linux/arch/arm64/kvm/vgic/vgic-mmio-v3.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VGICv3 MMIO handling functions
   4 */
   5
   6#include <linux/bitfield.h>
   7#include <linux/irqchip/arm-gic-v3.h>
   8#include <linux/kvm.h>
   9#include <linux/kvm_host.h>
  10#include <linux/interrupt.h>
  11#include <kvm/iodev.h>
  12#include <kvm/arm_vgic.h>
  13
  14#include <asm/kvm_emulate.h>
  15#include <asm/kvm_arm.h>
  16#include <asm/kvm_mmu.h>
  17
  18#include "vgic.h"
  19#include "vgic-mmio.h"
  20
  21/* extract @num bytes at @offset bytes offset in data */
  22unsigned long extract_bytes(u64 data, unsigned int offset,
  23                            unsigned int num)
  24{
  25        return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
  26}
  27
  28/* allows updates of any half of a 64-bit register (or the whole thing) */
  29u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
  30                     unsigned long val)
  31{
  32        int lower = (offset & 4) * 8;
  33        int upper = lower + 8 * len - 1;
  34
  35        reg &= ~GENMASK_ULL(upper, lower);
  36        val &= GENMASK_ULL(len * 8 - 1, 0);
  37
  38        return reg | ((u64)val << lower);
  39}
  40
  41bool vgic_has_its(struct kvm *kvm)
  42{
  43        struct vgic_dist *dist = &kvm->arch.vgic;
  44
  45        if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
  46                return false;
  47
  48        return dist->has_its;
  49}
  50
  51bool vgic_supports_direct_msis(struct kvm *kvm)
  52{
  53        return (kvm_vgic_global_state.has_gicv4_1 ||
  54                (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
  55}
  56
  57/*
  58 * The Revision field in the IIDR have the following meanings:
  59 *
  60 * Revision 2: Interrupt groups are guest-configurable and signaled using
  61 *             their configured groups.
  62 */
  63
  64static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
  65                                            gpa_t addr, unsigned int len)
  66{
  67        struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
  68        u32 value = 0;
  69
  70        switch (addr & 0x0c) {
  71        case GICD_CTLR:
  72                if (vgic->enabled)
  73                        value |= GICD_CTLR_ENABLE_SS_G1;
  74                value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
  75                if (vgic->nassgireq)
  76                        value |= GICD_CTLR_nASSGIreq;
  77                break;
  78        case GICD_TYPER:
  79                value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
  80                value = (value >> 5) - 1;
  81                if (vgic_has_its(vcpu->kvm)) {
  82                        value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
  83                        value |= GICD_TYPER_LPIS;
  84                } else {
  85                        value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
  86                }
  87                break;
  88        case GICD_TYPER2:
  89                if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
  90                        value = GICD_TYPER2_nASSGIcap;
  91                break;
  92        case GICD_IIDR:
  93                value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
  94                        (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
  95                        (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
  96                break;
  97        default:
  98                return 0;
  99        }
 100
 101        return value;
 102}
 103
 104static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
 105                                    gpa_t addr, unsigned int len,
 106                                    unsigned long val)
 107{
 108        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 109
 110        switch (addr & 0x0c) {
 111        case GICD_CTLR: {
 112                bool was_enabled, is_hwsgi;
 113
 114                mutex_lock(&vcpu->kvm->lock);
 115
 116                was_enabled = dist->enabled;
 117                is_hwsgi = dist->nassgireq;
 118
 119                dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
 120
 121                /* Not a GICv4.1? No HW SGIs */
 122                if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
 123                        val &= ~GICD_CTLR_nASSGIreq;
 124
 125                /* Dist stays enabled? nASSGIreq is RO */
 126                if (was_enabled && dist->enabled) {
 127                        val &= ~GICD_CTLR_nASSGIreq;
 128                        val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
 129                }
 130
 131                /* Switching HW SGIs? */
 132                dist->nassgireq = val & GICD_CTLR_nASSGIreq;
 133                if (is_hwsgi != dist->nassgireq)
 134                        vgic_v4_configure_vsgis(vcpu->kvm);
 135
 136                if (kvm_vgic_global_state.has_gicv4_1 &&
 137                    was_enabled != dist->enabled)
