580 * - We have line migration behind our back (speculation)
1581 * - System caches don't support S/W at all (damn!)
1582 *
1583 * In the face of the above, the best we can do is to try and convert
1584 * S/W ops to VA ops. Because the guest is not allowed to infer the
1585 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1586 * which is a rather good thing for us.
1587 *
1588 * Also, it is only used when turning caches on/off ("The expected
1589 * usage of the cache maintenance instructions that operate by set/way
1590 * is associated with the cache maintenance instructions associated
1591 * with the powerdown and powerup of caches, if this is required by
1592 * the implementation.").
1593 *
1594 * We use the following policy:
1595 *
1596 * - If we trap a S/W operation, we enable VM trapping to detect
1597 *   caches being turned on/off, and do a full clean.
1598 *
1599 * - We flush the caches on both caches being turned on and off.
1600 *
1601 * - Once the caches are enabled, we stop trapping VM ops.
1602 */
1603void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1604{
1605        unsigned long hcr = *vcpu_hcr(vcpu);
1606
1607        /*
1608         * If this is the first time we do a S/W operation
1609         * (i.e. HCR_TVM not set) flush the whole memory, and set the
1610         * VM trapping.
1611         *
1612         * Otherwise, rely on the VM trapping to wait for the MMU +
1613         * Caches to be turned off. At that point, we'll be able to
1614         * clean the caches again.
1615         */
1616        if (!(hcr & HCR_TVM)) {
1617                trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1618                                        vcpu_has_cache_enabled(vcpu));
1619                stage2_flush_vm(vcpu->kvm);
1620                *vcpu_hcr(vcpu) = hcr | HCR_TVM;
1621        }
1622}
1623
1624void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1625{
1626        bool now_enabled = vcpu_has_cache_enabled(vcpu);
1627
1628        /*
1629         * If switching the MMU+caches on, need to invalidate the caches.
1630         * If switching it off, need to clean the caches.
1631         * Clean + invalidate does the trick always.
1632         */
1633        if (now_enabled != was_enabled)
1634                stage2_flush_vm(vcpu->kvm);
1635
1636        /* Caches are now on, stop trapping VM ops (until a S/W op) */
1637        if (now_enabled)
1638                *vcpu_hcr(vcpu) &= ~HCR_TVM;
1639
1640        trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1641}
1642