linux/arch/ia64/kernel/efi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Extensible Firmware Interface
   4 *
   5 * Based on Extensible Firmware Interface Specification version 0.9
   6 * April 30, 1999
   7 *
   8 * Copyright (C) 1999 VA Linux Systems
   9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
  11 *      David Mosberger-Tang <davidm@hpl.hp.com>
  12 *      Stephane Eranian <eranian@hpl.hp.com>
  13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  14 *      Bjorn Helgaas <bjorn.helgaas@hp.com>
  15 *
  16 * All EFI Runtime Services are not implemented yet as EFI only
  17 * supports physical mode addressing on SoftSDV. This is to be fixed
  18 * in a future version.  --drummond 1999-07-20
  19 *
  20 * Implemented EFI runtime services and virtual mode calls.  --davidm
  21 *
  22 * Goutham Rao: <goutham.rao@intel.com>
  23 *      Skip non-WB memory and ignore empty memory ranges.
  24 */
  25#include <linux/module.h>
  26#include <linux/memblock.h>
  27#include <linux/crash_dump.h>
  28#include <linux/kernel.h>
  29#include <linux/init.h>
  30#include <linux/types.h>
  31#include <linux/slab.h>
  32#include <linux/time.h>
  33#include <linux/efi.h>
  34#include <linux/kexec.h>
  35#include <linux/mm.h>
  36
  37#include <asm/efi.h>
  38#include <asm/io.h>
  39#include <asm/kregs.h>
  40#include <asm/meminit.h>
  41#include <asm/processor.h>
  42#include <asm/mca.h>
  43#include <asm/sal.h>
  44#include <asm/setup.h>
  45#include <asm/tlbflush.h>
  46
  47#define EFI_DEBUG       0
  48
  49#define ESI_TABLE_GUID                                  \
  50    EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,          \
  51             0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
  52
  53static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
  54static __initdata unsigned long palo_phys;
  55
  56unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
  57unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
  58unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
  59
  60static const efi_config_table_type_t arch_tables[] __initconst = {
  61        {ESI_TABLE_GUID,                                &esi_phys,              "ESI"           },
  62        {HCDP_TABLE_GUID,                               &hcdp_phys,             "HCDP"          },
  63        {MPS_TABLE_GUID,                                &mps_phys,              "MPS"           },
  64        {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID,    &palo_phys,             "PALO"          },
  65        {SAL_SYSTEM_TABLE_GUID,                         &sal_systab_phys,       "SALsystab"     },
  66        {},
  67};
  68
  69extern efi_status_t efi_call_phys (void *, ...);
  70
  71static efi_runtime_services_t *runtime;
  72static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  73
  74#define efi_call_virt(f, args...)       (*(f))(args)
  75
  76#define STUB_GET_TIME(prefix, adjust_arg)                                      \
  77static efi_status_t                                                            \
  78prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
  79{                                                                              \
  80        struct ia64_fpreg fr[6];                                               \
  81        efi_time_cap_t *atc = NULL;                                            \
  82        efi_status_t ret;                                                      \
  83                                                                               \
  84        if (tc)                                                                \
  85                atc = adjust_arg(tc);                                          \
  86        ia64_save_scratch_fpregs(fr);                                          \
  87        ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  88                                adjust_arg(tm), atc);                          \
  89        ia64_load_scratch_fpregs(fr);                                          \
  90        return ret;                                                            \
  91}
  92
  93#define STUB_SET_TIME(prefix, adjust_arg)                                      \
  94static efi_status_t                                                            \
  95prefix##_set_time (efi_time_t *tm)                                             \
  96{                                                                              \
  97        struct ia64_fpreg fr[6];                                               \
  98        efi_status_t ret;                                                      \
  99                                                                               \
 100        ia64_save_scratch_fpregs(fr);                                          \
 101        ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
 102                                adjust_arg(tm));                               \
 103        ia64_load_scratch_fpregs(fr);                                          \
 104        return ret;                                                            \
 105}
 106
 107#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
 108static efi_status_t                                                            \
 109prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
 110                          efi_time_t *tm)                                      \
 111{                                                                              \
 112        struct ia64_fpreg fr[6];                                               \
 113        efi_status_t ret;                                                      \
 114                                                                               \
 115        ia64_save_scratch_fpregs(fr);                                          \
 116        ret = efi_call_##prefix(                                               \
 117                (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 118                adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 119        ia64_load_scratch_fpregs(fr);                                          \
 120        return ret;                                                            \
 121}
 122
 123#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
 124static efi_status_t                                                            \
 125prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
 126{                                                                              \
 127        struct ia64_fpreg fr[6];                                               \
 128        efi_time_t *atm = NULL;                                                \
 129        efi_status_t ret;                                                      \
 130                                                                               \
 131        if (tm)                                                                \
 132                atm = adjust_arg(tm);                                          \
 133        ia64_save_scratch_fpregs(fr);                                          \
 134        ret = efi_call_##prefix(                                               \
 135                (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 136                enabled, atm);                                                 \
 137        ia64_load_scratch_fpregs(fr);                                          \
 138        return ret;                                                            \
 139}
 140
 141#define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
 142static efi_status_t                                                            \
 143prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 144                       unsigned long *data_size, void *data)                   \
 145{                                                                              \
 146        struct ia64_fpreg fr[6];                                               \
 147        u32 *aattr = NULL;                                                     \
 148        efi_status_t ret;                                                      \
 149                                                                               \
 150        if (attr)                                                              \
 151                aattr = adjust_arg(attr);                                      \
 152        ia64_save_scratch_fpregs(fr);                                          \
 153        ret = efi_call_##prefix(                                               \
