linux/arch/ia64/kernel/time.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/arch/ia64/kernel/time.c
   4 *
   5 * Copyright (C) 1998-2003 Hewlett-Packard Co
   6 *      Stephane Eranian <eranian@hpl.hp.com>
   7 *      David Mosberger <davidm@hpl.hp.com>
   8 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
   9 * Copyright (C) 1999-2000 VA Linux Systems
  10 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  11 */
  12
  13#include <linux/cpu.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/profile.h>
  18#include <linux/sched.h>
  19#include <linux/time.h>
  20#include <linux/nmi.h>
  21#include <linux/interrupt.h>
  22#include <linux/efi.h>
  23#include <linux/timex.h>
  24#include <linux/timekeeper_internal.h>
  25#include <linux/platform_device.h>
  26#include <linux/sched/cputime.h>
  27
  28#include <asm/delay.h>
  29#include <asm/efi.h>
  30#include <asm/hw_irq.h>
  31#include <asm/ptrace.h>
  32#include <asm/sal.h>
  33#include <asm/sections.h>
  34
  35#include "fsyscall_gtod_data.h"
  36#include "irq.h"
  37
  38static u64 itc_get_cycles(struct clocksource *cs);
  39
  40struct fsyscall_gtod_data_t fsyscall_gtod_data;
  41
  42struct itc_jitter_data_t itc_jitter_data;
  43
  44volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  45
  46#ifdef CONFIG_IA64_DEBUG_IRQ
  47
  48unsigned long last_cli_ip;
  49EXPORT_SYMBOL(last_cli_ip);
  50
  51#endif
  52
  53static struct clocksource clocksource_itc = {
  54        .name           = "itc",
  55        .rating         = 350,
  56        .read           = itc_get_cycles,
  57        .mask           = CLOCKSOURCE_MASK(64),
  58        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
  59};
  60static struct clocksource *itc_clocksource;
  61
  62#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  63
  64#include <linux/kernel_stat.h>
  65
  66extern u64 cycle_to_nsec(u64 cyc);
  67
  68void vtime_flush(struct task_struct *tsk)
  69{
  70        struct thread_info *ti = task_thread_info(tsk);
  71        u64 delta;
  72
  73        if (ti->utime)
  74                account_user_time(tsk, cycle_to_nsec(ti->utime));
  75
  76        if (ti->gtime)
  77                account_guest_time(tsk, cycle_to_nsec(ti->gtime));
  78
  79        if (ti->idle_time)
  80                account_idle_time(cycle_to_nsec(ti->idle_time));
  81
  82        if (ti->stime) {
  83                delta = cycle_to_nsec(ti->stime);
  84                account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
  85        }
  86
  87        if (ti->hardirq_time) {
  88                delta = cycle_to_nsec(ti->hardirq_time);
  89                account_system_index_time(tsk, delta, CPUTIME_IRQ);
  90        }
  91
  92        if (ti->softirq_time) {
  93                delta = cycle_to_nsec(ti->softirq_time);
  94                account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
  95        }
  96
  97        ti->utime = 0;
  98        ti->gtime = 0;
  99        ti->idle_time = 0;
 100        ti->stime = 0;
 101        ti->hardirq_time = 0;
 102        ti->softirq_time = 0;
 103}
 104
 105/*
 106 * Called from the context switch with interrupts disabled, to charge all
 107 * accumulated times to the current process, and to prepare accounting on
 108 * the next process.
 109 */
 110void arch_vtime_task_switch(struct task_struct *prev)
 111{
 112        struct thread_info *pi = task_thread_info(prev);
 113        struct thread_info *ni = task_thread_info(current);
 114
 115        ni->ac_stamp = pi->ac_stamp;
 116        ni->ac_stime = ni->ac_utime = 0;
 117}
 118
 119/*
 120 * Account time for a transition between system, hard irq or soft irq state.
 121 * Note that this function is called with interrupts enabled.