 138                        kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
 139                else if (!was_enabled && dist->enabled)
 140                        vgic_kick_vcpus(vcpu->kvm);
 141
 142                mutex_unlock(&vcpu->kvm->lock);
 143                break;
 144        }
 145        case GICD_TYPER:
 146        case GICD_TYPER2:
 147        case GICD_IIDR:
 148                /* This is at best for documentation purposes... */
 149                return;
 150        }
 151}
 152
 153static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
 154                                           gpa_t addr, unsigned int len,
 155                                           unsigned long val)
 156{
 157        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 158
 159        switch (addr & 0x0c) {
 160        case GICD_TYPER2:
 161        case GICD_IIDR:
 162                if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
 163                        return -EINVAL;
 164                return 0;
 165        case GICD_CTLR:
 166                /* Not a GICv4.1? No HW SGIs */
 167                if (!kvm_vgic_global_state.has_gicv4_1)
 168                        val &= ~GICD_CTLR_nASSGIreq;
 169
 170                dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
 171                dist->nassgireq = val & GICD_CTLR_nASSGIreq;
 172                return 0;
 173        }
 174
 175        vgic_mmio_write_v3_misc(vcpu, addr, len, val);
 176        return 0;
 177}
 178
 179static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
 180                                            gpa_t addr, unsigned int len)
 181{
 182        int intid = VGIC_ADDR_TO_INTID(addr, 64);
 183        struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
 184        unsigned long ret = 0;
 185
 186        if (!irq)
 187                return 0;
 188
 189        /* The upper word is RAZ for us. */
 190        if (!(addr & 4))
 191                ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
 192
 193        vgic_put_irq(vcpu->kvm, irq);
 194        return ret;
 195}
 196
 197static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
 198                                    gpa_t addr, unsigned int len,
 199                                    unsigned long val)
 200{
 201        int intid = VGIC_ADDR_TO_INTID(addr, 64);
 202        struct vgic_irq *irq;
 203        unsigned long flags;
 204
 205        /* The upper word is WI for us since we don't implement Aff3. */
 206        if (addr & 4)
 207                return;
 208
 209        irq = vgic_get_irq(vcpu->kvm, NULL, intid);
 210
 211        if (!irq)
 212                return;
 213
 214        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 215
 216        /* We only care about and preserve Aff0, Aff1 and Aff2. */
 217        irq->mpidr = val & GENMASK(23, 0);
 218        irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
 219
 220        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 221        vgic_put_irq(vcpu->kvm, irq);
 222}
 223
 224static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
 225                                             gpa_t addr, unsigned int len)
 226{
 227        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 228
 229        return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
 230}
 231
 232
 233static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
 234                                     gpa_t addr, unsigned int len,
 235                                     unsigned long val)
 236{
 237        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 238        bool was_enabled = vgic_cpu->lpis_enabled;
 239
 240        if (!vgic_has_its(vcpu->kvm))
 241                return;
 242
 243        vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
 244
 245        if (was_enabled && !vgic_cpu->lpis_enabled) {
 246                vgic_flush_pending_lpis(vcpu);
 247                vgic_its_invalidate_cache(vcpu->kvm);
 248        }
 249
 250        if (!was_enabled && vgic_cpu->lpis_enabled)
 251                vgic_enable_lpis(vcpu);
 252}
 253
 254static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
 255{
 256        struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
 257        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 258        struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
 259
 260        if (!rdreg)
 261                return false;
 262
 263        if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
 264                return false;
 265        } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
 266                struct list_head *rd_regions = &vgic->rd_regions;
 267                gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
 268
 269                /*
 270                 * the rdist is the last one of the redist region,
 271                 * check whether there is no other contiguous rdist region
 272                 */
 273                list_for_each_entry(iter, rd_regions, list) {
