linux/arch/m68k/math-emu/multi_arith.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* multi_arith.h: multi-precision integer arithmetic functions, needed
   3   to do extended-precision floating point.
   4
   5   (c) 1998 David Huggins-Daines.
   6
   7   Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
   8   David Mosberger-Tang.
   9
  10 */
  11
  12/* Note:
  13
  14   These are not general multi-precision math routines.  Rather, they
  15   implement the subset of integer arithmetic that we need in order to
  16   multiply, divide, and normalize 128-bit unsigned mantissae.  */
  17
  18#ifndef MULTI_ARITH_H
  19#define MULTI_ARITH_H
  20
  21static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
  22{
  23        reg->exp += cnt;
  24
  25        switch (cnt) {
  26        case 0 ... 8:
  27                reg->lowmant = reg->mant.m32[1] << (8 - cnt);
  28                reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
  29                                   (reg->mant.m32[0] << (32 - cnt));
  30                reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
  31                break;
  32        case 9 ... 32:
  33                reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
  34                if (reg->mant.m32[1] << (40 - cnt))
  35                        reg->lowmant |= 1;
  36                reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
  37                                   (reg->mant.m32[0] << (32 - cnt));
  38                reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
  39                break;
  40        case 33 ... 39:
  41                asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
  42                        : "m" (reg->mant.m32[0]), "d" (64 - cnt));
  43                if (reg->mant.m32[1] << (40 - cnt))
  44                        reg->lowmant |= 1;
  45                reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
  46                reg->mant.m32[0] = 0;
  47                break;
  48        case 40 ... 71:
  49                reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
  50                if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
  51                        reg->lowmant |= 1;
  52                reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
  53                reg->mant.m32[0] = 0;
  54                break;
  55        default:
  56                reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
  57                reg->mant.m32[0] = 0;
  58                reg->mant.m32[1] = 0;
  59                break;
  60        }
  61}
  62
  63static inline int fp_overnormalize(struct fp_ext *reg)
  64{
  65        int shift;
  66
  67        if (reg->mant.m32[0]) {
  68                asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
  69                reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
  70                reg->mant.m32[1] = (reg->mant.m32[1] << shift);
  71        } else {
  72                asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
  73                reg->mant.m32[0] = (reg->mant.m32[1] << shift);
  74                reg->mant.m32[1] = 0;
  75                shift += 32;
  76        }
  77
  78        return shift;
  79}
  80
  81static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
  82{
  83        int carry;
  84
  85        /* we assume here, gcc only insert move and a clr instr */
  86        asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
  87                : "g,d" (src->lowmant), "0,0" (dest->lowmant));
  88        asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
  89                : "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
  90        asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
  91                : "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
  92        asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
  93
  94        return carry;
  95}
  96
  97static inline int fp_addcarry(struct fp_ext *reg)
  98{
  99        if (++reg->exp == 0x7fff) {
 100                if (reg->mant.m64)
 101                        fp_set_sr(FPSR_EXC_INEX2);
 102                reg->mant.m64 = 0;
 103                fp_set_sr(FPSR_EXC_OVFL);
 104                return 0;
 105        }
 106        reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
 107        reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
 108                           (reg->mant.m32[0] << 31);
 109        reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
 110
 111        return 1;
 112}
 113
 114static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1,
 115                              struct fp_ext *src2)
 116{
 117        /* we assume here, gcc only insert move and a clr instr */
 118        asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
 119                : "g,d" (src2->lowmant), "0,0" (src1->lowmant));
 120        asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
 121                : "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
 122        asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
 123                : "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
 124}
 125
 126#define fp_mul64(desth, destl, src1, src2) ({                           \
 127        asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)             \
 128                : "dm" (src1), "0" (src2));                             \
 129})
 130#define fp_div64(quot, rem, srch, srcl, div)                            \
 131        asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)                \
 132                : "dm" (div), "1" (srch), "0" (srcl))
 133#define fp_add64(dest1, dest2, src1, src2) ({                           \
 134        asm ("add.l %1,%0" : "=d,dm" (dest2)                            \
 135                : "dm,d" (src2), "0,0" (dest2));                        \
 136        asm ("addx.l %1,%0" : "=d" (dest1)                              \
 137                : "d" (src1), "0" (dest1));                             \
 138})
 139#define fp_addx96(dest, src) ({                                         \
 140        /* we assume here, gcc only insert move and a clr instr */      \
 141        asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])             \
 142                : "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));           \
 143        asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])              \
 144                : "d" (temp.m32[0]), "0" (dest->m32[1]));               \