 122 */
 123static __u64 vtime_delta(struct task_struct *tsk)
 124{
 125        struct thread_info *ti = task_thread_info(tsk);
 126        __u64 now, delta_stime;
 127
 128        WARN_ON_ONCE(!irqs_disabled());
 129
 130        now = ia64_get_itc();
 131        delta_stime = now - ti->ac_stamp;
 132        ti->ac_stamp = now;
 133
 134        return delta_stime;
 135}
 136
 137void vtime_account_kernel(struct task_struct *tsk)
 138{
 139        struct thread_info *ti = task_thread_info(tsk);
 140        __u64 stime = vtime_delta(tsk);
 141
 142        if (tsk->flags & PF_VCPU)
 143                ti->gtime += stime;
 144        else
 145                ti->stime += stime;
 146}
 147EXPORT_SYMBOL_GPL(vtime_account_kernel);
 148
 149void vtime_account_idle(struct task_struct *tsk)
 150{
 151        struct thread_info *ti = task_thread_info(tsk);
 152
 153        ti->idle_time += vtime_delta(tsk);
 154}
 155
 156void vtime_account_softirq(struct task_struct *tsk)
 157{
 158        struct thread_info *ti = task_thread_info(tsk);
 159
 160        ti->softirq_time += vtime_delta(tsk);
 161}
 162
 163void vtime_account_hardirq(struct task_struct *tsk)
 164{
 165        struct thread_info *ti = task_thread_info(tsk);
 166
 167        ti->hardirq_time += vtime_delta(tsk);
 168}
 169
 170#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 171
 172static irqreturn_t
 173timer_interrupt (int irq, void *dev_id)
 174{
 175        unsigned long new_itm;
 176
 177        if (cpu_is_offline(smp_processor_id())) {
 178                return IRQ_HANDLED;
 179        }
 180
 181        new_itm = local_cpu_data->itm_next;
 182
 183        if (!time_after(ia64_get_itc(), new_itm))
 184                printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
 185                       ia64_get_itc(), new_itm);
 186
 187        while (1) {
 188                new_itm += local_cpu_data->itm_delta;
 189
 190                legacy_timer_tick(smp_processor_id() == time_keeper_id);
 191
 192                local_cpu_data->itm_next = new_itm;
 193
 194                if (time_after(new_itm, ia64_get_itc()))
 195                        break;
 196
 197                /*
 198                 * Allow IPIs to interrupt the timer loop.
 199                 */
 200                local_irq_enable();
 201                local_irq_disable();
 202        }
 203
 204        do {
 205                /*
 206                 * If we're too close to the next clock tick for
 207                 * comfort, we increase the safety margin by
 208                 * intentionally dropping the next tick(s).  We do NOT
 209                 * update itm.next because that would force us to call
 210                 * xtime_update() which in turn would let our clock run
 211                 * too fast (with the potentially devastating effect
 212                 * of losing monotony of time).
 213                 */
 214                while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
 215                        new_itm += local_cpu_data->itm_delta;
 216                ia64_set_itm(new_itm);
 217                /* double check, in case we got hit by a (slow) PMI: */
 218        } while (time_after_eq(ia64_get_itc(), new_itm));
 219        return IRQ_HANDLED;
 220}
 221
 222/*
 223 * Encapsulate access to the itm structure for SMP.
 224 */
 225void
 226ia64_cpu_local_tick (void)
 227{
 228        int cpu = smp_processor_id();
 229        unsigned long shift = 0, delta;
 230
 231        /* arrange for the cycle counter to generate a timer interrupt: */
 232        ia64_set_itv(IA64_TIMER_VECTOR);
 233
 234        delta = local_cpu_data->itm_delta;
 235        /*
 236         * Stagger the timer tick for each CPU so they don't occur all at (almost) the
 237         * same time:
 238         */
 239        if (cpu) {
 240                unsigned long hi = 1UL << ia64_fls(cpu);
 241                shift = (2*(cpu - hi) + 1) * delta/hi/2;
 242        }
 243        local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
 244        ia64_set_itm(local_cpu_data->itm_next);
 245}
 246
 247static int nojitter;
 248
 249static int __init nojitter_setup(char *str)
 250{
 251        nojitter = 1;
 252        printk("Jitter checking for ITC timers disabled\n");
 253        return 1;
 254}
 255
 256__setup("nojitter", nojitter_setup);
 257
 258
 259void ia64_init_itm(void)
 260{
 261        unsigned long platform_base_freq, itc_freq;
 262        struct pal_freq_ratio itc_ratio, proc_ratio;
 263        long status, platform_base_drift, itc_drift;
 264
 265        /*
 266         * According to SAL v2.6, we need to use a SAL call to determine the platform base
 267         * frequency and then a PAL call to determine the frequency ratio between the ITC
 268         * and the base frequency.
 269         */
 270        status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
 271                                    &platform_base_freq, &platform_base_drift);
 272        if (status != 0) {
 273                printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
 274        } else {
 275                status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
 276                if (status != 0)
 277                        printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
 278        }
 279        if (status != 0) {
 280                /* invent "random" values */
 281                printk(KERN_ERR
 282                       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
 283                platform_base_freq = 100000000;
 284                platform_base_drift = -1;       /* no drift info */
 285                itc_ratio.num = 3;
 286                itc_ratio.den = 1;
 287        }
 288        if (platform_base_freq < 40000000) {
 289                printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
 290                       platform_base_freq);
 291                platform_base_freq = 75000000;
 292                platform_base_drift = -1;
 293        }
 294        if (!proc_ratio.den)
 295                proc_ratio.den = 1;     /* avoid division by zero */
 296        if (!itc_ratio.den)
 297                itc_ratio.den = 1;      /* avoid division by zero */
 298
 299        itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
 300
 301        local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
 302        printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
 303               "ITC freq=%lu.%03luMHz", smp_processor_id(),
 304               platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
 305               itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
 306
 307        if (platform_base_drift != -1) {
 308                itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
 309                printk("+/-%ldppm\n", itc_drift);
 310        } else {
 311                itc_drift = -1;
 312                printk("\n");
 313        }
 314
 315        local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
 316        local_cpu_data->itc_freq = itc_freq;
 317        local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
 318        local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
 319                                        + itc_freq/2)/itc_freq;
 320
 321        if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 322#ifdef CONFIG_SMP
 323                /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
 324                 * Jitter compensation requires a cmpxchg which may limit
 325                 * the scalability of the syscalls for retrieving time.
