linux/arch/hexagon/mm/init.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Memory subsystem initialization for Hexagon
   4 *
   5 * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
   6 */
   7
   8#include <linux/init.h>
   9#include <linux/mm.h>
  10#include <linux/memblock.h>
  11#include <asm/atomic.h>
  12#include <linux/highmem.h>
  13#include <asm/tlb.h>
  14#include <asm/sections.h>
  15#include <asm/vm_mmu.h>
  16
  17/*
  18 * Define a startpg just past the end of the kernel image and a lastpg
  19 * that corresponds to the end of real or simulated platform memory.
  20 */
  21#define bootmem_startpg (PFN_UP(((unsigned long) _end) - PAGE_OFFSET + PHYS_OFFSET))
  22
  23unsigned long bootmem_lastpg;   /*  Should be set by platform code  */
  24unsigned long __phys_offset;    /*  physical kernel offset >> 12  */
  25
  26/*  Set as variable to limit PMD copies  */
  27int max_kernel_seg = 0x303;
  28
  29/*  indicate pfn's of high memory  */
  30unsigned long highstart_pfn, highend_pfn;
  31
  32DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  33
  34/* Default cache attribute for newly created page tables */
  35unsigned long _dflt_cache_att = CACHEDEF;
  36
  37/*
  38 * The current "generation" of kernel map, which should not roll
  39 * over until Hell freezes over.  Actual bound in years needs to be
  40 * calculated to confirm.
  41 */
  42DEFINE_SPINLOCK(kmap_gen_lock);
  43
  44/*  checkpatch says don't init this to 0.  */
  45unsigned long long kmap_generation;
  46
  47/*
  48 * mem_init - initializes memory
  49 *
  50 * Frees up bootmem
  51 * Fixes up more stuff for HIGHMEM
  52 * Calculates and displays memory available/used
  53 */
  54void __init mem_init(void)
  55{
  56        /*  No idea where this is actually declared.  Seems to evade LXR.  */
  57        memblock_free_all();
  58
  59        /*
  60         *  To-Do:  someone somewhere should wipe out the bootmem map
  61         *  after we're done?
  62         */
  63
  64        /*
  65         * This can be moved to some more virtual-memory-specific
  66         * initialization hook at some point.  Set the init_mm
  67         * descriptors "context" value to point to the initial
  68         * kernel segment table's physical address.
  69         */
  70        init_mm.context.ptbase = __pa(init_mm.pgd);
  71}
  72
  73void sync_icache_dcache(pte_t pte)
  74{
  75        unsigned long addr;
  76        struct page *page;
  77
  78        page = pte_page(pte);
  79        addr = (unsigned long) page_address(page);
  80
  81        __vmcache_idsync(addr, PAGE_SIZE);
  82}
  83
  84/*
  85 * In order to set up page allocator "nodes",
  86 * somebody has to call free_area_init() for UMA.
  87 *
  88 * In this mode, we only have one pg_data_t
  89 * structure: contig_mem_data.
  90 */
  91void __init paging_init(void)
  92{
  93        unsigned long max_zone_pfn[MAX_NR_ZONES] = {0, };
  94
  95        /*
  96         *  This is not particularly well documented anywhere, but
  97         *  give ZONE_NORMAL all the memory, including the big holes
  98         *  left by the kernel+bootmem_map which are already left as reserved
  99         *  in the bootmem_map; free_area_init should see those bits and
 100         *  adjust accordingly.
 101         */
 102
 103        max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
 104
 105        free_area_init(max_zone_pfn);  /*  sets up the zonelists and mem_map  */
 106
 107        /*
 108         * Start of high memory area.  Will probably need something more
 109         * fancy if we...  get more fancy.
 110         */
 111        high_memory = (void *)((bootmem_lastpg + 1) << PAGE_SHIFT);
 112}
 113
 114#ifndef DMA_RESERVE
 115#define DMA_RESERVE             (4)
 116#endif
 117
 118#define DMA_CHUNKSIZE           (1<<22)
 119#define DMA_RESERVED_BYTES      (DMA_RESERVE * DMA_CHUNKSIZE)
 120
 121/*
 122 * Pick out the memory size.  We look for mem=size,
 123 * where size is "size[KkMm]"
 124 */
 125static int __init early_mem(char *p)
 126{
 127        unsigned long size;
 128        char *endp;
 129
 130        size = memparse(p, &endp);
 131
 132        bootmem_lastpg = PFN_DOWN(size);
 133
 134        return 0;
 135}
 136early_param("mem", early_mem);
 137
 138size_t hexagon_coherent_pool_size = (size_t) (DMA_RESERVE << 22);
 139
 140void __init setup_arch_memory(void)
 141{
 142        /*  XXX Todo: this probably should be cleaned up  */
 143        u32 *segtable = (u32 *) &swapper_pg_dir[0];
 144        u32 *segtable_end;
 145
 146        /*
 147         * Set up boot memory allocator
 148         *
 149         * The Gorman book also talks about these functions.