 154                (efi_get_variable_t *) __va(runtime->get_variable),            \
 155                adjust_arg(name), adjust_arg(vendor), aattr,                   \
 156                adjust_arg(data_size), adjust_arg(data));                      \
 157        ia64_load_scratch_fpregs(fr);                                          \
 158        return ret;                                                            \
 159}
 160
 161#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
 162static efi_status_t                                                            \
 163prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 164                            efi_guid_t *vendor)                                \
 165{                                                                              \
 166        struct ia64_fpreg fr[6];                                               \
 167        efi_status_t ret;                                                      \
 168                                                                               \
 169        ia64_save_scratch_fpregs(fr);                                          \
 170        ret = efi_call_##prefix(                                               \
 171                (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 172                adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 173        ia64_load_scratch_fpregs(fr);                                          \
 174        return ret;                                                            \
 175}
 176
 177#define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
 178static efi_status_t                                                            \
 179prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
 180                       u32 attr, unsigned long data_size,                      \
 181                       void *data)                                             \
 182{                                                                              \
 183        struct ia64_fpreg fr[6];                                               \
 184        efi_status_t ret;                                                      \
 185                                                                               \
 186        ia64_save_scratch_fpregs(fr);                                          \
 187        ret = efi_call_##prefix(                                               \
 188                (efi_set_variable_t *) __va(runtime->set_variable),            \
 189                adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
 190                adjust_arg(data));                                             \
 191        ia64_load_scratch_fpregs(fr);                                          \
 192        return ret;                                                            \
 193}
 194
 195#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
 196static efi_status_t                                                            \
 197prefix##_get_next_high_mono_count (u32 *count)                                 \
 198{                                                                              \
 199        struct ia64_fpreg fr[6];                                               \
 200        efi_status_t ret;                                                      \
 201                                                                               \
 202        ia64_save_scratch_fpregs(fr);                                          \
 203        ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
 204                                __va(runtime->get_next_high_mono_count),       \
 205                                adjust_arg(count));                            \
 206        ia64_load_scratch_fpregs(fr);                                          \
 207        return ret;                                                            \
 208}
 209
 210#define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
 211static void                                                                    \
 212prefix##_reset_system (int reset_type, efi_status_t status,                    \
 213                       unsigned long data_size, efi_char16_t *data)            \
 214{                                                                              \
 215        struct ia64_fpreg fr[6];                                               \
 216        efi_char16_t *adata = NULL;                                            \
 217                                                                               \
 218        if (data)                                                              \
 219                adata = adjust_arg(data);                                      \
 220                                                                               \
 221        ia64_save_scratch_fpregs(fr);                                          \
 222        efi_call_##prefix(                                                     \
 223                (efi_reset_system_t *) __va(runtime->reset_system),            \
 224                reset_type, status, data_size, adata);                         \
 225        /* should not return, but just in case... */                           \
 226        ia64_load_scratch_fpregs(fr);                                          \
 227}
 228
 229#define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
 230
 231STUB_GET_TIME(phys, phys_ptr)
 232STUB_SET_TIME(phys, phys_ptr)
 233STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 234STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 235STUB_GET_VARIABLE(phys, phys_ptr)
 236STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 237STUB_SET_VARIABLE(phys, phys_ptr)
 238STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 239STUB_RESET_SYSTEM(phys, phys_ptr)
 240
 241#define id(arg) arg
 242
 243STUB_GET_TIME(virt, id)
 244STUB_SET_TIME(virt, id)
 245STUB_GET_WAKEUP_TIME(virt, id)
 246STUB_SET_WAKEUP_TIME(virt, id)
 247STUB_GET_VARIABLE(virt, id)
 248STUB_GET_NEXT_VARIABLE(virt, id)
 249STUB_SET_VARIABLE(virt, id)
 250STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 251STUB_RESET_SYSTEM(virt, id)
 252
 253void
 254efi_gettimeofday (struct timespec64 *ts)
 255{
 256        efi_time_t tm;
 257
 258        if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 259                memset(ts, 0, sizeof(*ts));
 260                return;
 261        }
 262
 263        ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
 264                            tm.hour, tm.minute, tm.second);
 265        ts->tv_nsec = tm.nanosecond;
 266}
 267
 268static int
 269is_memory_available (efi_memory_desc_t *md)
 270{
 271        if (!(md->attribute & EFI_MEMORY_WB))
 272                return 0;
 273
 274        switch (md->type) {
 275              case EFI_LOADER_CODE:
 276              case EFI_LOADER_DATA:
 277              case EFI_BOOT_SERVICES_CODE:
 278              case EFI_BOOT_SERVICES_DATA:
 279              case EFI_CONVENTIONAL_MEMORY:
 280                return 1;
 281        }
 282        return 0;
 283}
 284
 285typedef struct kern_memdesc {
 286        u64 attribute;
 287        u64 start;
 288        u64 num_pages;
 289} kern_memdesc_t;
 290
 291static kern_memdesc_t *kern_memmap;
 292
 293#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
 294
 295static inline u64
 296kmd_end(kern_memdesc_t *kmd)
 297{
 298        return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 299}
 300
 301static inline u64
 302efi_md_end(efi_memory_desc_t *md)
 303{
 304        return (md->phys_addr + efi_md_size(md));
 305}
 306
 307static inline int
 308efi_wb(efi_memory_desc_t *md)
 309{
 310        return (md->attribute & EFI_MEMORY_WB);
 311}
 312
 313static inline int
 314efi_uc(efi_memory_desc_t *md)
 315{
 316        return (md->attribute & EFI_MEMORY_UC);
 317}
 318
 319static void
 320walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 321{
 322        kern_memdesc_t *k;
 323        u64 start, end, voff;
 324
 325        voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 326        for (k = kern_memmap; k->start != ~0UL; k++) {
 327                if (k->attribute != attr)
 328                        continue;
 329                start = PAGE_ALIGN(k->start);
 330                end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 331                if (start < end)
 332                        if ((*callback)(start + voff, end + voff, arg) < 0)
 333                                return;
 334        }
 335}
 336
 337/*
 338 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 339 * descriptor that has memory that is available for OS use.