 274                        if (iter->base == end && iter->free_index > 0)
 275                                return false;
 276                }
 277        }
 278        return true;
 279}
 280
 281static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
 282                                              gpa_t addr, unsigned int len)
 283{
 284        unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
 285        int target_vcpu_id = vcpu->vcpu_id;
 286        u64 value;
 287
 288        value = (u64)(mpidr & GENMASK(23, 0)) << 32;
 289        value |= ((target_vcpu_id & 0xffff) << 8);
 290
 291        if (vgic_has_its(vcpu->kvm))
 292                value |= GICR_TYPER_PLPIS;
 293
 294        if (vgic_mmio_vcpu_rdist_is_last(vcpu))
 295                value |= GICR_TYPER_LAST;
 296
 297        return extract_bytes(value, addr & 7, len);
 298}
 299
 300static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
 301                                             gpa_t addr, unsigned int len)
 302{
 303        return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
 304}
 305
 306static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
 307                                              gpa_t addr, unsigned int len)
 308{
 309        switch (addr & 0xffff) {
 310        case GICD_PIDR2:
 311                /* report a GICv3 compliant implementation */
 312                return 0x3b;
 313        }
 314
 315        return 0;
 316}
 317
 318static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
 319                                                  gpa_t addr, unsigned int len)
 320{
 321        u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 322        u32 value = 0;
 323        int i;
 324
 325        /*
 326         * pending state of interrupt is latched in pending_latch variable.
 327         * Userspace will save and restore pending state and line_level
 328         * separately.
 329         * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
 330         * for handling of ISPENDR and ICPENDR.
 331         */
 332        for (i = 0; i < len * 8; i++) {
 333                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 334                bool state = irq->pending_latch;
 335
 336                if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
 337                        int err;
 338
 339                        err = irq_get_irqchip_state(irq->host_irq,
 340                                                    IRQCHIP_STATE_PENDING,
 341                                                    &state);
 342                        WARN_ON(err);
 343                }
 344
 345                if (state)
 346                        value |= (1U << i);
 347
 348                vgic_put_irq(vcpu->kvm, irq);
 349        }
 350
 351        return value;
 352}
 353
 354static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
 355                                         gpa_t addr, unsigned int len,
 356                                         unsigned long val)
 357{
 358        u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 359        int i;
 360        unsigned long flags;
 361
 362        for (i = 0; i < len * 8; i++) {
 363                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 364
 365                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 366                if (test_bit(i, &val)) {
 367                        /*
 368                         * pending_latch is set irrespective of irq type
 369                         * (level or edge) to avoid dependency that VM should
 370                         * restore irq config before pending info.
 371                         */
 372                        irq->pending_latch = true;
 373                        vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 374                } else {
 375                        irq->pending_latch = false;
 376                        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 377                }
 378
 379                vgic_put_irq(vcpu->kvm, irq);
 380        }
 381
 382        return 0;
 383}
 384
 385/* We want to avoid outer shareable. */
 386u64 vgic_sanitise_shareability(u64 field)
 387{
 388        switch (field) {
 389        case GIC_BASER_OuterShareable:
 390                return GIC_BASER_InnerShareable;
 391        default:
 392                return field;
 393        }
 394}
 395
 396/* Avoid any inner non-cacheable mapping. */
 397u64 vgic_sanitise_inner_cacheability(u64 field)
 398{
 399        switch (field) {
 400        case GIC_BASER_CACHE_nCnB:
 401        case GIC_BASER_CACHE_nC:
 402                return GIC_BASER_CACHE_RaWb;
 403        default:
 404                return field;
 405        }
 406}
 407
 408/* Non-cacheable or same-as-inner are OK. */
 409u64 vgic_sanitise_outer_cacheability(u64 field)
 410{
 411        switch (field) {
 412        case GIC_BASER_CACHE_SameAsInner:
 413        case GIC_BASER_CACHE_nC:
 414                return field;
 415        default:
 416                return GIC_BASER_CACHE_SameAsInner;
 417        }