 326                 * The ITC synchronization is usually successful to within a few
 327                 * ITC ticks but this is not a sure thing. If you need to improve
 328                 * timer performance in SMP situations then boot the kernel with the
 329                 * "nojitter" option. However, doing so may result in time fluctuating (maybe
 330                 * even going backward) if the ITC offsets between the individual CPUs
 331                 * are too large.
 332                 */
 333                if (!nojitter)
 334                        itc_jitter_data.itc_jitter = 1;
 335#endif
 336        } else
 337                /*
 338                 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
 339                 * ITC values may fluctuate significantly between processors.
 340                 * Clock should not be used for hrtimers. Mark itc as only
 341                 * useful for boot and testing.
 342                 *
 343                 * Note that jitter compensation is off! There is no point of
 344                 * synchronizing ITCs since they may be large differentials
 345                 * that change over time.
 346                 *
 347                 * The only way to fix this would be to repeatedly sync the
 348                 * ITCs. Until that time we have to avoid ITC.
 349                 */
 350                clocksource_itc.rating = 50;
 351
 352        /* avoid softlock up message when cpu is unplug and plugged again. */
 353        touch_softlockup_watchdog();
 354
 355        /* Setup the CPU local timer tick */
 356        ia64_cpu_local_tick();
 357
 358        if (!itc_clocksource) {
 359                clocksource_register_hz(&clocksource_itc,
 360                                                local_cpu_data->itc_freq);
 361                itc_clocksource = &clocksource_itc;
 362        }
 363}
 364
 365static u64 itc_get_cycles(struct clocksource *cs)
 366{
 367        unsigned long lcycle, now, ret;
 368
 369        if (!itc_jitter_data.itc_jitter)
 370                return get_cycles();
 371
 372        lcycle = itc_jitter_data.itc_lastcycle;
 373        now = get_cycles();
 374        if (lcycle && time_after(lcycle, now))
 375                return lcycle;
 376
 377        /*
 378         * Keep track of the last timer value returned.
 379         * In an SMP environment, you could lose out in contention of
 380         * cmpxchg. If so, your cmpxchg returns new value which the
 381         * winner of contention updated to. Use the new value instead.
 382         */
 383        ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
 384        if (unlikely(ret != lcycle))
 385                return ret;
 386
 387        return now;
 388}
 389
 390void read_persistent_clock64(struct timespec64 *ts)
 391{
 392        efi_gettimeofday(ts);
 393}
 394
 395void __init
 396time_init (void)
 397{
 398        register_percpu_irq(IA64_TIMER_VECTOR, timer_interrupt, IRQF_IRQPOLL,
 399                            "timer");
 400        ia64_init_itm();
 401}
 402
 403/*
 404 * Generic udelay assumes that if preemption is allowed and the thread
 405 * migrates to another CPU, that the ITC values are synchronized across
 406 * all CPUs.
 407 */
 408static void
 409ia64_itc_udelay (unsigned long usecs)
 410{
 411        unsigned long start = ia64_get_itc();
 412        unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
 413
 414        while (time_before(ia64_get_itc(), end))
 415                cpu_relax();
 416}
 417
 418void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
 419
 420void
 421udelay (unsigned long usecs)
 422{
 423        (*ia64_udelay)(usecs);
 424}
 425EXPORT_SYMBOL(udelay);
 426
 427/* IA64 doesn't cache the timezone */
 428void update_vsyscall_tz(void)
 429{
 430}
 431
 432void update_vsyscall(struct timekeeper *tk)
 433{
 434        write_seqcount_begin(&fsyscall_gtod_data.seq);
 435
 436        /* copy vsyscall data */
 437        fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
 438        fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
 439        fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
 440        fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
 441        fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
 442
 443        fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
 444        fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
 445
 446        fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
 447                                              + tk->wall_to_monotonic.tv_sec;
 448        fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
 449                                                + ((u64)tk->wall_to_monotonic.tv_nsec
 450                                                        << tk->tkr_mono.shift);
 451
 452        /* normalize */
 453        while (fsyscall_gtod_data.monotonic_time.snsec >=
 454                                        (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
 455                fsyscall_gtod_data.monotonic_time.snsec -=
 456                                        ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
 457                fsyscall_gtod_data.monotonic_time.sec++;
 458        }
 459
 460        write_seqcount_end(&fsyscall_gtod_data.seq);
 461}
 462
 463