linux/arch/ia64/lib/clear_user.S
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * This routine clears to zero a linear memory buffer in user space.
   4 *
   5 * Inputs:
   6 *      in0:    address of buffer
   7 *      in1:    length of buffer in bytes
   8 * Outputs:
   9 *      r8:     number of bytes that didn't get cleared due to a fault
  10 *
  11 * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co
  12 *      Stephane Eranian <eranian@hpl.hp.com>
  13 */
  14
  15#include <asm/asmmacro.h>
  16#include <asm/export.h>
  17
  18//
  19// arguments
  20//
  21#define buf             r32
  22#define len             r33
  23
  24//
  25// local registers
  26//
  27#define cnt             r16
  28#define buf2            r17
  29#define saved_lc        r18
  30#define saved_pfs       r19
  31#define tmp             r20
  32#define len2            r21
  33#define len3            r22
  34
  35//
  36// Theory of operations:
  37//      - we check whether or not the buffer is small, i.e., less than 17
  38//        in which case we do the byte by byte loop.
  39//
  40//      - Otherwise we go progressively from 1 byte store to 8byte store in
  41//        the head part, the body is a 16byte store loop and we finish we the
  42//        tail for the last 15 bytes.
  43//        The good point about this breakdown is that the long buffer handling
  44//        contains only 2 branches.
  45//
  46//      The reason for not using shifting & masking for both the head and the
  47//      tail is to stay semantically correct. This routine is not supposed
  48//      to write bytes outside of the buffer. While most of the time this would
  49//      be ok, we can't tolerate a mistake. A classical example is the case
  50//      of multithreaded code were to the extra bytes touched is actually owned
  51//      by another thread which runs concurrently to ours. Another, less likely,
  52//      example is with device drivers where reading an I/O mapped location may
  53//      have side effects (same thing for writing).
  54//
  55
  56GLOBAL_ENTRY(__do_clear_user)
  57        .prologue
  58        .save ar.pfs, saved_pfs
  59        alloc   saved_pfs=ar.pfs,2,0,0,0
  60        cmp.eq p6,p0=r0,len             // check for zero length
  61        .save ar.lc, saved_lc
  62        mov saved_lc=ar.lc              // preserve ar.lc (slow)
  63        .body
  64        ;;                              // avoid WAW on CFM
  65        adds tmp=-1,len                 // br.ctop is repeat/until
  66        mov ret0=len                    // return value is length at this point
  67(p6)    br.ret.spnt.many rp
  68        ;;
  69        cmp.lt p6,p0=16,len             // if len > 16 then long memset
  70        mov ar.lc=tmp                   // initialize lc for small count
  71(p6)    br.cond.dptk .long_do_clear
  72        ;;                              // WAR on ar.lc
  73        //
  74        // worst case 16 iterations, avg 8 iterations
  75        //
  76        // We could have played with the predicates to use the extra
  77        // M slot for 2 stores/iteration but the cost the initialization
  78        // the various counters compared to how long the loop is supposed
  79        // to last on average does not make this solution viable.
  80        //
  811:
  82        EX( .Lexit1, st1 [buf]=r0,1 )
  83        adds len=-1,len                 // countdown length using len
  84        br.cloop.dptk 1b
  85        ;;                              // avoid RAW on ar.lc
  86        //
  87        // .Lexit4: comes from byte by byte loop
  88        //          len contains bytes left
  89.Lexit1:
  90        mov ret0=len                    // faster than using ar.lc
  91        mov ar.lc=saved_lc
  92        br.ret.sptk.many rp             // end of short clear_user
  93
  94
  95        //
  96        // At this point we know we have more than 16 bytes to copy
  97        // so we focus on alignment (no branches required)
  98        //
  99        // The use of len/len2 for countdown of the number of bytes left
 100        // instead of ret0 is due to the fact that the exception code
 101        // changes the values of r8.