 340 */
 341void
 342efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 343{
 344        walk(callback, arg, EFI_MEMORY_WB);
 345}
 346
 347/*
 348 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 349 * descriptor that has memory that is available for uncached allocator.
 350 */
 351void
 352efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 353{
 354        walk(callback, arg, EFI_MEMORY_UC);
 355}
 356
 357/*
 358 * Look for the PAL_CODE region reported by EFI and map it using an
 359 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 360 * Abstraction Layer chapter 11 in ADAG
 361 */
 362void *
 363efi_get_pal_addr (void)
 364{
 365        void *efi_map_start, *efi_map_end, *p;
 366        efi_memory_desc_t *md;
 367        u64 efi_desc_size;
 368        int pal_code_count = 0;
 369        u64 vaddr, mask;
 370
 371        efi_map_start = __va(ia64_boot_param->efi_memmap);
 372        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 373        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 374
 375        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 376                md = p;
 377                if (md->type != EFI_PAL_CODE)
 378                        continue;
 379
 380                if (++pal_code_count > 1) {
 381                        printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 382                               "dropped @ %llx\n", md->phys_addr);
 383                        continue;
 384                }
 385                /*
 386                 * The only ITLB entry in region 7 that is used is the one
 387                 * installed by __start().  That entry covers a 64MB range.
 388                 */
 389                mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 390                vaddr = PAGE_OFFSET + md->phys_addr;
 391
 392                /*
 393                 * We must check that the PAL mapping won't overlap with the
 394                 * kernel mapping.
 395                 *
 396                 * PAL code is guaranteed to be aligned on a power of 2 between
 397                 * 4k and 256KB and that only one ITR is needed to map it. This
 398                 * implies that the PAL code is always aligned on its size,
 399                 * i.e., the closest matching page size supported by the TLB.
 400                 * Therefore PAL code is guaranteed never to cross a 64MB unless
 401                 * it is bigger than 64MB (very unlikely!).  So for now the
 402                 * following test is enough to determine whether or not we need
 403                 * a dedicated ITR for the PAL code.
 404                 */
 405                if ((vaddr & mask) == (KERNEL_START & mask)) {
 406                        printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 407                               __func__);
 408                        continue;
 409                }
 410
 411                if (efi_md_size(md) > IA64_GRANULE_SIZE)
 412                        panic("Whoa!  PAL code size bigger than a granule!");
 413
 414#if EFI_DEBUG
 415                mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 416
 417                printk(KERN_INFO "CPU %d: mapping PAL code "
 418                        "[0x%llx-0x%llx) into [0x%llx-0x%llx)\n",
 419                        smp_processor_id(), md->phys_addr,
 420                        md->phys_addr + efi_md_size(md),
 421                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 422#endif
 423                return __va(md->phys_addr);
 424        }
 425        printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 426               __func__);
 427        return NULL;
 428}
 429
 430
 431static u8 __init palo_checksum(u8 *buffer, u32 length)
 432{
 433        u8 sum = 0;
 434        u8 *end = buffer + length;
 435
 436        while (buffer < end)
 437                sum = (u8) (sum + *(buffer++));
 438
 439        return sum;
 440}
 441
 442/*
 443 * Parse and handle PALO table which is published at:
 444 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 445 */
 446static void __init handle_palo(unsigned long phys_addr)
 447{
 448        struct palo_table *palo = __va(phys_addr);
 449        u8  checksum;
 450
 451        if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 452                printk(KERN_INFO "PALO signature incorrect.\n");
 453                return;
 454        }
 455
 456        checksum = palo_checksum((u8 *)palo, palo->length);
 457        if (checksum) {
 458                printk(KERN_INFO "PALO checksum incorrect.\n");
 459                return;
 460        }
 461
 462        setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 463}
 464
 465void
 466efi_map_pal_code (void)
 467{
 468        void *pal_vaddr = efi_get_pal_addr ();
 469        u64 psr;
 470
 471        if (!pal_vaddr)
 472                return;
 473
 474        /*
 475         * Cannot write to CRx with PSR.ic=1
 476         */
 477        psr = ia64_clear_ic();
 478        ia64_itr(0x1, IA64_TR_PALCODE,
 479                 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 480                 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 481                 IA64_GRANULE_SHIFT);
 482        ia64_set_psr(psr);              /* restore psr */
 483}
 484
 485void __init
 486efi_init (void)
 487{
 488        const efi_system_table_t *efi_systab;
 489        void *efi_map_start, *efi_map_end;
 490        u64 efi_desc_size;
 491        char *cp;
 492
 493        set_bit(EFI_BOOT, &efi.flags);
 494        set_bit(EFI_64BIT, &efi.flags);
 495
 496        /*
 497         * It's too early to be able to use the standard kernel command line
 498         * support...
