linux/arch/arm64/mm/context.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Based on arch/arm/mm/context.c
   4 *
   5 * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
   6 * Copyright (C) 2012 ARM Ltd.
   7 */
   8
   9#include <linux/bitfield.h>
  10#include <linux/bitops.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/mm.h>
  14
  15#include <asm/cpufeature.h>
  16#include <asm/mmu_context.h>
  17#include <asm/smp.h>
  18#include <asm/tlbflush.h>
  19
  20static u32 asid_bits;
  21static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
  22
  23static atomic64_t asid_generation;
  24static unsigned long *asid_map;
  25
  26static DEFINE_PER_CPU(atomic64_t, active_asids);
  27static DEFINE_PER_CPU(u64, reserved_asids);
  28static cpumask_t tlb_flush_pending;
  29
  30static unsigned long max_pinned_asids;
  31static unsigned long nr_pinned_asids;
  32static unsigned long *pinned_asid_map;
  33
  34#define ASID_MASK               (~GENMASK(asid_bits - 1, 0))
  35#define ASID_FIRST_VERSION      (1UL << asid_bits)
  36
  37#define NUM_USER_ASIDS          ASID_FIRST_VERSION
  38#define asid2idx(asid)          ((asid) & ~ASID_MASK)
  39#define idx2asid(idx)           asid2idx(idx)
  40
  41/* Get the ASIDBits supported by the current CPU */
  42static u32 get_cpu_asid_bits(void)
  43{
  44        u32 asid;
  45        int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
  46                                                ID_AA64MMFR0_ASID_SHIFT);
  47
  48        switch (fld) {
  49        default:
  50                pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
  51                                        smp_processor_id(),  fld);
  52                fallthrough;
  53        case 0:
  54                asid = 8;
  55                break;
  56        case 2:
  57                asid = 16;
  58        }
  59
  60        return asid;
  61}
  62
  63/* Check if the current cpu's ASIDBits is compatible with asid_bits */
  64void verify_cpu_asid_bits(void)
  65{
  66        u32 asid = get_cpu_asid_bits();
  67
  68        if (asid < asid_bits) {
  69                /*
  70                 * We cannot decrease the ASID size at runtime, so panic if we support
  71                 * fewer ASID bits than the boot CPU.
  72                 */
  73                pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
  74                                smp_processor_id(), asid, asid_bits);
  75                cpu_panic_kernel();
  76        }
  77}
  78
  79static void set_kpti_asid_bits(unsigned long *map)
  80{
  81        unsigned int len = BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(unsigned long);
  82        /*
  83         * In case of KPTI kernel/user ASIDs are allocated in
  84         * pairs, the bottom bit distinguishes the two: if it
  85         * is set, then the ASID will map only userspace. Thus
  86         * mark even as reserved for kernel.
  87         */
  88        memset(map, 0xaa, len);
  89}
  90
  91static void set_reserved_asid_bits(void)
  92{
  93        if (pinned_asid_map)
  94                bitmap_copy(asid_map, pinned_asid_map, NUM_USER_ASIDS);
  95        else if (arm64_kernel_unmapped_at_el0())
  96                set_kpti_asid_bits(asid_map);
  97        else
  98                bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
  99}
 100
 101#define asid_gen_match(asid) \
 102        (!(((asid) ^ atomic64_read(&asid_generation)) >> asid_bits))
 103
 104static void flush_context(void)
 105{
 106        int i;
 107        u64 asid;
 108
 109        /* Update the list of reserved ASIDs and the ASID bitmap. */
 110        set_reserved_asid_bits();
 111
 112        for_each_possible_cpu(i) {
 113                asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
 114                /*
 115                 * If this CPU has already been through a
 116                 * rollover, but hasn't run another task in
 117                 * the meantime, we must preserve its reserved
 118                 * ASID, as this is the only trace we have of
 119                 * the process it is still running.
 120                 */
 121                if (asid == 0)
 122                        asid = per_cpu(reserved_asids, i);
 123                __set_bit(asid2idx(asid), asid_map);
 124                per_cpu(reserved_asids, i) = asid;
 125        }
 126
 127        /*
 128         * Queue a TLB invalidation for each CPU to perform on next
 129         * context-switch
 130         */
 131        cpumask_setall(&tlb_flush_pending);
 132}
 133
 134static bool check_update_reserved_asid(u64 asid, u64 newasid)
 135{
 136        int cpu;
 137        bool hit = false;
 138
 139        /*
 140         * Iterate over the set of reserved ASIDs looking for a match.
 141         * If we find one, then we can update our mm to use newasid
 142         * (i.e. the same ASID in the current generation) but we can't
 143         * exit the loop early, since we need to ensure that all copies
 144         * of the old ASID are updated to reflect the mm. Failure to do
 145         * so could result in us missing the reserved ASID in a future
 146         * generation.
