linux/arch/ia64/lib/copy_user.S
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *
   4 * Optimized version of the copy_user() routine.
   5 * It is used to copy date across the kernel/user boundary.
   6 *
   7 * The source and destination are always on opposite side of
   8 * the boundary. When reading from user space we must catch
   9 * faults on loads. When writing to user space we must catch
  10 * errors on stores. Note that because of the nature of the copy
  11 * we don't need to worry about overlapping regions.
  12 *
  13 *
  14 * Inputs:
  15 *      in0     address of source buffer
  16 *      in1     address of destination buffer
  17 *      in2     number of bytes to copy
  18 *
  19 * Outputs:
  20 *      ret0    0 in case of success. The number of bytes NOT copied in
  21 *              case of error.
  22 *
  23 * Copyright (C) 2000-2001 Hewlett-Packard Co
  24 *      Stephane Eranian <eranian@hpl.hp.com>
  25 *
  26 * Fixme:
  27 *      - handle the case where we have more than 16 bytes and the alignment
  28 *        are different.
  29 *      - more benchmarking
  30 *      - fix extraneous stop bit introduced by the EX() macro.
  31 */
  32
  33#include <asm/asmmacro.h>
  34#include <asm/export.h>
  35
  36//
  37// Tuneable parameters
  38//
  39#define COPY_BREAK      16      // we do byte copy below (must be >=16)
  40#define PIPE_DEPTH      21      // pipe depth
  41
  42#define EPI             p[PIPE_DEPTH-1]
  43
  44//
  45// arguments
  46//
  47#define dst             in0
  48#define src             in1
  49#define len             in2
  50
  51//
  52// local registers
  53//
  54#define t1              r2      // rshift in bytes
  55#define t2              r3      // lshift in bytes
  56#define rshift          r14     // right shift in bits
  57#define lshift          r15     // left shift in bits
  58#define word1           r16
  59#define word2           r17
  60#define cnt             r18
  61#define len2            r19
  62#define saved_lc        r20
  63#define saved_pr        r21
  64#define tmp             r22
  65#define val             r23
  66#define src1            r24
  67#define dst1            r25
  68#define src2            r26
  69#define dst2            r27
  70#define len1            r28
  71#define enddst          r29
  72#define endsrc          r30
  73#define saved_pfs       r31
  74
  75GLOBAL_ENTRY(__copy_user)
  76        .prologue
  77        .save ar.pfs, saved_pfs
  78        alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)
  79
  80        .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
  81        .rotp p[PIPE_DEPTH]
  82
  83        adds len2=-1,len        // br.ctop is repeat/until
  84        mov ret0=r0
  85
  86        ;;                      // RAW of cfm when len=0
  87        cmp.eq p8,p0=r0,len     // check for zero length
  88        .save ar.lc, saved_lc
  89        mov saved_lc=ar.lc      // preserve ar.lc (slow)
  90(p8)    br.ret.spnt.many rp     // empty mempcy()
  91        ;;
  92        add enddst=dst,len      // first byte after end of source
  93        add endsrc=src,len      // first byte after end of destination
  94        .save pr, saved_pr
  95        mov saved_pr=pr         // preserve predicates
  96
  97        .body
  98
  99        mov dst1=dst            // copy because of rotation
 100        mov ar.ec=PIPE_DEPTH
 101        mov pr.rot=1<<16        // p16=true all others are false
 102
 103        mov src1=src            // copy because of rotation
 104        mov ar.lc=len2          // initialize lc for small count
 105        cmp.lt p10,p7=COPY_BREAK,len    // if len > COPY_BREAK then long copy
 106
 107        xor tmp=src,dst         // same alignment test prepare
 108(p10)   br.cond.dptk .long_copy_user
 109        ;;                      // RAW pr.rot/p16 ?
 110        //
 111        // Now we do the byte by byte loop with software pipeline
 112        //
 113        // p7 is necessarily false by now
 1141:
 115        EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
 116        EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
 117        br.ctop.dptk.few 1b
 118        ;;
 119        mov ar.lc=saved_lc
 120        mov pr=saved_pr,0xffffffffffff0000
 121        mov ar.pfs=saved_pfs            // restore ar.ec
 122        br.ret.sptk.many rp             // end of short memcpy
 123
 124        //
 125        // Not 8-byte aligned
 126        //
 127.diff_align_copy_user:
 128        // At this point we know we have more than 16 bytes to copy
 129        // and also that src and dest do _not_ have the same alignment.