 102        //
 103.long_do_clear:
 104        tbit.nz p6,p0=buf,0             // odd alignment (for long_do_clear)
 105        ;;
 106        EX( .Lexit3, (p6) st1 [buf]=r0,1 )      // 1-byte aligned
 107(p6)    adds len=-1,len;;               // sync because buf is modified
 108        tbit.nz p6,p0=buf,1
 109        ;;
 110        EX( .Lexit3, (p6) st2 [buf]=r0,2 )      // 2-byte aligned
 111(p6)    adds len=-2,len;;
 112        tbit.nz p6,p0=buf,2
 113        ;;
 114        EX( .Lexit3, (p6) st4 [buf]=r0,4 )      // 4-byte aligned
 115(p6)    adds len=-4,len;;
 116        tbit.nz p6,p0=buf,3
 117        ;;
 118        EX( .Lexit3, (p6) st8 [buf]=r0,8 )      // 8-byte aligned
 119(p6)    adds len=-8,len;;
 120        shr.u cnt=len,4         // number of 128-bit (2x64bit) words
 121        ;;
 122        cmp.eq p6,p0=r0,cnt
 123        adds tmp=-1,cnt
 124(p6)    br.cond.dpnt .dotail            // we have less than 16 bytes left
 125        ;;
 126        adds buf2=8,buf                 // setup second base pointer
 127        mov ar.lc=tmp
 128        ;;
 129
 130        //
 131        // 16bytes/iteration core loop
 132        //
 133        // The second store can never generate a fault because
 134        // we come into the loop only when we are 16-byte aligned.
 135        // This means that if we cross a page then it will always be
 136        // in the first store and never in the second.
 137        //
 138        //
 139        // We need to keep track of the remaining length. A possible (optimistic)
 140        // way would be to use ar.lc and derive how many byte were left by
 141        // doing : left= 16*ar.lc + 16.  this would avoid the addition at
 142        // every iteration.
 143        // However we need to keep the synchronization point. A template
 144        // M;;MB does not exist and thus we can keep the addition at no
 145        // extra cycle cost (use a nop slot anyway). It also simplifies the
 146        // (unlikely)  error recovery code
 147        //
 148
 1492:      EX(.Lexit3, st8 [buf]=r0,16 )
 150        ;;                              // needed to get len correct when error
 151        st8 [buf2]=r0,16
 152        adds len=-16,len
 153        br.cloop.dptk 2b
 154        ;;
 155        mov ar.lc=saved_lc
 156        //
 157        // tail correction based on len only
 158        //
 159        // We alternate the use of len3,len2 to allow parallelism and correct
 160        // error handling. We also reuse p6/p7 to return correct value.
 161        // The addition of len2/len3 does not cost anything more compared to
 162        // the regular memset as we had empty slots.
 163        //
 164.dotail:
 165        mov len2=len                    // for parallelization of error handling
 166        mov len3=len
 167        tbit.nz p6,p0=len,3
 168        ;;
 169        EX( .Lexit2, (p6) st8 [buf]=r0,8 )      // at least 8 bytes
 170(p6)    adds len3=-8,len2
 171        tbit.nz p7,p6=len,2
 172        ;;
 173        EX( .Lexit2, (p7) st4 [buf]=r0,4 )      // at least 4 bytes
 174(p7)    adds len2=-4,len3
 175        tbit.nz p6,p7=len,1
 176        ;;
 177        EX( .Lexit2, (p6) st2 [buf]=r0,2 )      // at least 2 bytes
 178(p6)    adds len3=-2,len2
 179        tbit.nz p7,p6=len,0
 180        ;;
 181        EX( .Lexit2, (p7) st1 [buf]=r0 )        // only 1 byte left
 182        mov ret0=r0                             // success
 183        br.ret.sptk.many rp                     // end of most likely path
 184
 185        //
 186        // Outlined error handling code
 187        //
 188
 189        //
 190        // .Lexit3: comes from core loop, need restore pr/lc
 191        //          len contains bytes left
 192        //
 193        //
 194        // .Lexit2:
 195        //      if p6 -> coming from st8 or st2 : len2 contains what's left
 196        //      if p7 -> coming from st4 or st1 : len3 contains what's left
 197        // We must restore lc/pr even though might not have been used.
 198.Lexit2:
 199        .pred.rel "mutex", p6, p7
 200(p6)    mov len=len2
 201(p7)    mov len=len3
 202        ;;
 203        //
 204        // .Lexit4: comes from head, need not restore pr/lc
 205        //          len contains bytes left
 206        //
 207.Lexit3:
 208        mov ret0=len
 209        mov ar.lc=saved_lc
 210        br.ret.sptk.many rp
 211END(__do_clear_user)
 212EXPORT_SYMBOL(__do_clear_user)
 213