 147         */
 148        for_each_possible_cpu(cpu) {
 149                if (per_cpu(reserved_asids, cpu) == asid) {
 150                        hit = true;
 151                        per_cpu(reserved_asids, cpu) = newasid;
 152                }
 153        }
 154
 155        return hit;
 156}
 157
 158static u64 new_context(struct mm_struct *mm)
 159{
 160        static u32 cur_idx = 1;
 161        u64 asid = atomic64_read(&mm->context.id);
 162        u64 generation = atomic64_read(&asid_generation);
 163
 164        if (asid != 0) {
 165                u64 newasid = generation | (asid & ~ASID_MASK);
 166
 167                /*
 168                 * If our current ASID was active during a rollover, we
 169                 * can continue to use it and this was just a false alarm.
 170                 */
 171                if (check_update_reserved_asid(asid, newasid))
 172                        return newasid;
 173
 174                /*
 175                 * If it is pinned, we can keep using it. Note that reserved
 176                 * takes priority, because even if it is also pinned, we need to
 177                 * update the generation into the reserved_asids.
 178                 */
 179                if (refcount_read(&mm->context.pinned))
 180                        return newasid;
 181
 182                /*
 183                 * We had a valid ASID in a previous life, so try to re-use
 184                 * it if possible.
 185                 */
 186                if (!__test_and_set_bit(asid2idx(asid), asid_map))
 187                        return newasid;
 188        }
 189
 190        /*
 191         * Allocate a free ASID. If we can't find one, take a note of the
 192         * currently active ASIDs and mark the TLBs as requiring flushes.  We
 193         * always count from ASID #2 (index 1), as we use ASID #0 when setting
 194         * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
 195         * pairs.
 196         */
 197        asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
 198        if (asid != NUM_USER_ASIDS)
 199                goto set_asid;
 200
 201        /* We're out of ASIDs, so increment the global generation count */
 202        generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
 203                                                 &asid_generation);
 204        flush_context();
 205
 206        /* We have more ASIDs than CPUs, so this will always succeed */
 207        asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
 208
 209set_asid:
 210        __set_bit(asid, asid_map);
 211        cur_idx = asid;
 212        return idx2asid(asid) | generation;
 213}
 214
 215void check_and_switch_context(struct mm_struct *mm)
 216{
 217        unsigned long flags;
 218        unsigned int cpu;
 219        u64 asid, old_active_asid;
 220
 221        if (system_supports_cnp())
 222                cpu_set_reserved_ttbr0();
 223
 224        asid = atomic64_read(&mm->context.id);
 225
 226        /*
 227         * The memory ordering here is subtle.
 228         * If our active_asids is non-zero and the ASID matches the current
 229         * generation, then we update the active_asids entry with a relaxed
 230         * cmpxchg. Racing with a concurrent rollover means that either:
 231         *
 232         * - We get a zero back from the cmpxchg and end up waiting on the
 233         *   lock. Taking the lock synchronises with the rollover and so
 234         *   we are forced to see the updated generation.
 235         *
 236         * - We get a valid ASID back from the cmpxchg, which means the
 237         *   relaxed xchg in flush_context will treat us as reserved
 238         *   because atomic RmWs are totally ordered for a given location.
 239         */
 240        old_active_asid = atomic64_read(this_cpu_ptr(&active_asids));
 241        if (old_active_asid && asid_gen_match(asid) &&
 242            atomic64_cmpxchg_relaxed(this_cpu_ptr(&active_asids),
 243                                     old_active_asid, asid))
 244                goto switch_mm_fastpath;
 245
 246        raw_spin_lock_irqsave(&cpu_asid_lock, flags);
 247        /* Check that our ASID belongs to the current generation. */
 248        asid = atomic64_read(&mm->context.id);
 249        if (!asid_gen_match(asid)) {
 250                asid = new_context(mm);
 251                atomic64_set(&mm->context.id, asid);
 252        }
 253
 254        cpu = smp_processor_id();
 255        if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
 256                local_flush_tlb_all();
 257
 258        atomic64_set(this_cpu_ptr(&active_asids), asid);
 259        raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
 260
 261switch_mm_fastpath:
 262
 263        arm64_apply_bp_hardening();
 264
 265        /*
 266         * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
 267         * emulating PAN.
 268         */
 269        if (!system_uses_ttbr0_pan())
 270                cpu_switch_mm(mm->pgd, mm);
 271}
 272
 273unsigned long arm64_mm_context_get(struct mm_struct *mm)
 274{
 275        unsigned long flags;
 276        u64 asid;
 277
 278        if (!pinned_asid_map)
 279                return 0;
 280
 281        raw_spin_lock_irqsave(&cpu_asid_lock, flags);
 282
 283        asid = atomic64_read(&mm->context.id);
 284
 285        if (refcount_inc_not_zero(&mm->context.pinned))
 286                goto out_unlock;
 287
 288        if (nr_pinned_asids >= max_pinned_asids) {
 289                asid = 0;
 290                goto out_unlock;
 291        }
 292
 293        if (!asid_gen_match(asid)) {
 294                /*
 295                 * We went through one or more rollover since that ASID was
 296                 * used. Ensure that it is still valid, or generate a new one.