 130        and src2=0x7,src1                               // src offset
 131        and dst2=0x7,dst1                               // dst offset
 132        ;;
 133        // The basic idea is that we copy byte-by-byte at the head so
 134        // that we can reach 8-byte alignment for both src1 and dst1.
 135        // Then copy the body using software pipelined 8-byte copy,
 136        // shifting the two back-to-back words right and left, then copy
 137        // the tail by copying byte-by-byte.
 138        //
 139        // Fault handling. If the byte-by-byte at the head fails on the
 140        // load, then restart and finish the pipleline by copying zeros
 141        // to the dst1. Then copy zeros for the rest of dst1.
 142        // If 8-byte software pipeline fails on the load, do the same as
 143        // failure_in3 does. If the byte-by-byte at the tail fails, it is
 144        // handled simply by failure_in_pipe1.
 145        //
 146        // The case p14 represents the source has more bytes in the
 147        // the first word (by the shifted part), whereas the p15 needs to
 148        // copy some bytes from the 2nd word of the source that has the
 149        // tail of the 1st of the destination.
 150        //
 151
 152        //
 153        // Optimization. If dst1 is 8-byte aligned (quite common), we don't need
 154        // to copy the head to dst1, to start 8-byte copy software pipeline.
 155        // We know src1 is not 8-byte aligned in this case.
 156        //
 157        cmp.eq p14,p15=r0,dst2
 158(p15)   br.cond.spnt 1f
 159        ;;
 160        sub t1=8,src2
 161        mov t2=src2
 162        ;;
 163        shl rshift=t2,3
 164        sub len1=len,t1                                 // set len1
 165        ;;
 166        sub lshift=64,rshift
 167        ;;
 168        br.cond.spnt .word_copy_user
 169        ;;
 1701:
 171        cmp.leu p14,p15=src2,dst2
 172        sub t1=dst2,src2
 173        ;;
 174        .pred.rel "mutex", p14, p15
 175(p14)   sub word1=8,src2                                // (8 - src offset)
 176(p15)   sub t1=r0,t1                                    // absolute value
 177(p15)   sub word1=8,dst2                                // (8 - dst offset)
 178        ;;
 179        // For the case p14, we don't need to copy the shifted part to
 180        // the 1st word of destination.
 181        sub t2=8,t1
 182(p14)   sub word1=word1,t1
 183        ;;
 184        sub len1=len,word1                              // resulting len
 185(p15)   shl rshift=t1,3                                 // in bits
 186(p14)   shl rshift=t2,3
 187        ;;
 188(p14)   sub len1=len1,t1
 189        adds cnt=-1,word1
 190        ;;
 191        sub lshift=64,rshift
 192        mov ar.ec=PIPE_DEPTH
 193        mov pr.rot=1<<16        // p16=true all others are false
 194        mov ar.lc=cnt
 195        ;;
 1962:
 197        EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1)
 198        EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
 199        br.ctop.dptk.few 2b
 200        ;;
 201        clrrrb
 202        ;;
 203.word_copy_user:
 204        cmp.gtu p9,p0=16,len1
 205(p9)    br.cond.spnt 4f                 // if (16 > len1) skip 8-byte copy
 206        ;;
 207        shr.u cnt=len1,3                // number of 64-bit words
 208        ;;
 209        adds cnt=-1,cnt
 210        ;;
 211        .pred.rel "mutex", p14, p15
 212(p14)   sub src1=src1,t2
 213(p15)   sub src1=src1,t1
 214        //
 215        // Now both src1 and dst1 point to an 8-byte aligned address. And
 216        // we have more than 8 bytes to copy.