 418}
 419
 420u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
 421                        u64 (*sanitise_fn)(u64))
 422{
 423        u64 field = (reg & field_mask) >> field_shift;
 424
 425        field = sanitise_fn(field) << field_shift;
 426        return (reg & ~field_mask) | field;
 427}
 428
 429#define PROPBASER_RES0_MASK                                             \
 430        (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
 431#define PENDBASER_RES0_MASK                                             \
 432        (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
 433         GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
 434
 435static u64 vgic_sanitise_pendbaser(u64 reg)
 436{
 437        reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
 438                                  GICR_PENDBASER_SHAREABILITY_SHIFT,
 439                                  vgic_sanitise_shareability);
 440        reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
 441                                  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
 442                                  vgic_sanitise_inner_cacheability);
 443        reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
 444                                  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
 445                                  vgic_sanitise_outer_cacheability);
 446
 447        reg &= ~PENDBASER_RES0_MASK;
 448
 449        return reg;
 450}
 451
 452static u64 vgic_sanitise_propbaser(u64 reg)
 453{
 454        reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
 455                                  GICR_PROPBASER_SHAREABILITY_SHIFT,
 456                                  vgic_sanitise_shareability);
 457        reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
 458                                  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
 459                                  vgic_sanitise_inner_cacheability);
 460        reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
 461                                  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
 462                                  vgic_sanitise_outer_cacheability);
 463
 464        reg &= ~PROPBASER_RES0_MASK;
 465        return reg;
 466}
 467
 468static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
 469                                             gpa_t addr, unsigned int len)
 470{
 471        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 472
 473        return extract_bytes(dist->propbaser, addr & 7, len);
 474}
 475
 476static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
 477                                     gpa_t addr, unsigned int len,
 478                                     unsigned long val)
 479{
 480        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 481        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 482        u64 old_propbaser, propbaser;
 483
 484        /* Storing a value with LPIs already enabled is undefined */
 485        if (vgic_cpu->lpis_enabled)
 486                return;
 487
 488        do {
 489                old_propbaser = READ_ONCE(dist->propbaser);
 490                propbaser = old_propbaser;
 491                propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
 492                propbaser = vgic_sanitise_propbaser(propbaser);
 493        } while (cmpxchg64(&dist->propbaser, old_propbaser,
 494                           propbaser) != old_propbaser);
 495}
 496
 497static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
 498                                             gpa_t addr, unsigned int len)
 499{
 500        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 501        u64 value = vgic_cpu->pendbaser;
 502
 503        value &= ~GICR_PENDBASER_PTZ;
 504
 505        return extract_bytes(value, addr & 7, len);
 506}
 507
 508static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
 509                                     gpa_t addr, unsigned int len,
 510                                     unsigned long val)
 511{
 512        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 513        u64 old_pendbaser, pendbaser;
 514
 515        /* Storing a value with LPIs already enabled is undefined */
 516        if (vgic_cpu->lpis_enabled)
 517                return;
 518
 519        do {
 520                old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
 521                pendbaser = old_pendbaser;
 522                pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
 523                pendbaser = vgic_sanitise_pendbaser(pendbaser);
 524        } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
 525                           pendbaser) != old_pendbaser);
 526}
 527
 528/*
 529 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
 530 * redistributors, while SPIs are covered by registers in the distributor
 531 * block. Trying to set private IRQs in this block gets ignored.
 532 * We take some special care here to fix the calculation of the register
 533 * offset.