 297                 */
 298                asid = new_context(mm);
 299                atomic64_set(&mm->context.id, asid);
 300        }
 301
 302        nr_pinned_asids++;
 303        __set_bit(asid2idx(asid), pinned_asid_map);
 304        refcount_set(&mm->context.pinned, 1);
 305
 306out_unlock:
 307        raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
 308
 309        asid &= ~ASID_MASK;
 310
 311        /* Set the equivalent of USER_ASID_BIT */
 312        if (asid && arm64_kernel_unmapped_at_el0())
 313                asid |= 1;
 314
 315        return asid;
 316}
 317EXPORT_SYMBOL_GPL(arm64_mm_context_get);
 318
 319void arm64_mm_context_put(struct mm_struct *mm)
 320{
 321        unsigned long flags;
 322        u64 asid = atomic64_read(&mm->context.id);
 323
 324        if (!pinned_asid_map)
 325                return;
 326
 327        raw_spin_lock_irqsave(&cpu_asid_lock, flags);
 328
 329        if (refcount_dec_and_test(&mm->context.pinned)) {
 330                __clear_bit(asid2idx(asid), pinned_asid_map);
 331                nr_pinned_asids--;
 332        }
 333
 334        raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
 335}
 336EXPORT_SYMBOL_GPL(arm64_mm_context_put);
 337
 338/* Errata workaround post TTBRx_EL1 update. */
 339asmlinkage void post_ttbr_update_workaround(void)
 340{
 341        if (!IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456))
 342                return;
 343
 344        asm(ALTERNATIVE("nop; nop; nop",
 345                        "ic iallu; dsb nsh; isb",
 346                        ARM64_WORKAROUND_CAVIUM_27456));
 347}
 348
 349void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm)
 350{
 351        unsigned long ttbr1 = read_sysreg(ttbr1_el1);
 352        unsigned long asid = ASID(mm);
 353        unsigned long ttbr0 = phys_to_ttbr(pgd_phys);
 354
 355        /* Skip CNP for the reserved ASID */
 356        if (system_supports_cnp() && asid)
 357                ttbr0 |= TTBR_CNP_BIT;
 358
 359        /* SW PAN needs a copy of the ASID in TTBR0 for entry */
 360        if (IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN))
 361                ttbr0 |= FIELD_PREP(TTBR_ASID_MASK, asid);
 362
 363        /* Set ASID in TTBR1 since TCR.A1 is set */
 364        ttbr1 &= ~TTBR_ASID_MASK;
 365        ttbr1 |= FIELD_PREP(TTBR_ASID_MASK, asid);
 366
 367        write_sysreg(ttbr1, ttbr1_el1);
 368        isb();
 369        write_sysreg(ttbr0, ttbr0_el1);
 370        isb();
 371        post_ttbr_update_workaround();
 372}
 373
 374static int asids_update_limit(void)
 375{
 376        unsigned long num_available_asids = NUM_USER_ASIDS;
 377
 378        if (arm64_kernel_unmapped_at_el0()) {
 379                num_available_asids /= 2;
 380                if (pinned_asid_map)
 381                        set_kpti_asid_bits(pinned_asid_map);
 382        }
 383        /*
 384         * Expect allocation after rollover to fail if we don't have at least
 385         * one more ASID than CPUs. ASID #0 is reserved for init_mm.
 386         */
 387        WARN_ON(num_available_asids - 1 <= num_possible_cpus());
 388        pr_info("ASID allocator initialised with %lu entries\n",
 389                num_available_asids);
 390
 391        /*
 392         * There must always be an ASID available after rollover. Ensure that,
 393         * even if all CPUs have a reserved ASID and the maximum number of ASIDs
 394         * are pinned, there still is at least one empty slot in the ASID map.
 395         */
 396        max_pinned_asids = num_available_asids - num_possible_cpus() - 2;
 397        return 0;
 398}
 399arch_initcall(asids_update_limit);
 400
 401static int asids_init(void)
 402{
 403        asid_bits = get_cpu_asid_bits();
 404        atomic64_set(&asid_generation, ASID_FIRST_VERSION);
 405        asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL);
 406        if (!asid_map)
 407                panic("Failed to allocate bitmap for %lu ASIDs\n",
 408                      NUM_USER_ASIDS);
 409
 410        pinned_asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL);
 411        nr_pinned_asids = 0;
 412
 413        /*
 414         * We cannot call set_reserved_asid_bits() here because CPU
 415         * caps are not finalized yet, so it is safer to assume KPTI
 416         * and reserve kernel ASID's from beginning.
 417         */
 418        if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0))
 419                set_kpti_asid_bits(asid_map);
 420        return 0;
 421}
 422early_initcall(asids_init);
 423