 145        asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])              \
 146                : "d" (0), "0" (dest->m32[0]));                         \
 147})
 148#define fp_sub64(dest, src) ({                                          \
 149        asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1])                      \
 150                : "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));            \
 151        asm ("subx.l %1,%0" : "=d" (dest.m32[0])                        \
 152                : "d" (src.m32[0]), "0" (dest.m32[0]));                 \
 153})
 154#define fp_sub96c(dest, srch, srcm, srcl) ({                            \
 155        char carry;                                                     \
 156        asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2])                      \
 157                : "dm,d" (srcl), "0,0" (dest.m32[2]));                  \
 158        asm ("subx.l %1,%0" : "=d" (dest.m32[1])                        \
 159                : "d" (srcm), "0" (dest.m32[1]));                       \
 160        asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])  \
 161                : "d" (srch), "1" (dest.m32[0]));                       \
 162        carry;                                                          \
 163})
 164
 165static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1,
 166                                   struct fp_ext *src2)
 167{
 168        union fp_mant64 temp;
 169
 170        fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
 171        fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
 172
 173        fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
 174        fp_addx96(dest, temp);
 175
 176        fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
 177        fp_addx96(dest, temp);
 178}
 179
 180static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src,
 181                                 struct fp_ext *div)
 182{
 183        union fp_mant128 tmp;
 184        union fp_mant64 tmp64;
 185        unsigned long *mantp = dest->m32;
 186        unsigned long fix, rem, first, dummy;
 187        int i;
 188
 189        /* the algorithm below requires dest to be smaller than div,
 190           but both have the high bit set */
 191        if (src->mant.m64 >= div->mant.m64) {
 192                fp_sub64(src->mant, div->mant);
 193                *mantp = 1;
 194        } else
 195                *mantp = 0;
 196        mantp++;
 197
 198        /* basic idea behind this algorithm: we can't divide two 64bit numbers
 199           (AB/CD) directly, but we can calculate AB/C0, but this means this
 200           quotient is off by C0/CD, so we have to multiply the first result
 201           to fix the result, after that we have nearly the correct result
 202           and only a few corrections are needed. */
 203
 204        /* C0/CD can be precalculated, but it's an 64bit division again, but
 205           we can make it a bit easier, by dividing first through C so we get
 206           10/1D and now only a single shift and the value fits into 32bit. */
 207        fix = 0x80000000;
 208        dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
 209        dummy = (dummy >> 1) | fix;
 210        fp_div64(fix, dummy, fix, 0, dummy);
 211        fix--;
 212
 213        for (i = 0; i < 3; i++, mantp++) {
 214                if (src->mant.m32[0] == div->mant.m32[0]) {
 215                        fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
 216
 217                        fp_mul64(*mantp, dummy, first, fix);
 218                        *mantp += fix;
 219                } else {
 220                        fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
 221
 222                        fp_mul64(*mantp, dummy, first, fix);
 223                }
 224
 225                fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
 226                fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
 227                tmp.m32[2] = 0;
 228
 229                fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
 230                fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
 231
 232                src->mant.m32[0] = tmp.m32[1];
 233                src->mant.m32[1] = tmp.m32[2];
 234
 235                while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
 236                        src->mant.m32[0] = tmp.m32[1];
 237                        src->mant.m32[1] = tmp.m32[2];
 238                        *mantp += 1;
 239                }
 240        }
 241}
 242
 243static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src,
 244                                 int shift)
 245{
 246        unsigned long tmp;
 247
 248        switch (shift) {
 249        case 0:
 250                dest->mant.m64 = src->m64[0];
 251                dest->lowmant = src->m32[2] >> 24;
 252                if (src->m32[3] || (src->m32[2] << 8))
 253                        dest->lowmant |= 1;
 254                break;
 255        case 1:
 256                asm volatile ("lsl.l #1,%0"
 257                        : "=d" (tmp) : "0" (src->m32[2]));
 258                asm volatile ("roxl.l #1,%0"
 259                        : "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
 260                asm volatile ("roxl.l #1,%0"
 261                        : "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
 262                dest->lowmant = tmp >> 24;
 263                if (src->m32[3] || (tmp << 8))
 264                        dest->lowmant |= 1;
 265                break;
 266        case 31:
 267                asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
 268                        : "=d" (dest->mant.m32[0])
 269                        : "d" (src->m32[0]), "0" (src->m32[1]));
 270                asm volatile ("roxr.l #1,%0"
 271                        : "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
 272                asm volatile ("roxr.l #1,%0"
 273                        : "=d" (tmp) : "0" (src->m32[3]));
 274                dest->lowmant = tmp >> 24;
 275                if (src->m32[3] << 7)
 276                        dest->lowmant |= 1;
 277                break;
 278        case 32:
 279                dest->mant.m32[0] = src->m32[1];
 280                dest->mant.m32[1] = src->m32[2];
 281                dest->lowmant = src->m32[3] >> 24;
 282                if (src->m32[3] << 8)
 283                        dest->lowmant |= 1;
 284                break;
 285        }
 286}
 287
 288#endif  /* MULTI_ARITH_H */
 289