 534 */
 535#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
 536        {                                                               \
 537                .reg_offset = off,                                      \
 538                .bits_per_irq = bpi,                                    \
 539                .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
 540                .access_flags = acc,                                    \
 541                .read = vgic_mmio_read_raz,                             \
 542                .write = vgic_mmio_write_wi,                            \
 543        }, {                                                            \
 544                .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
 545                .bits_per_irq = bpi,                                    \
 546                .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
 547                .access_flags = acc,                                    \
 548                .read = rd,                                             \
 549                .write = wr,                                            \
 550                .uaccess_read = ur,                                     \
 551                .uaccess_write = uw,                                    \
 552        }
 553
 554static const struct vgic_register_region vgic_v3_dist_registers[] = {
 555        REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
 556                vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
 557                NULL, vgic_mmio_uaccess_write_v3_misc,
 558                16, VGIC_ACCESS_32bit),
 559        REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
 560                vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
 561                VGIC_ACCESS_32bit),
 562        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
 563                vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
 564                VGIC_ACCESS_32bit),
 565        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
 566                vgic_mmio_read_enable, vgic_mmio_write_senable,
 567                NULL, vgic_uaccess_write_senable, 1,
 568                VGIC_ACCESS_32bit),
 569        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
 570                vgic_mmio_read_enable, vgic_mmio_write_cenable,
 571               NULL, vgic_uaccess_write_cenable, 1,
 572                VGIC_ACCESS_32bit),
 573        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
 574                vgic_mmio_read_pending, vgic_mmio_write_spending,
 575                vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
 576                VGIC_ACCESS_32bit),
 577        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
 578                vgic_mmio_read_pending, vgic_mmio_write_cpending,
 579                vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
 580                VGIC_ACCESS_32bit),
 581        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
 582                vgic_mmio_read_active, vgic_mmio_write_sactive,
 583                vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
 584                VGIC_ACCESS_32bit),
 585        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
 586                vgic_mmio_read_active, vgic_mmio_write_cactive,
 587                vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
 588                1, VGIC_ACCESS_32bit),
 589        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
 590                vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
 591                8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 592        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
 593                vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
 594                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 595        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
 596                vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
 597                VGIC_ACCESS_32bit),
 598        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
 599                vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
 600                VGIC_ACCESS_32bit),
 601        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
 602                vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
 603                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 604        REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
 605                vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
 606                VGIC_ACCESS_32bit),
 607};
 608
 609static const struct vgic_register_region vgic_v3_rd_registers[] = {
 610        /* RD_base registers */
 611        REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
 612                vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
 613                VGIC_ACCESS_32bit),
 614        REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
 615                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 616                VGIC_ACCESS_32bit),
 617        REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
 618                vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
 619                VGIC_ACCESS_32bit),
 620        REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
 621                vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
 622                NULL, vgic_mmio_uaccess_write_wi, 8,
 623                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 624        REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
 625                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 626                VGIC_ACCESS_32bit),
 627        REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
 628                vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
 629                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 630        REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
 631                vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
 632                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 633        REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
 634                vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
 635                VGIC_ACCESS_32bit),
 636        /* SGI_base registers */
 637        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
 638                vgic_mmio_read_group, vgic_mmio_write_group, 4,
 639                VGIC_ACCESS_32bit),
 640        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
 641                vgic_mmio_read_enable, vgic_mmio_write_senable,
 642                NULL, vgic_uaccess_write_senable, 4,
 643                VGIC_ACCESS_32bit),
 644        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
 645                vgic_mmio_read_enable, vgic_mmio_write_cenable,
 646                NULL, vgic_uaccess_write_cenable, 4,
 647                VGIC_ACCESS_32bit),
 648        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
 649                vgic_mmio_read_pending, vgic_mmio_write_spending,
 650                vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
 651                VGIC_ACCESS_32bit),
 652        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
 653                vgic_mmio_read_pending, vgic_mmio_write_cpending,
 654                vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
 655                VGIC_ACCESS_32bit),
 656        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
 657                vgic_mmio_read_active, vgic_mmio_write_sactive,
 658                vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
 659                VGIC_ACCESS_32bit),
 660        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
 661                vgic_mmio_read_active, vgic_mmio_write_cactive,
 662                vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
 663                VGIC_ACCESS_32bit),
 664        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
 665                vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
 666                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 667        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
 668                vgic_mmio_read_config, vgic_mmio_write_config, 8,
 669                VGIC_ACCESS_32bit),
 670        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
 671                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 672                VGIC_ACCESS_32bit),
 673        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
 674                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 675                VGIC_ACCESS_32bit),
 676};
 677
 678unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
 679{
 680        dev->regions = vgic_v3_dist_registers;
 681        dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
 682
 683        kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
 684
 685        return SZ_64K;
 686}
 687
 688/**
 689 * vgic_register_redist_iodev - register a single redist iodev
 690 * @vcpu:    The VCPU to which the redistributor belongs
 691 *
 692 * Register a KVM iodev for this VCPU's redistributor using the address
 693 * provided.