 499         */
 500        for (cp = boot_command_line; *cp; ) {
 501                if (memcmp(cp, "mem=", 4) == 0) {
 502                        mem_limit = memparse(cp + 4, &cp);
 503                } else if (memcmp(cp, "max_addr=", 9) == 0) {
 504                        max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 505                } else if (memcmp(cp, "min_addr=", 9) == 0) {
 506                        min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 507                } else {
 508                        while (*cp != ' ' && *cp)
 509                                ++cp;
 510                        while (*cp == ' ')
 511                                ++cp;
 512                }
 513        }
 514        if (min_addr != 0UL)
 515                printk(KERN_INFO "Ignoring memory below %lluMB\n",
 516                       min_addr >> 20);
 517        if (max_addr != ~0UL)
 518                printk(KERN_INFO "Ignoring memory above %lluMB\n",
 519                       max_addr >> 20);
 520
 521        efi_systab = __va(ia64_boot_param->efi_systab);
 522
 523        /*
 524         * Verify the EFI Table
 525         */
 526        if (efi_systab == NULL)
 527                panic("Whoa! Can't find EFI system table.\n");
 528        if (efi_systab_check_header(&efi_systab->hdr, 1))
 529                panic("Whoa! EFI system table signature incorrect\n");
 530
 531        efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
 532
 533        palo_phys      = EFI_INVALID_TABLE_ADDR;
 534
 535        if (efi_config_parse_tables(__va(efi_systab->tables),
 536                                    efi_systab->nr_tables,
 537                                    arch_tables) != 0)
 538                return;
 539
 540        if (palo_phys != EFI_INVALID_TABLE_ADDR)
 541                handle_palo(palo_phys);
 542
 543        runtime = __va(efi_systab->runtime);
 544        efi.get_time = phys_get_time;
 545        efi.set_time = phys_set_time;
 546        efi.get_wakeup_time = phys_get_wakeup_time;
 547        efi.set_wakeup_time = phys_set_wakeup_time;
 548        efi.get_variable = phys_get_variable;
 549        efi.get_next_variable = phys_get_next_variable;
 550        efi.set_variable = phys_set_variable;
 551        efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 552        efi.reset_system = phys_reset_system;
 553
 554        efi_map_start = __va(ia64_boot_param->efi_memmap);
 555        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 556        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 557
 558#if EFI_DEBUG
 559        /* print EFI memory map: */
 560        {
 561                efi_memory_desc_t *md;
 562                void *p;
 563                unsigned int i;
 564
 565                for (i = 0, p = efi_map_start; p < efi_map_end;
 566                     ++i, p += efi_desc_size)
 567                {
 568                        const char *unit;
 569                        unsigned long size;
 570                        char buf[64];
 571
 572                        md = p;
 573                        size = md->num_pages << EFI_PAGE_SHIFT;
 574
 575                        if ((size >> 40) > 0) {
 576                                size >>= 40;
 577                                unit = "TB";
 578                        } else if ((size >> 30) > 0) {
 579                                size >>= 30;
 580                                unit = "GB";
 581                        } else if ((size >> 20) > 0) {
 582                                size >>= 20;
 583                                unit = "MB";
 584                        } else {
 585                                size >>= 10;
 586                                unit = "KB";
 587                        }
 588
 589                        printk("mem%02d: %s "
 590                               "range=[0x%016llx-0x%016llx) (%4lu%s)\n",
 591                               i, efi_md_typeattr_format(buf, sizeof(buf), md),
 592                               md->phys_addr,
 593                               md->phys_addr + efi_md_size(md), size, unit);
 594                }
 595        }
 596#endif
 597
 598        efi_map_pal_code();
 599        efi_enter_virtual_mode();
 600}
 601
 602void
 603efi_enter_virtual_mode (void)
 604{
 605        void *efi_map_start, *efi_map_end, *p;
 606        efi_memory_desc_t *md;
 607        efi_status_t status;
 608        u64 efi_desc_size;
 609
 610        efi_map_start = __va(ia64_boot_param->efi_memmap);
 611        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 612        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 613
 614        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 615                md = p;
 616                if (md->attribute & EFI_MEMORY_RUNTIME) {
 617                        /*
 618                         * Some descriptors have multiple bits set, so the
 619                         * order of the tests is relevant.
 620                         */
 621                        if (md->attribute & EFI_MEMORY_WB) {
 622                                md->virt_addr = (u64) __va(md->phys_addr);
 623                        } else if (md->attribute & EFI_MEMORY_UC) {
 624                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 625                        } else if (md->attribute & EFI_MEMORY_WC) {
 626#if 0
 627                                md->virt_addr = ia64_remap(md->phys_addr,
 628                                                           (_PAGE_A |
 629                                                            _PAGE_P |
 630                                                            _PAGE_D |
 631                                                            _PAGE_MA_WC |
 632                                                            _PAGE_PL_0 |
 633                                                            _PAGE_AR_RW));
 634#else
 635                                printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 636                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 637#endif
 638                        } else if (md->attribute & EFI_MEMORY_WT) {
 639#if 0
 640                                md->virt_addr = ia64_remap(md->phys_addr,
 641                                                           (_PAGE_A |
 642                                                            _PAGE_P |
 643                                                            _PAGE_D |
 644                                                            _PAGE_MA_WT |
 645                                                            _PAGE_PL_0 |
 646                                                            _PAGE_AR_RW));
 647#else
 648                                printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 649                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 650#endif
 651                        }
 652                }
 653        }
 654
 655        status = efi_call_phys(__va(runtime->set_virtual_address_map),
 656                               ia64_boot_param->efi_memmap_size,
 657                               efi_desc_size,
 658                               ia64_boot_param->efi_memdesc_version,
 659                               ia64_boot_param->efi_memmap);
 660        if (status != EFI_SUCCESS) {
 661                printk(KERN_WARNING "warning: unable to switch EFI into "
 662                       "virtual mode (status=%lu)\n", status);
 663                return;
 664        }
 665
 666        set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 667
 668        /*
 669         * Now that EFI is in virtual mode, we call the EFI functions more
 670         * efficiently:
 671         */
 672        efi.get_time = virt_get_time;
 673        efi.set_time = virt_set_time;
 674        efi.get_wakeup_time = virt_get_wakeup_time;
 675        efi.set_wakeup_time = virt_set_wakeup_time;
 676        efi.get_variable = virt_get_variable;
 677        efi.get_next_variable = virt_get_next_variable;
 678        efi.set_variable = virt_set_variable;
 679        efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 680        efi.reset_system = virt_reset_system;
 681}
 682
 683/*
 684 * Walk the EFI memory map looking for the I/O port range.  There can only be
 685 * one entry of this type, other I/O port ranges should be described via ACPI.
