linux/arch/microblaze/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
   4 * Copyright (C) 2008-2009 PetaLogix
   5 * Copyright (C) 2006 Atmark Techno, Inc.
   6 */
   7
   8#ifndef _ASM_MICROBLAZE_PGTABLE_H
   9#define _ASM_MICROBLAZE_PGTABLE_H
  10
  11#include <asm/setup.h>
  12
  13#ifndef __ASSEMBLY__
  14extern int mem_init_done;
  15#endif
  16
  17#include <asm-generic/pgtable-nopmd.h>
  18
  19#ifdef __KERNEL__
  20#ifndef __ASSEMBLY__
  21
  22#include <linux/sched.h>
  23#include <linux/threads.h>
  24#include <asm/processor.h>              /* For TASK_SIZE */
  25#include <asm/mmu.h>
  26#include <asm/page.h>
  27
  28extern unsigned long va_to_phys(unsigned long address);
  29extern pte_t *va_to_pte(unsigned long address);
  30
  31/*
  32 * The following only work if pte_present() is true.
  33 * Undefined behaviour if not..
  34 */
  35
  36/* Start and end of the vmalloc area. */
  37/* Make sure to map the vmalloc area above the pinned kernel memory area
  38   of 32Mb.  */
  39#define VMALLOC_START   (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
  40#define VMALLOC_END     ioremap_bot
  41
  42#endif /* __ASSEMBLY__ */
  43
  44/*
  45 * Macro to mark a page protection value as "uncacheable".
  46 */
  47
  48#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \
  49                                                        _PAGE_WRITETHRU)
  50
  51#define pgprot_noncached(prot) \
  52                        (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
  53                                        _PAGE_NO_CACHE | _PAGE_GUARDED))
  54
  55#define pgprot_noncached_wc(prot) \
  56                         (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
  57                                                        _PAGE_NO_CACHE))
  58
  59/*
  60 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
  61 * table containing PTEs, together with a set of 16 segment registers, to
  62 * define the virtual to physical address mapping.
  63 *
  64 * We use the hash table as an extended TLB, i.e. a cache of currently
  65 * active mappings.  We maintain a two-level page table tree, much
  66 * like that used by the i386, for the sake of the Linux memory
  67 * management code.  Low-level assembler code in hashtable.S
  68 * (procedure hash_page) is responsible for extracting ptes from the
  69 * tree and putting them into the hash table when necessary, and
  70 * updating the accessed and modified bits in the page table tree.
  71 */
  72
  73/*
  74 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
  75 * instruction and data sides share a unified, 64-entry, semi-associative
  76 * TLB which is maintained totally under software control. In addition, the
  77 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
  78 * TLB which serves as a first level to the shared TLB. These two TLBs are
  79 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
  80 */
  81
  82/*
  83 * The normal case is that PTEs are 32-bits and we have a 1-page
  84 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
  85 *
  86 */
  87
  88/* PGDIR_SHIFT determines what a top-level page table entry can map */
  89#define PGDIR_SHIFT     (PAGE_SHIFT + PTE_SHIFT)
  90#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  91#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  92
  93/*
  94 * entries per page directory level: our page-table tree is two-level, so
  95 * we don't really have any PMD directory.
  96 */
  97#define PTRS_PER_PTE    (1 << PTE_SHIFT)
  98#define PTRS_PER_PMD    1
  99#define PTRS_PER_PGD    (1 << (32 - PGDIR_SHIFT))
 100
 101#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
 102#define FIRST_USER_PGD_NR       0
 103
 104#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
 105#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
 106
 107#define pte_ERROR(e) \
 108        printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
 109                __FILE__, __LINE__, pte_val(e))
 110#define pgd_ERROR(e) \
 111        printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
 112                __FILE__, __LINE__, pgd_val(e))
 113
 114/*
 115 * Bits in a linux-style PTE.  These match the bits in the
 116 * (hardware-defined) PTE as closely as possible.