 694 *
 695 * Return 0 on success, -ERRNO otherwise.
 696 */
 697int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
 698{
 699        struct kvm *kvm = vcpu->kvm;
 700        struct vgic_dist *vgic = &kvm->arch.vgic;
 701        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 702        struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
 703        struct vgic_redist_region *rdreg;
 704        gpa_t rd_base;
 705        int ret;
 706
 707        if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
 708                return 0;
 709
 710        /*
 711         * We may be creating VCPUs before having set the base address for the
 712         * redistributor region, in which case we will come back to this
 713         * function for all VCPUs when the base address is set.  Just return
 714         * without doing any work for now.
 715         */
 716        rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
 717        if (!rdreg)
 718                return 0;
 719
 720        if (!vgic_v3_check_base(kvm))
 721                return -EINVAL;
 722
 723        vgic_cpu->rdreg = rdreg;
 724        vgic_cpu->rdreg_index = rdreg->free_index;
 725
 726        rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
 727
 728        kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
 729        rd_dev->base_addr = rd_base;
 730        rd_dev->iodev_type = IODEV_REDIST;
 731        rd_dev->regions = vgic_v3_rd_registers;
 732        rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
 733        rd_dev->redist_vcpu = vcpu;
 734
 735        mutex_lock(&kvm->slots_lock);
 736        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
 737                                      2 * SZ_64K, &rd_dev->dev);
 738        mutex_unlock(&kvm->slots_lock);
 739
 740        if (ret)
 741                return ret;
 742
 743        rdreg->free_index++;
 744        return 0;
 745}
 746
 747static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
 748{
 749        struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
 750
 751        kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
 752}
 753
 754static int vgic_register_all_redist_iodevs(struct kvm *kvm)
 755{
 756        struct kvm_vcpu *vcpu;
 757        int c, ret = 0;
 758
 759        kvm_for_each_vcpu(c, vcpu, kvm) {
 760                ret = vgic_register_redist_iodev(vcpu);
 761                if (ret)
 762                        break;
 763        }
 764
 765        if (ret) {
 766                /* The current c failed, so we start with the previous one. */
 767                mutex_lock(&kvm->slots_lock);
 768                for (c--; c >= 0; c--) {
 769                        vcpu = kvm_get_vcpu(kvm, c);
 770                        vgic_unregister_redist_iodev(vcpu);
 771                }
 772                mutex_unlock(&kvm->slots_lock);
 773        }
 774
 775        return ret;
 776}
 777
 778/**
 779 * vgic_v3_alloc_redist_region - Allocate a new redistributor region
 780 *
 781 * Performs various checks before inserting the rdist region in the list.
 782 * Those tests depend on whether the size of the rdist region is known
 783 * (ie. count != 0). The list is sorted by rdist region index.
 784 *
 785 * @kvm: kvm handle
 786 * @index: redist region index
 787 * @base: base of the new rdist region
 788 * @count: number of redistributors the region is made of (0 in the old style
 789 * single region, whose size is induced from the number of vcpus)
 790 *
 791 * Return 0 on success, < 0 otherwise
 792 */
 793static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
 794                                       gpa_t base, uint32_t count)
 795{
 796        struct vgic_dist *d = &kvm->arch.vgic;
 797        struct vgic_redist_region *rdreg;
 798        struct list_head *rd_regions = &d->rd_regions;
 799        size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
 800        int ret;
 801
 802        /* cross the end of memory ? */
 803        if (base + size < base)
 804                return -EINVAL;
 805
 806        if (list_empty(rd_regions)) {
 807                if (index != 0)
 808                        return -EINVAL;
 809        } else {
 810                rdreg = list_last_entry(rd_regions,
 811                                        struct vgic_redist_region, list);
 812
 813                /* Don't mix single region and discrete redist regions */
 814                if (!count && rdreg->count)
 815                        return -EINVAL;
 816
 817                if (!count)
 818                        return -EEXIST;
 819
 820                if (index != rdreg->index + 1)
 821                        return -EINVAL;
 822        }
 823
 824        /*
 825         * For legacy single-region redistributor regions (!count),
 826         * check that the redistributor region does not overlap with the
 827         * distributor's address space.