 686 */
 687u64
 688efi_get_iobase (void)
 689{
 690        void *efi_map_start, *efi_map_end, *p;
 691        efi_memory_desc_t *md;
 692        u64 efi_desc_size;
 693
 694        efi_map_start = __va(ia64_boot_param->efi_memmap);
 695        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 696        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 697
 698        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 699                md = p;
 700                if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 701                        if (md->attribute & EFI_MEMORY_UC)
 702                                return md->phys_addr;
 703                }
 704        }
 705        return 0;
 706}
 707
 708static struct kern_memdesc *
 709kern_memory_descriptor (unsigned long phys_addr)
 710{
 711        struct kern_memdesc *md;
 712
 713        for (md = kern_memmap; md->start != ~0UL; md++) {
 714                if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 715                         return md;
 716        }
 717        return NULL;
 718}
 719
 720static efi_memory_desc_t *
 721efi_memory_descriptor (unsigned long phys_addr)
 722{
 723        void *efi_map_start, *efi_map_end, *p;
 724        efi_memory_desc_t *md;
 725        u64 efi_desc_size;
 726
 727        efi_map_start = __va(ia64_boot_param->efi_memmap);
 728        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 729        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 730
 731        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 732                md = p;
 733
 734                if (phys_addr - md->phys_addr < efi_md_size(md))
 735                         return md;
 736        }
 737        return NULL;
 738}
 739
 740static int
 741efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 742{
 743        void *efi_map_start, *efi_map_end, *p;
 744        efi_memory_desc_t *md;
 745        u64 efi_desc_size;
 746        unsigned long end;
 747
 748        efi_map_start = __va(ia64_boot_param->efi_memmap);
 749        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 750        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 751
 752        end = phys_addr + size;
 753
 754        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 755                md = p;
 756                if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 757                        return 1;
 758        }
 759        return 0;
 760}
 761
 762int
 763efi_mem_type (unsigned long phys_addr)
 764{
 765        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 766
 767        if (md)
 768                return md->type;
 769        return -EINVAL;
 770}
 771
 772u64
 773efi_mem_attributes (unsigned long phys_addr)
 774{
 775        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 776
 777        if (md)
 778                return md->attribute;
 779        return 0;
 780}
 781EXPORT_SYMBOL(efi_mem_attributes);
 782
 783u64
 784efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 785{
 786        unsigned long end = phys_addr + size;
 787        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 788        u64 attr;
 789
 790        if (!md)
 791                return 0;
 792
 793        /*
 794         * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 795         * the kernel that firmware needs this region mapped.
 796         */
 797        attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 798        do {
 799                unsigned long md_end = efi_md_end(md);
 800
 801                if (end <= md_end)
 802                        return attr;
 803
 804                md = efi_memory_descriptor(md_end);
 805                if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 806                        return 0;
 807        } while (md);
 808        return 0;       /* never reached */
 809}
 810
 811u64
 812kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 813{
 814        unsigned long end = phys_addr + size;
 815        struct kern_memdesc *md;
 816        u64 attr;
 817
 818        /*
 819         * This is a hack for ioremap calls before we set up kern_memmap.
 820         * Maybe we should do efi_memmap_init() earlier instead.
 821         */
 822        if (!kern_memmap) {
 823                attr = efi_mem_attribute(phys_addr, size);
 824                if (attr & EFI_MEMORY_WB)
 825                        return EFI_MEMORY_WB;
 826                return 0;
 827        }
 828
 829        md = kern_memory_descriptor(phys_addr);
 830        if (!md)
 831                return 0;
 832
 833        attr = md->attribute;
 834        do {
 835                unsigned long md_end = kmd_end(md);
 836
 837                if (end <= md_end)
 838                        return attr;
 839
 840                md = kern_memory_descriptor(md_end);
 841                if (!md || md->attribute != attr)
 842                        return 0;
 843        } while (md);
 844        return 0;       /* never reached */
 845}
 846
 847int
 848valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 849{
 850        u64 attr;
 851
 852        /*
 853         * /dev/mem reads and writes use copy_to_user(), which implicitly
 854         * uses a granule-sized kernel identity mapping.  It's really
 855         * only safe to do this for regions in kern_memmap.  For more
 856         * details, see Documentation/ia64/aliasing.rst.
 857         */
 858        attr = kern_mem_attribute(phys_addr, size);
 859        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 860                return 1;
 861        return 0;
 862}
 863
 864int
 865valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 866{
 867        unsigned long phys_addr = pfn << PAGE_SHIFT;
 868        u64 attr;
 869
 870        attr = efi_mem_attribute(phys_addr, size);
 871
 872        /*
 873         * /dev/mem mmap uses normal user pages, so we don't need the entire
 874         * granule, but the entire region we're mapping must support the same
 875         * attribute.