 117 */
 118
 119/* There are several potential gotchas here.  The hardware TLBLO
 120 * field looks like this:
 121 *
 122 * 0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 123 * RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
 124 *
 125 * Where possible we make the Linux PTE bits match up with this
 126 *
 127 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
 128 * support down to 1k pages), this is done in the TLBMiss exception
 129 * handler.
 130 * - We use only zones 0 (for kernel pages) and 1 (for user pages)
 131 * of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
 132 * miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
 133 * zone.
 134 * - PRESENT *must* be in the bottom two bits because swap cache
 135 * entries use the top 30 bits.  Because 4xx doesn't support SMP
 136 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
 137 * is cleared in the TLB miss handler before the TLB entry is loaded.
 138 * - All other bits of the PTE are loaded into TLBLO without
 139 *  * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
 140 * software PTE bits.  We actually use bits 21, 24, 25, and
 141 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
 142 * PRESENT.
 143 */
 144
 145/* Definitions for MicroBlaze. */
 146#define _PAGE_GUARDED   0x001   /* G: page is guarded from prefetch */
 147#define _PAGE_PRESENT   0x002   /* software: PTE contains a translation */
 148#define _PAGE_NO_CACHE  0x004   /* I: caching is inhibited */
 149#define _PAGE_WRITETHRU 0x008   /* W: caching is write-through */
 150#define _PAGE_USER      0x010   /* matches one of the zone permission bits */
 151#define _PAGE_RW        0x040   /* software: Writes permitted */
 152#define _PAGE_DIRTY     0x080   /* software: dirty page */
 153#define _PAGE_HWWRITE   0x100   /* hardware: Dirty & RW, set in exception */
 154#define _PAGE_HWEXEC    0x200   /* hardware: EX permission */
 155#define _PAGE_ACCESSED  0x400   /* software: R: page referenced */
 156#define _PMD_PRESENT    PAGE_MASK
 157
 158/*
 159 * Some bits are unused...
 160 */
 161#ifndef _PAGE_HASHPTE
 162#define _PAGE_HASHPTE   0
 163#endif
 164#ifndef _PTE_NONE_MASK
 165#define _PTE_NONE_MASK  0
 166#endif
 167#ifndef _PAGE_SHARED
 168#define _PAGE_SHARED    0
 169#endif
 170#ifndef _PAGE_EXEC
 171#define _PAGE_EXEC      0
 172#endif
 173
 174#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 175
 176/*
 177 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
 178 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
 179 * to have it in the Linux PTE, and in fact the bit could be reused for
 180 * another purpose.  -- paulus.
 181 */
 182#define _PAGE_BASE      (_PAGE_PRESENT | _PAGE_ACCESSED)
 183#define _PAGE_WRENABLE  (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
 184
 185#define _PAGE_KERNEL \
 186        (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
 187
 188#define _PAGE_IO        (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
 189
 190#define PAGE_NONE       __pgprot(_PAGE_BASE)
 191#define PAGE_READONLY   __pgprot(_PAGE_BASE | _PAGE_USER)
 192#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
 193#define PAGE_SHARED     __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
 194#define PAGE_SHARED_X \
 195                __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
 196#define PAGE_COPY       __pgprot(_PAGE_BASE | _PAGE_USER)
 197#define PAGE_COPY_X     __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
 198
 199#define PAGE_KERNEL     __pgprot(_PAGE_KERNEL)
 200#define PAGE_KERNEL_RO  __pgprot(_PAGE_BASE | _PAGE_SHARED)
 201#define PAGE_KERNEL_CI  __pgprot(_PAGE_IO)
 202
 203/*
 204 * We consider execute permission the same as read.
 205 * Also, write permissions imply read permissions.