 828         */
 829        if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
 830                vgic_dist_overlap(kvm, base, size))
 831                return -EINVAL;
 832
 833        /* collision with any other rdist region? */
 834        if (vgic_v3_rdist_overlap(kvm, base, size))
 835                return -EINVAL;
 836
 837        rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
 838        if (!rdreg)
 839                return -ENOMEM;
 840
 841        rdreg->base = VGIC_ADDR_UNDEF;
 842
 843        ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
 844        if (ret)
 845                goto free;
 846
 847        rdreg->base = base;
 848        rdreg->count = count;
 849        rdreg->free_index = 0;
 850        rdreg->index = index;
 851
 852        list_add_tail(&rdreg->list, rd_regions);
 853        return 0;
 854free:
 855        kfree(rdreg);
 856        return ret;
 857}
 858
 859void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
 860{
 861        list_del(&rdreg->list);
 862        kfree(rdreg);
 863}
 864
 865int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
 866{
 867        int ret;
 868
 869        ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
 870        if (ret)
 871                return ret;
 872
 873        /*
 874         * Register iodevs for each existing VCPU.  Adding more VCPUs
 875         * afterwards will register the iodevs when needed.
 876         */
 877        ret = vgic_register_all_redist_iodevs(kvm);
 878        if (ret) {
 879                struct vgic_redist_region *rdreg;
 880
 881                rdreg = vgic_v3_rdist_region_from_index(kvm, index);
 882                vgic_v3_free_redist_region(rdreg);
 883                return ret;
 884        }
 885
 886        return 0;
 887}
 888
 889int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
 890{
 891        const struct vgic_register_region *region;
 892        struct vgic_io_device iodev;
 893        struct vgic_reg_attr reg_attr;
 894        struct kvm_vcpu *vcpu;
 895        gpa_t addr;
 896        int ret;
 897
 898        ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
 899        if (ret)
 900                return ret;
 901
 902        vcpu = reg_attr.vcpu;
 903        addr = reg_attr.addr;
 904
 905        switch (attr->group) {
 906        case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
 907                iodev.regions = vgic_v3_dist_registers;
 908                iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
 909                iodev.base_addr = 0;
 910                break;
 911        case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
 912                iodev.regions = vgic_v3_rd_registers;
 913                iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
 914                iodev.base_addr = 0;
 915                break;
 916        }
 917        case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
 918                u64 reg, id;
 919
 920                id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
 921                return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
 922        }
 923        default:
 924                return -ENXIO;
 925        }
 926
 927        /* We only support aligned 32-bit accesses. */
 928        if (addr & 3)
 929                return -ENXIO;
 930
 931        region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
 932        if (!region)
 933                return -ENXIO;
 934
 935        return 0;
 936}
 937/*
 938 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
 939 * generation register ICC_SGI1R_EL1) with a given VCPU.
 940 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
 941 * return -1.
 942 */
 943static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
 944{
 945        unsigned long affinity;
 946        int level0;
 947
 948        /*
 949         * Split the current VCPU's MPIDR into affinity level 0 and the
 950         * rest as this is what we have to compare against.