 876         */
 877        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 878                return 1;
 879
 880        /*
 881         * Intel firmware doesn't tell us about all the MMIO regions, so
 882         * in general we have to allow mmap requests.  But if EFI *does*
 883         * tell us about anything inside this region, we should deny it.
 884         * The user can always map a smaller region to avoid the overlap.
 885         */
 886        if (efi_memmap_intersects(phys_addr, size))
 887                return 0;
 888
 889        return 1;
 890}
 891
 892pgprot_t
 893phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 894                     pgprot_t vma_prot)
 895{
 896        unsigned long phys_addr = pfn << PAGE_SHIFT;
 897        u64 attr;
 898
 899        /*
 900         * For /dev/mem mmap, we use user mappings, but if the region is
 901         * in kern_memmap (and hence may be covered by a kernel mapping),
 902         * we must use the same attribute as the kernel mapping.
 903         */
 904        attr = kern_mem_attribute(phys_addr, size);
 905        if (attr & EFI_MEMORY_WB)
 906                return pgprot_cacheable(vma_prot);
 907        else if (attr & EFI_MEMORY_UC)
 908                return pgprot_noncached(vma_prot);
 909
 910        /*
 911         * Some chipsets don't support UC access to memory.  If
 912         * WB is supported, we prefer that.
 913         */
 914        if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 915                return pgprot_cacheable(vma_prot);
 916
 917        return pgprot_noncached(vma_prot);
 918}
 919
 920int __init
 921efi_uart_console_only(void)
 922{
 923        efi_status_t status;
 924        char *s, name[] = "ConOut";
 925        efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 926        efi_char16_t *utf16, name_utf16[32];
 927        unsigned char data[1024];
 928        unsigned long size = sizeof(data);
 929        struct efi_generic_dev_path *hdr, *end_addr;
 930        int uart = 0;
 931
 932        /* Convert to UTF-16 */
 933        utf16 = name_utf16;
 934        s = name;
 935        while (*s)
 936                *utf16++ = *s++ & 0x7f;
 937        *utf16 = 0;
 938
 939        status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 940        if (status != EFI_SUCCESS) {
 941                printk(KERN_ERR "No EFI %s variable?\n", name);
 942                return 0;
 943        }
 944
 945        hdr = (struct efi_generic_dev_path *) data;
 946        end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 947        while (hdr < end_addr) {
 948                if (hdr->type == EFI_DEV_MSG &&
 949                    hdr->sub_type == EFI_DEV_MSG_UART)
 950                        uart = 1;
 951                else if (hdr->type == EFI_DEV_END_PATH ||
 952                          hdr->type == EFI_DEV_END_PATH2) {
 953                        if (!uart)
 954                                return 0;
 955                        if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 956                                return 1;
 957                        uart = 0;
 958                }
 959                hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 960        }
 961        printk(KERN_ERR "Malformed %s value\n", name);
 962        return 0;
 963}
 964
 965/*
 966 * Look for the first granule aligned memory descriptor memory
 967 * that is big enough to hold EFI memory map. Make sure this
 968 * descriptor is at least granule sized so it does not get trimmed
 969 */
 970struct kern_memdesc *
 971find_memmap_space (void)
 972{
 973        u64     contig_low=0, contig_high=0;
 974        u64     as = 0, ae;
 975        void *efi_map_start, *efi_map_end, *p, *q;
 976        efi_memory_desc_t *md, *pmd = NULL, *check_md;
 977        u64     space_needed, efi_desc_size;
 978        unsigned long total_mem = 0;
 979
 980        efi_map_start = __va(ia64_boot_param->efi_memmap);
 981        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 982        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 983
 984        /*
 985         * Worst case: we need 3 kernel descriptors for each efi descriptor
 986         * (if every entry has a WB part in the middle, and UC head and tail),
 987         * plus one for the end marker.
 988         */
 989        space_needed = sizeof(kern_memdesc_t) *
 990                (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 991
 992        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 993                md = p;
 994                if (!efi_wb(md)) {
 995                        continue;
 996                }
 997                if (pmd == NULL || !efi_wb(pmd) ||
 998                    efi_md_end(pmd) != md->phys_addr) {
 999                        contig_low = GRANULEROUNDUP(md->phys_addr);
1000                        contig_high = efi_md_end(md);
1001                        for (q = p + efi_desc_size; q < efi_map_end;
1002                             q += efi_desc_size) {
1003                                check_md = q;
1004                                if (!efi_wb(check_md))
1005                                        break;
1006                                if (contig_high != check_md->phys_addr)
1007                                        break;
1008                                contig_high = efi_md_end(check_md);
1009                        }
1010                        contig_high = GRANULEROUNDDOWN(contig_high);
1011                }
1012                if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1013                        continue;
1014
1015                /* Round ends inward to granule boundaries */
1016                as = max(contig_low, md->phys_addr);
1017                ae = min(contig_high, efi_md_end(md));
1018
1019                /* keep within max_addr= and min_addr= command line arg */
1020                as = max(as, min_addr);
1021                ae = min(ae, max_addr);
1022                if (ae <= as)
1023                        continue;
1024
1025                /* avoid going over mem= command line arg */
1026                if (total_mem + (ae - as) > mem_limit)
1027                        ae -= total_mem + (ae - as) - mem_limit;
1028
1029                if (ae <= as)
1030                        continue;
1031
1032                if (ae - as > space_needed)
1033                        break;
1034        }
1035        if (p >= efi_map_end)
1036                panic("Can't allocate space for kernel memory descriptors");
1037
1038        return __va(as);
1039}
1040
1041/*
1042 * Walk the EFI memory map and gather all memory available for kernel
1043 * to use.  We can allocate partial granules only if the unavailable
1044 * parts exist, and are WB.