 206 */
 207#define __P000  PAGE_NONE
 208#define __P001  PAGE_READONLY_X
 209#define __P010  PAGE_COPY
 210#define __P011  PAGE_COPY_X
 211#define __P100  PAGE_READONLY
 212#define __P101  PAGE_READONLY_X
 213#define __P110  PAGE_COPY
 214#define __P111  PAGE_COPY_X
 215
 216#define __S000  PAGE_NONE
 217#define __S001  PAGE_READONLY_X
 218#define __S010  PAGE_SHARED
 219#define __S011  PAGE_SHARED_X
 220#define __S100  PAGE_READONLY
 221#define __S101  PAGE_READONLY_X
 222#define __S110  PAGE_SHARED
 223#define __S111  PAGE_SHARED_X
 224
 225#ifndef __ASSEMBLY__
 226/*
 227 * ZERO_PAGE is a global shared page that is always zero: used
 228 * for zero-mapped memory areas etc..
 229 */
 230extern unsigned long empty_zero_page[1024];
 231#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 232
 233#endif /* __ASSEMBLY__ */
 234
 235#define pte_none(pte)           ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
 236#define pte_present(pte)        (pte_val(pte) & _PAGE_PRESENT)
 237#define pte_clear(mm, addr, ptep) \
 238        do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
 239
 240#define pmd_none(pmd)           (!pmd_val(pmd))
 241#define pmd_bad(pmd)            ((pmd_val(pmd) & _PMD_PRESENT) == 0)
 242#define pmd_present(pmd)        ((pmd_val(pmd) & _PMD_PRESENT) != 0)
 243#define pmd_clear(pmdp)         do { pmd_val(*(pmdp)) = 0; } while (0)
 244
 245#define pte_page(x)             (mem_map + (unsigned long) \
 246                                ((pte_val(x) - memory_start) >> PAGE_SHIFT))
 247#define PFN_SHIFT_OFFSET        (PAGE_SHIFT)
 248
 249#define pte_pfn(x)              (pte_val(x) >> PFN_SHIFT_OFFSET)
 250
 251#define pfn_pte(pfn, prot) \
 252        __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
 253
 254#ifndef __ASSEMBLY__
 255/*
 256 * The following only work if pte_present() is true.
 257 * Undefined behaviour if not..
 258 */
 259static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; }
 260static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
 261static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
 262static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
 263static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
 264
 265static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
 266static inline void pte_cache(pte_t pte)   { pte_val(pte) &= ~_PAGE_NO_CACHE; }
 267
 268static inline pte_t pte_rdprotect(pte_t pte) \
 269                { pte_val(pte) &= ~_PAGE_USER; return pte; }
 270static inline pte_t pte_wrprotect(pte_t pte) \
 271        { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
 272static inline pte_t pte_exprotect(pte_t pte) \
 273        { pte_val(pte) &= ~_PAGE_EXEC; return pte; }
 274static inline pte_t pte_mkclean(pte_t pte) \
 275        { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
 276static inline pte_t pte_mkold(pte_t pte) \
 277        { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 278
 279static inline pte_t pte_mkread(pte_t pte) \
 280        { pte_val(pte) |= _PAGE_USER; return pte; }
 281static inline pte_t pte_mkexec(pte_t pte) \
 282        { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
 283static inline pte_t pte_mkwrite(pte_t pte) \
 284        { pte_val(pte) |= _PAGE_RW; return pte; }
 285static inline pte_t pte_mkdirty(pte_t pte) \
 286        { pte_val(pte) |= _PAGE_DIRTY; return pte; }
 287static inline pte_t pte_mkyoung(pte_t pte) \
 288        { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 289
 290/*
 291 * Conversion functions: convert a page and protection to a page entry,
 292 * and a page entry and page directory to the page they refer to.
 293 */
 294
 295static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
 296{
 297        pte_t pte;
 298        pte_val(pte) = physpage | pgprot_val(pgprot);
 299        return pte;
 300}
 301
 302#define mk_pte(page, pgprot) \
 303({                                                                         \
 304        pte_t pte;                                                         \
 305        pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) |  \
 306                        pgprot_val(pgprot);                                \
 307        pte;                                                               \
 308})
 309
 310static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 311{
 312        pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
 313        return pte;
 314}
 315
 316/*
 317 * Atomic PTE updates.