 217        //
 218        mov ar.lc=cnt
 219        mov ar.ec=PIPE_DEPTH
 220        mov pr.rot=1<<16        // p16=true all others are false
 221        ;;
 2223:
 223        //
 224        // The pipleline consists of 3 stages:
 225        // 1 (p16):     Load a word from src1
 226        // 2 (EPI_1):   Shift right pair, saving to tmp
 227        // 3 (EPI):     Store tmp to dst1
 228        //
 229        // To make it simple, use at least 2 (p16) loops to set up val1[n]
 230        // because we need 2 back-to-back val1[] to get tmp.
 231        // Note that this implies EPI_2 must be p18 or greater.
 232        //
 233
 234#define EPI_1           p[PIPE_DEPTH-2]
 235#define SWITCH(pred, shift)     cmp.eq pred,p0=shift,rshift
 236#define CASE(pred, shift)       \
 237        (pred)  br.cond.spnt .copy_user_bit##shift
 238#define BODY(rshift)                                            \
 239.copy_user_bit##rshift:                                         \
 2401:                                                              \
 241        EX(.failure_out,(EPI) st8 [dst1]=tmp,8);                \
 242(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;  \
 243        EX(3f,(p16) ld8 val1[1]=[src1],8);                      \
 244(p16)   mov val1[0]=r0;                                         \
 245        br.ctop.dptk 1b;                                        \
 246        ;;                                                      \
 247        br.cond.sptk.many .diff_align_do_tail;                  \
 2482:                                                              \
 249(EPI)   st8 [dst1]=tmp,8;                                       \
 250(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;  \
 2513:                                                              \
 252(p16)   mov val1[1]=r0;                                         \
 253(p16)   mov val1[0]=r0;                                         \
 254        br.ctop.dptk 2b;                                        \
 255        ;;                                                      \
 256        br.cond.sptk.many .failure_in2
 257
 258        //
 259        // Since the instruction 'shrp' requires a fixed 128-bit value
 260        // specifying the bits to shift, we need to provide 7 cases
 261        // below.
 262        //
 263        SWITCH(p6, 8)
 264        SWITCH(p7, 16)
 265        SWITCH(p8, 24)
 266        SWITCH(p9, 32)
 267        SWITCH(p10, 40)
 268        SWITCH(p11, 48)
 269        SWITCH(p12, 56)
 270        ;;
 271        CASE(p6, 8)
 272        CASE(p7, 16)
 273        CASE(p8, 24)
 274        CASE(p9, 32)
 275        CASE(p10, 40)
 276        CASE(p11, 48)
 277        CASE(p12, 56)
 278        ;;
 279        BODY(8)
 280        BODY(16)
 281        BODY(24)
 282        BODY(32)
 283        BODY(40)
 284        BODY(48)
 285        BODY(56)
 286        ;;
 287.diff_align_do_tail:
 288        .pred.rel "mutex", p14, p15
 289(p14)   sub src1=src1,t1
 290(p14)   adds dst1=-8,dst1
 291(p15)   sub dst1=dst1,t1
 292        ;;
 2934:
 294        // Tail correction.
 295        //
 296        // The problem with this piplelined loop is that the last word is not
 297        // loaded and thus parf of the last word written is not correct.
 298        // To fix that, we simply copy the tail byte by byte.
 299
 300        sub len1=endsrc,src1,1
 301        clrrrb
 302        ;;
 303        mov ar.ec=PIPE_DEPTH
 304        mov pr.rot=1<<16        // p16=true all others are false
 305        mov ar.lc=len1
 306        ;;
 3075:
 308        EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
 309        EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
 310        br.ctop.dptk.few 5b
 311        ;;
 312        mov ar.lc=saved_lc
 313        mov pr=saved_pr,0xffffffffffff0000
 314        mov ar.pfs=saved_pfs
 315        br.ret.sptk.many rp
 316
 317        //
 318        // Beginning of long mempcy (i.e. > 16 bytes)
 319        //
 320.long_copy_user:
 321        tbit.nz p6,p7=src1,0    // odd alignment
 322        and tmp=7,tmp
 323        ;;
 324        cmp.eq p10,p8=r0,tmp
 325        mov len1=len            // copy because of rotation
 326(p8)    br.cond.dpnt .diff_align_copy_user
 327        ;;
 328        // At this point we know we have more than 16 bytes to copy
 329        // and also that both src and dest have the same alignment
 330        // which may not be the one we want. So for now we must move
 331        // forward slowly until we reach 16byte alignment: no need to
 332        // worry about reaching the end of buffer.