 150         * This needs to change for highmem setups.
 151         */
 152
 153        /*  Prior to this, bootmem_lastpg is actually mem size  */
 154        bootmem_lastpg += ARCH_PFN_OFFSET;
 155
 156        /* Memory size needs to be a multiple of 16M */
 157        bootmem_lastpg = PFN_DOWN((bootmem_lastpg << PAGE_SHIFT) &
 158                ~((BIG_KERNEL_PAGE_SIZE) - 1));
 159
 160        memblock_add(PHYS_OFFSET,
 161                     (bootmem_lastpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
 162
 163        /* Reserve kernel text/data/bss */
 164        memblock_reserve(PHYS_OFFSET,
 165                         (bootmem_startpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
 166        /*
 167         * Reserve the top DMA_RESERVE bytes of RAM for DMA (uncached)
 168         * memory allocation
 169         */
 170        max_low_pfn = bootmem_lastpg - PFN_DOWN(DMA_RESERVED_BYTES);
 171        min_low_pfn = ARCH_PFN_OFFSET;
 172        memblock_reserve(PFN_PHYS(max_low_pfn), DMA_RESERVED_BYTES);
 173
 174        printk(KERN_INFO "bootmem_startpg:  0x%08lx\n", bootmem_startpg);
 175        printk(KERN_INFO "bootmem_lastpg:  0x%08lx\n", bootmem_lastpg);
 176        printk(KERN_INFO "min_low_pfn:  0x%08lx\n", min_low_pfn);
 177        printk(KERN_INFO "max_low_pfn:  0x%08lx\n", max_low_pfn);
 178
 179        /*
 180         * The default VM page tables (will be) populated with
 181         * VA=PA+PAGE_OFFSET mapping.  We go in and invalidate entries
 182         * higher than what we have memory for.
 183         */
 184
 185        /*  this is pointer arithmetic; each entry covers 4MB  */
 186        segtable = segtable + (PAGE_OFFSET >> 22);
 187
 188        /*  this actually only goes to the end of the first gig  */
 189        segtable_end = segtable + (1<<(30-22));
 190
 191        /*
 192         * Move forward to the start of empty pages; take into account
 193         * phys_offset shift.
 194         */
 195
 196        segtable += (bootmem_lastpg-ARCH_PFN_OFFSET)>>(22-PAGE_SHIFT);
 197        {
 198                int i;
 199
 200                for (i = 1 ; i <= DMA_RESERVE ; i++)
 201                        segtable[-i] = ((segtable[-i] & __HVM_PTE_PGMASK_4MB)
 202                                | __HVM_PTE_R | __HVM_PTE_W | __HVM_PTE_X
 203                                | __HEXAGON_C_UNC << 6
 204                                | __HVM_PDE_S_4MB);
 205        }
 206
 207        printk(KERN_INFO "clearing segtable from %p to %p\n", segtable,
 208                segtable_end);
 209        while (segtable < (segtable_end-8))
 210                *(segtable++) = __HVM_PDE_S_INVALID;
 211        /* stop the pointer at the device I/O 4MB page  */
 212
 213        printk(KERN_INFO "segtable = %p (should be equal to _K_io_map)\n",
 214                segtable);
 215
 216#if 0
 217        /*  Other half of the early device table from vm_init_segtable. */
 218        printk(KERN_INFO "&_K_init_devicetable = 0x%08x\n",
 219                (unsigned long) _K_init_devicetable-PAGE_OFFSET);
 220        *segtable = ((u32) (unsigned long) _K_init_devicetable-PAGE_OFFSET) |
 221                __HVM_PDE_S_4KB;
 222        printk(KERN_INFO "*segtable = 0x%08x\n", *segtable);
 223#endif
 224
 225        /*
 226         *  The bootmem allocator seemingly just lives to feed memory
 227         *  to the paging system
 228         */
 229        printk(KERN_INFO "PAGE_SIZE=%lu\n", PAGE_SIZE);
 230        paging_init();  /*  See Gorman Book, 2.3  */
 231
 232        /*
 233         *  At this point, the page allocator is kind of initialized, but
 234         *  apparently no pages are available (just like with the bootmem
 235         *  allocator), and need to be freed themselves via mem_init(),
 236         *  which is called by start_kernel() later on in the process
 237         */
 238}
 239