1045 */
1046unsigned long
1047efi_memmap_init(u64 *s, u64 *e)
1048{
1049        struct kern_memdesc *k, *prev = NULL;
1050        u64     contig_low=0, contig_high=0;
1051        u64     as, ae, lim;
1052        void *efi_map_start, *efi_map_end, *p, *q;
1053        efi_memory_desc_t *md, *pmd = NULL, *check_md;
1054        u64     efi_desc_size;
1055        unsigned long total_mem = 0;
1056
1057        k = kern_memmap = find_memmap_space();
1058
1059        efi_map_start = __va(ia64_boot_param->efi_memmap);
1060        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1061        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1062
1063        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1064                md = p;
1065                if (!efi_wb(md)) {
1066                        if (efi_uc(md) &&
1067                            (md->type == EFI_CONVENTIONAL_MEMORY ||
1068                             md->type == EFI_BOOT_SERVICES_DATA)) {
1069                                k->attribute = EFI_MEMORY_UC;
1070                                k->start = md->phys_addr;
1071                                k->num_pages = md->num_pages;
1072                                k++;
1073                        }
1074                        continue;
1075                }
1076                if (pmd == NULL || !efi_wb(pmd) ||
1077                    efi_md_end(pmd) != md->phys_addr) {
1078                        contig_low = GRANULEROUNDUP(md->phys_addr);
1079                        contig_high = efi_md_end(md);
1080                        for (q = p + efi_desc_size; q < efi_map_end;
1081                             q += efi_desc_size) {
1082                                check_md = q;
1083                                if (!efi_wb(check_md))
1084                                        break;
1085                                if (contig_high != check_md->phys_addr)
1086                                        break;
1087                                contig_high = efi_md_end(check_md);
1088                        }
1089                        contig_high = GRANULEROUNDDOWN(contig_high);
1090                }
1091                if (!is_memory_available(md))
1092                        continue;
1093
1094                /*
1095                 * Round ends inward to granule boundaries
1096                 * Give trimmings to uncached allocator
1097                 */
1098                if (md->phys_addr < contig_low) {
1099                        lim = min(efi_md_end(md), contig_low);
1100                        if (efi_uc(md)) {
1101                                if (k > kern_memmap &&
1102                                    (k-1)->attribute == EFI_MEMORY_UC &&
1103                                    kmd_end(k-1) == md->phys_addr) {
1104                                        (k-1)->num_pages +=
1105                                                (lim - md->phys_addr)
1106                                                >> EFI_PAGE_SHIFT;
1107                                } else {
1108                                        k->attribute = EFI_MEMORY_UC;
1109                                        k->start = md->phys_addr;
1110                                        k->num_pages = (lim - md->phys_addr)
1111                                                >> EFI_PAGE_SHIFT;
1112                                        k++;
1113                                }
1114                        }
1115                        as = contig_low;
1116                } else
1117                        as = md->phys_addr;
1118
1119                if (efi_md_end(md) > contig_high) {
1120                        lim = max(md->phys_addr, contig_high);
1121                        if (efi_uc(md)) {
1122                                if (lim == md->phys_addr && k > kern_memmap &&
1123                                    (k-1)->attribute == EFI_MEMORY_UC &&
1124                                    kmd_end(k-1) == md->phys_addr) {
1125                                        (k-1)->num_pages += md->num_pages;
1126                                } else {
1127                                        k->attribute = EFI_MEMORY_UC;
1128                                        k->start = lim;
1129                                        k->num_pages = (efi_md_end(md) - lim)
1130                                                >> EFI_PAGE_SHIFT;
1131                                        k++;
1132                                }
1133                        }
1134                        ae = contig_high;
1135                } else
1136                        ae = efi_md_end(md);
1137
1138                /* keep within max_addr= and min_addr= command line arg */
1139                as = max(as, min_addr);
1140                ae = min(ae, max_addr);
1141                if (ae <= as)
1142                        continue;
1143
1144                /* avoid going over mem= command line arg */
1145                if (total_mem + (ae - as) > mem_limit)
1146                        ae -= total_mem + (ae - as) - mem_limit;
1147
1148                if (ae <= as)
1149                        continue;
1150                if (prev && kmd_end(prev) == md->phys_addr) {
1151                        prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1152                        total_mem += ae - as;
1153                        continue;
1154                }
1155                k->attribute = EFI_MEMORY_WB;
1156                k->start = as;
1157                k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1158                total_mem += ae - as;
1159                prev = k++;
1160        }
1161        k->start = ~0L; /* end-marker */
1162
1163        /* reserve the memory we are using for kern_memmap */
1164        *s = (u64)kern_memmap;
1165        *e = (u64)++k;
1166
1167        return total_mem;
1168}
1169
1170void
1171efi_initialize_iomem_resources(struct resource *code_resource,
1172                               struct resource *data_resource,
1173                               struct resource *bss_resource)
1174{
1175        struct resource *res;
1176        void *efi_map_start, *efi_map_end, *p;
1177        efi_memory_desc_t *md;
1178        u64 efi_desc_size;
1179        char *name;
1180        unsigned long flags, desc;
1181
1182        efi_map_start = __va(ia64_boot_param->efi_memmap);
1183        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1184        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1185
1186        res = NULL;
1187
1188        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1189                md = p;
1190
1191                if (md->num_pages == 0) /* should not happen */
1192                        continue;
1193
1194                flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1195                desc = IORES_DESC_NONE;
1196
1197                switch (md->type) {