 333        //
 334        EX(.failure_in1,(p6) ld1 val1[0]=[src1],1)      // 1-byte aligned
 335(p6)    adds len1=-1,len1;;
 336        tbit.nz p7,p0=src1,1
 337        ;;
 338        EX(.failure_in1,(p7) ld2 val1[1]=[src1],2)      // 2-byte aligned
 339(p7)    adds len1=-2,len1;;
 340        tbit.nz p8,p0=src1,2
 341        ;;
 342        //
 343        // Stop bit not required after ld4 because if we fail on ld4
 344        // we have never executed the ld1, therefore st1 is not executed.
 345        //
 346        EX(.failure_in1,(p8) ld4 val2[0]=[src1],4)      // 4-byte aligned
 347        ;;
 348        EX(.failure_out,(p6) st1 [dst1]=val1[0],1)
 349        tbit.nz p9,p0=src1,3
 350        ;;
 351        //
 352        // Stop bit not required after ld8 because if we fail on ld8
 353        // we have never executed the ld2, therefore st2 is not executed.
 354        //
 355        EX(.failure_in1,(p9) ld8 val2[1]=[src1],8)      // 8-byte aligned
 356        EX(.failure_out,(p7) st2 [dst1]=val1[1],2)
 357(p8)    adds len1=-4,len1
 358        ;;
 359        EX(.failure_out, (p8) st4 [dst1]=val2[0],4)
 360(p9)    adds len1=-8,len1;;
 361        shr.u cnt=len1,4                // number of 128-bit (2x64bit) words
 362        ;;
 363        EX(.failure_out, (p9) st8 [dst1]=val2[1],8)
 364        tbit.nz p6,p0=len1,3
 365        cmp.eq p7,p0=r0,cnt
 366        adds tmp=-1,cnt                 // br.ctop is repeat/until
 367(p7)    br.cond.dpnt .dotail            // we have less than 16 bytes left
 368        ;;
 369        adds src2=8,src1
 370        adds dst2=8,dst1
 371        mov ar.lc=tmp
 372        ;;
 373        //
 374        // 16bytes/iteration
 375        //
 3762:
 377        EX(.failure_in3,(p16) ld8 val1[0]=[src1],16)
 378(p16)   ld8 val2[0]=[src2],16
 379
 380        EX(.failure_out, (EPI)  st8 [dst1]=val1[PIPE_DEPTH-1],16)
 381(EPI)   st8 [dst2]=val2[PIPE_DEPTH-1],16
 382        br.ctop.dptk 2b
 383        ;;                      // RAW on src1 when fall through from loop
 384        //
 385        // Tail correction based on len only
 386        //
 387        // No matter where we come from (loop or test) the src1 pointer
 388        // is 16 byte aligned AND we have less than 16 bytes to copy.
 389        //
 390.dotail:
 391        EX(.failure_in1,(p6) ld8 val1[0]=[src1],8)      // at least 8 bytes
 392        tbit.nz p7,p0=len1,2
 393        ;;
 394        EX(.failure_in1,(p7) ld4 val1[1]=[src1],4)      // at least 4 bytes
 395        tbit.nz p8,p0=len1,1
 396        ;;
 397        EX(.failure_in1,(p8) ld2 val2[0]=[src1],2)      // at least 2 bytes
 398        tbit.nz p9,p0=len1,0
 399        ;;
 400        EX(.failure_out, (p6) st8 [dst1]=val1[0],8)
 401        ;;
 402        EX(.failure_in1,(p9) ld1 val2[1]=[src1])        // only 1 byte left
 403        mov ar.lc=saved_lc
 404        ;;
 405        EX(.failure_out,(p7) st4 [dst1]=val1[1],4)
 406        mov pr=saved_pr,0xffffffffffff0000
 407        ;;
 408        EX(.failure_out, (p8)   st2 [dst1]=val2[0],2)
 409        mov ar.pfs=saved_pfs
 410        ;;
 411        EX(.failure_out, (p9)   st1 [dst1]=val2[1])
 412        br.ret.sptk.many rp
 413
 414
 415        //
 416        // Here we handle the case where the byte by byte copy fails
 417        // on the load.