 951         */
 952        affinity = kvm_vcpu_get_mpidr_aff(vcpu);
 953        level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
 954        affinity &= ~MPIDR_LEVEL_MASK;
 955
 956        /* bail out if the upper three levels don't match */
 957        if (sgi_aff != affinity)
 958                return -1;
 959
 960        /* Is this VCPU's bit set in the mask ? */
 961        if (!(sgi_cpu_mask & BIT(level0)))
 962                return -1;
 963
 964        return level0;
 965}
 966
 967/*
 968 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
 969 * so provide a wrapper to use the existing defines to isolate a certain
 970 * affinity level.
 971 */
 972#define SGI_AFFINITY_LEVEL(reg, level) \
 973        ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
 974        >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
 975
 976/**
 977 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
 978 * @vcpu: The VCPU requesting a SGI
 979 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
 980 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
 981 *
 982 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
 983 * This will trap in sys_regs.c and call this function.
 984 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
 985 * target processors as well as a bitmask of 16 Aff0 CPUs.
 986 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
 987 * check for matching ones. If this bit is set, we signal all, but not the
 988 * calling VCPU.
 989 */
 990void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
 991{
 992        struct kvm *kvm = vcpu->kvm;
 993        struct kvm_vcpu *c_vcpu;
 994        u16 target_cpus;
 995        u64 mpidr;
 996        int sgi, c;
 997        int vcpu_id = vcpu->vcpu_id;
 998        bool broadcast;
 999        unsigned long flags;
1000
1001        sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
1002        broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
1003        target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
1004        mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1005        mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1006        mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1007
1008        /*
1009         * We iterate over all VCPUs to find the MPIDRs matching the request.
1010         * If we have handled one CPU, we clear its bit to detect early
1011         * if we are already finished. This avoids iterating through all
1012         * VCPUs when most of the times we just signal a single VCPU.
1013         */
1014        kvm_for_each_vcpu(c, c_vcpu, kvm) {
1015                struct vgic_irq *irq;
1016
1017                /* Exit early if we have dealt with all requested CPUs */
1018                if (!broadcast && target_cpus == 0)
1019                        break;
1020
1021                /* Don't signal the calling VCPU */
1022                if (broadcast && c == vcpu_id)
1023                        continue;
1024
1025                if (!broadcast) {
1026                        int level0;
1027
1028                        level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1029                        if (level0 == -1)
1030                                continue;
1031
1032                        /* remove this matching VCPU from the mask */
1033                        target_cpus &= ~BIT(level0);
1034                }
1035
1036                irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1037
1038                raw_spin_lock_irqsave(&irq->irq_lock, flags);
1039
1040                /*
1041                 * An access targeting Group0 SGIs can only generate
1042                 * those, while an access targeting Group1 SGIs can
1043                 * generate interrupts of either group.
1044                 */
1045                if (!irq->group || allow_group1) {
1046                        if (!irq->hw) {
1047                                irq->pending_latch = true;
1048                                vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1049                        } else {
1050                                /* HW SGI? Ask the GIC to inject it */
1051                                int err;
1052                                err = irq_set_irqchip_state(irq->host_irq,
1053                                                            IRQCHIP_STATE_PENDING,
1054                                                            true);
1055                                WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1056                                raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1057                        }
1058                } else {
1059                        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1060                }
1061
1062                vgic_put_irq(vcpu->kvm, irq);
1063        }
1064}
1065
1066int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1067                         int offset, u32 *val)
1068{
1069        struct vgic_io_device dev = {
1070                .regions = vgic_v3_dist_registers,
1071                .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1072        };
1073
1074        return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1075}
1076
1077int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1078                           int offset, u32 *val)
1079{
1080        struct vgic_io_device rd_dev = {
1081                .regions = vgic_v3_rd_registers,
1082                .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1083        };
1084
1085        return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1086}
1087
1088int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1089                                    u32 intid, u64 *val)
1090{
1091        if (intid % 32)
1092                return -EINVAL;
1093
1094        if (is_write)
1095                vgic_write_irq_line_level_info(vcpu, intid, *val);
1096        else
1097                *val = vgic_read_irq_line_level_info(vcpu, intid);
1098
1099        return 0;
1100}
1101