1198
1199                        case EFI_MEMORY_MAPPED_IO:
1200                        case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1201                                continue;
1202
1203                        case EFI_LOADER_CODE:
1204                        case EFI_LOADER_DATA:
1205                        case EFI_BOOT_SERVICES_DATA:
1206                        case EFI_BOOT_SERVICES_CODE:
1207                        case EFI_CONVENTIONAL_MEMORY:
1208                                if (md->attribute & EFI_MEMORY_WP) {
1209                                        name = "System ROM";
1210                                        flags |= IORESOURCE_READONLY;
1211                                } else if (md->attribute == EFI_MEMORY_UC) {
1212                                        name = "Uncached RAM";
1213                                } else {
1214                                        name = "System RAM";
1215                                        flags |= IORESOURCE_SYSRAM;
1216                                }
1217                                break;
1218
1219                        case EFI_ACPI_MEMORY_NVS:
1220                                name = "ACPI Non-volatile Storage";
1221                                desc = IORES_DESC_ACPI_NV_STORAGE;
1222                                break;
1223
1224                        case EFI_UNUSABLE_MEMORY:
1225                                name = "reserved";
1226                                flags |= IORESOURCE_DISABLED;
1227                                break;
1228
1229                        case EFI_PERSISTENT_MEMORY:
1230                                name = "Persistent Memory";
1231                                desc = IORES_DESC_PERSISTENT_MEMORY;
1232                                break;
1233
1234                        case EFI_RESERVED_TYPE:
1235                        case EFI_RUNTIME_SERVICES_CODE:
1236                        case EFI_RUNTIME_SERVICES_DATA:
1237                        case EFI_ACPI_RECLAIM_MEMORY:
1238                        default:
1239                                name = "reserved";
1240                                break;
1241                }
1242
1243                if ((res = kzalloc(sizeof(struct resource),
1244                                   GFP_KERNEL)) == NULL) {
1245                        printk(KERN_ERR
1246                               "failed to allocate resource for iomem\n");
1247                        return;
1248                }
1249
1250                res->name = name;
1251                res->start = md->phys_addr;
1252                res->end = md->phys_addr + efi_md_size(md) - 1;
1253                res->flags = flags;
1254                res->desc = desc;
1255
1256                if (insert_resource(&iomem_resource, res) < 0)
1257                        kfree(res);
1258                else {
1259                        /*
1260                         * We don't know which region contains
1261                         * kernel data so we try it repeatedly and
1262                         * let the resource manager test it.
1263                         */
1264                        insert_resource(res, code_resource);
1265                        insert_resource(res, data_resource);
1266                        insert_resource(res, bss_resource);
1267#ifdef CONFIG_KEXEC
1268                        insert_resource(res, &efi_memmap_res);
1269                        insert_resource(res, &boot_param_res);
1270                        if (crashk_res.end > crashk_res.start)
1271                                insert_resource(res, &crashk_res);
1272#endif
1273                }
1274        }
1275}
1276
1277#ifdef CONFIG_KEXEC
1278/* find a block of memory aligned to 64M exclude reserved regions
1279   rsvd_regions are sorted
1280 */
1281unsigned long __init
1282kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1283{
1284        int i;
1285        u64 start, end;
1286        u64 alignment = 1UL << _PAGE_SIZE_64M;
1287        void *efi_map_start, *efi_map_end, *p;
1288        efi_memory_desc_t *md;
1289        u64 efi_desc_size;
1290
1291        efi_map_start = __va(ia64_boot_param->efi_memmap);
1292        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1293        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1294
1295        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1296                md = p;
1297                if (!efi_wb(md))
1298                        continue;
1299                start = ALIGN(md->phys_addr, alignment);
1300                end = efi_md_end(md);
1301                for (i = 0; i < n; i++) {
1302                        if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1303                                if (__pa(r[i].start) > start + size)
1304                                        return start;
1305                                start = ALIGN(__pa(r[i].end), alignment);
1306                                if (i < n-1 &&
1307                                    __pa(r[i+1].start) < start + size)
1308                                        continue;
1309                                else
1310                                        break;
1311                        }
1312                }
1313                if (end > start + size)
1314                        return start;
1315        }
1316
1317        printk(KERN_WARNING
1318               "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1319        return ~0UL;
1320}
1321#endif
1322
1323#ifdef CONFIG_CRASH_DUMP
1324/* locate the size find a the descriptor at a certain address */
1325unsigned long __init
1326vmcore_find_descriptor_size (unsigned long address)
1327{
1328        void *efi_map_start, *efi_map_end, *p;
1329        efi_memory_desc_t *md;
1330        u64 efi_desc_size;
1331        unsigned long ret = 0;
1332
1333        efi_map_start = __va(ia64_boot_param->efi_memmap);
1334        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1335        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1336
1337        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1338                md = p;
1339                if (efi_wb(md) && md->type == EFI_LOADER_DATA
1340                    && md->phys_addr == address) {
1341                        ret = efi_md_size(md);
1342                        break;
1343                }
1344        }
1345
1346        if (ret == 0)
1347                printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1348
1349        return ret;
1350}
1351#endif
1352
1353char *efi_systab_show_arch(char *str)
1354{
1355        if (mps_phys != EFI_INVALID_TABLE_ADDR)
1356                str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1357        if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1358                str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1359        return str;
1360}
1361