 418        // Several factors make the zeroing of the rest of the buffer kind of
 419        // tricky:
 420        //      - the pipeline: loads/stores are not in sync (pipeline)
 421        //
 422        //        In the same loop iteration, the dst1 pointer does not directly
 423        //        reflect where the faulty load was.
 424        //
 425        //      - pipeline effect
 426        //        When you get a fault on load, you may have valid data from
 427        //        previous loads not yet store in transit. Such data must be
 428        //        store normally before moving onto zeroing the rest.
 429        //
 430        //      - single/multi dispersal independence.
 431        //
 432        // solution:
 433        //      - we don't disrupt the pipeline, i.e. data in transit in
 434        //        the software pipeline will be eventually move to memory.
 435        //        We simply replace the load with a simple mov and keep the
 436        //        pipeline going. We can't really do this inline because
 437        //        p16 is always reset to 1 when lc > 0.
 438        //
 439.failure_in_pipe1:
 440        sub ret0=endsrc,src1    // number of bytes to zero, i.e. not copied
 4411:
 442(p16)   mov val1[0]=r0
 443(EPI)   st1 [dst1]=val1[PIPE_DEPTH-1],1
 444        br.ctop.dptk 1b
 445        ;;
 446        mov pr=saved_pr,0xffffffffffff0000
 447        mov ar.lc=saved_lc
 448        mov ar.pfs=saved_pfs
 449        br.ret.sptk.many rp
 450
 451        //
 452        // This is the case where the byte by byte copy fails on the load
 453        // when we copy the head. We need to finish the pipeline and copy
 454        // zeros for the rest of the destination. Since this happens
 455        // at the top we still need to fill the body and tail.
 456.failure_in_pipe2:
 457        sub ret0=endsrc,src1    // number of bytes to zero, i.e. not copied
 4582:
 459(p16)   mov val1[0]=r0
 460(EPI)   st1 [dst1]=val1[PIPE_DEPTH-1],1
 461        br.ctop.dptk 2b
 462        ;;
 463        sub len=enddst,dst1,1           // precompute len
 464        br.cond.dptk.many .failure_in1bis
 465        ;;
 466
 467        //
 468        // Here we handle the head & tail part when we check for alignment.
 469        // The following code handles only the load failures. The
 470        // main diffculty comes from the fact that loads/stores are
 471        // scheduled. So when you fail on a load, the stores corresponding
 472        // to previous successful loads must be executed.
 473        //
 474        // However some simplifications are possible given the way
 475        // things work.
 476        //
 477        // 1) HEAD
 478        // Theory of operation:
 479        //
 480        //  Page A   | Page B
 481        //  ---------|-----
 482        //          1|8 x
 483        //        1 2|8 x
 484        //          4|8 x
 485        //        1 4|8 x
 486        //        2 4|8 x
 487        //      1 2 4|8 x
 488        //           |1
 489        //           |2 x
 490        //           |4 x
 491        //
 492        // page_size >= 4k (2^12).  (x means 4, 2, 1)
 493        // Here we suppose Page A exists and Page B does not.
 494        //
 495        // As we move towards eight byte alignment we may encounter faults.
 496        // The numbers on each page show the size of the load (current alignment).
 497        //
 498        // Key point:
 499        //      - if you fail on 1, 2, 4 then you have never executed any smaller
 500        //        size loads, e.g. failing ld4 means no ld1 nor ld2 executed
 501        //        before.
 502        //
 503        // This allows us to simplify the cleanup code, because basically you
 504        // only have to worry about "pending" stores in the case of a failing
 505        // ld8(). Given the way the code is written today, this means only
 506        // worry about st2, st4. There we can use the information encapsulated
 507        // into the predicates.
 508        //
 509        // Other key point:
 510        //      - if you fail on the ld8 in the head, it means you went straight
 511        //        to it, i.e. 8byte alignment within an unexisting page.
 512        // Again this comes from the fact that if you crossed just for the ld8 then
 513        // you are 8byte aligned but also 16byte align, therefore you would
 514        // either go for the 16byte copy loop OR the ld8 in the tail part.
 515        // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
 516        // because it would mean you had 15bytes to copy in which case you
 517        // would have defaulted to the byte by byte copy.
 518        //
 519        //
 520        // 2) TAIL
 521        // Here we now we have less than 16 bytes AND we are either 8 or 16 byte
 522        // aligned.
 523        //
 524        // Key point:
 525        // This means that we either:
 526        //              - are right on a page boundary
 527        //      OR
 528        //              - are at more than 16 bytes from a page boundary with
 529        //                at most 15 bytes to copy: no chance of crossing.
 530        //
 531        // This allows us to assume that if we fail on a load we haven't possibly
 532        // executed any of the previous (tail) ones, so we don't need to do
 533        // any stores. For instance, if we fail on ld2, this means we had
 534        // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
 535        //
 536        // This means that we are in a situation similar the a fault in the
 537        // head part. That's nice!
 538        //
 539.failure_in1:
 540        sub ret0=endsrc,src1    // number of bytes to zero, i.e. not copied
 541        sub len=endsrc,src1,1
 542        //
 543        // we know that ret0 can never be zero at this point
 544        // because we failed why trying to do a load, i.e. there is still
 545        // some work to do.
 546        // The failure_in1bis and length problem is taken care of at the
 547        // calling side.
 548        //
 549        ;;
 550.failure_in1bis:                // from (.failure_in3)
 551        mov ar.lc=len           // Continue with a stupid byte store.
 552        ;;
 5535:
 554        st1 [dst1]=r0,1
 555        br.cloop.dptk 5b
 556        ;;
 557        mov pr=saved_pr,0xffffffffffff0000
 558        mov ar.lc=saved_lc
 559        mov ar.pfs=saved_pfs
 560        br.ret.sptk.many rp
 561
 562        //
 563        // Here we simply restart the loop but instead
 564        // of doing loads we fill the pipeline with zeroes
 565        // We can't simply store r0 because we may have valid
 566        // data in transit in the pipeline.
 567        // ar.lc and ar.ec are setup correctly at this point
 568        //
 569        // we MUST use src1/endsrc here and not dst1/enddst because
 570        // of the pipeline effect.
 571        //
 572.failure_in3:
 573        sub ret0=endsrc,src1    // number of bytes to zero, i.e. not copied
 574        ;;
 5752:
 576(p16)   mov val1[0]=r0
 577(p16)   mov val2[0]=r0
 578(EPI)   st8 [dst1]=val1[PIPE_DEPTH-1],16
 579(EPI)   st8 [dst2]=val2[PIPE_DEPTH-1],16
 580        br.ctop.dptk 2b
 581        ;;
 582        cmp.ne p6,p0=dst1,enddst        // Do we need to finish the tail ?
 583        sub len=enddst,dst1,1           // precompute len
 584(p6)    br.cond.dptk .failure_in1bis
 585        ;;
 586        mov pr=saved_pr,0xffffffffffff0000
 587        mov ar.lc=saved_lc
 588        mov ar.pfs=saved_pfs
 589        br.ret.sptk.many rp
 590
 591.failure_in2:
 592        sub ret0=endsrc,src1
 593        cmp.ne p6,p0=dst1,enddst        // Do we need to finish the tail ?
 594        sub len=enddst,dst1,1           // precompute len
 595(p6)    br.cond.dptk .failure_in1bis
 596        ;;
 597        mov pr=saved_pr,0xffffffffffff0000
 598        mov ar.lc=saved_lc
 599        mov ar.pfs=saved_pfs
 600        br.ret.sptk.many rp
 601
 602        //
 603        // handling of failures on stores: that's the easy part
 604        //
 605.failure_out:
 606        sub ret0=enddst,dst1
 607        mov pr=saved_pr,0xffffffffffff0000
 608        mov ar.lc=saved_lc
 609
 610        mov ar.pfs=saved_pfs
 611        br.ret.sptk.many rp
 612END(__copy_user)
 613EXPORT_SYMBOL(__copy_user)
 614