 318 *
 319 * pte_update clears and sets bit atomically, and returns
 320 * the old pte value.
 321 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
 322 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
 323 */
 324static inline unsigned long pte_update(pte_t *p, unsigned long clr,
 325                                unsigned long set)
 326{
 327        unsigned long flags, old, tmp;
 328
 329        raw_local_irq_save(flags);
 330
 331        __asm__ __volatile__(   "lw     %0, %2, r0      \n"
 332                                "andn   %1, %0, %3      \n"
 333                                "or     %1, %1, %4      \n"
 334                                "sw     %1, %2, r0      \n"
 335                        : "=&r" (old), "=&r" (tmp)
 336                        : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
 337                        : "cc");
 338
 339        raw_local_irq_restore(flags);
 340
 341        return old;
 342}
 343
 344/*
 345 * set_pte stores a linux PTE into the linux page table.
 346 */
 347static inline void set_pte(struct mm_struct *mm, unsigned long addr,
 348                pte_t *ptep, pte_t pte)
 349{
 350        *ptep = pte;
 351}
 352
 353static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 354                pte_t *ptep, pte_t pte)
 355{
 356        *ptep = pte;
 357}
 358
 359#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 360static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 361                unsigned long address, pte_t *ptep)
 362{
 363        return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
 364}
 365
 366static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
 367                unsigned long addr, pte_t *ptep)
 368{
 369        return (pte_update(ptep, \
 370                (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
 371}
 372
 373#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 374static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 375                unsigned long addr, pte_t *ptep)
 376{
 377        return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
 378}
 379
 380/*static inline void ptep_set_wrprotect(struct mm_struct *mm,
 381                unsigned long addr, pte_t *ptep)
 382{
 383        pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
 384}*/
 385
 386static inline void ptep_mkdirty(struct mm_struct *mm,
 387                unsigned long addr, pte_t *ptep)
 388{
 389        pte_update(ptep, 0, _PAGE_DIRTY);
 390}
 391
 392/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
 393
 394/* Convert pmd entry to page */
 395/* our pmd entry is an effective address of pte table*/
 396/* returns effective address of the pmd entry*/
 397static inline unsigned long pmd_page_vaddr(pmd_t pmd)
 398{
 399        return ((unsigned long) (pmd_val(pmd) & PAGE_MASK));
 400}
 401
 402/* returns struct *page of the pmd entry*/
 403#define pmd_page(pmd)   (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
 404
 405/* Find an entry in the third-level page table.. */
 406
 407extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 408
 409/*
 410 * Encode and decode a swap entry.
 411 * Note that the bits we use in a PTE for representing a swap entry
 412 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
 413 * (if used).  -- paulus
 414 */
 415#define __swp_type(entry)               ((entry).val & 0x3f)
 416#define __swp_offset(entry)     ((entry).val >> 6)
 417#define __swp_entry(type, offset) \
 418                ((swp_entry_t) { (type) | ((offset) << 6) })
 419#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 })
 420#define __swp_entry_to_pte(x)   ((pte_t) { (x).val << 2 })
 421
 422extern unsigned long iopa(unsigned long addr);
 423
 424/* Values for nocacheflag and cmode */
 425/* These are not used by the APUS kernel_map, but prevents
 426 * compilation errors.
 427 */
 428#define IOMAP_FULL_CACHING      0
 429#define IOMAP_NOCACHE_SER       1
 430#define IOMAP_NOCACHE_NONSER    2
 431#define IOMAP_NO_COPYBACK       3
 432
 433/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
 434#define kern_addr_valid(addr)   (1)
 435
 436void do_page_fault(struct pt_regs *regs, unsigned long address,
 437                   unsigned long error_code);
 438
 439void mapin_ram(void);
 440int map_page(unsigned long va, phys_addr_t pa, int flags);
 441
 442extern int mem_init_done;
 443
 444asmlinkage void __init mmu_init(void);
 445
 446#endif /* __ASSEMBLY__ */
 447#endif /* __KERNEL__ */
 448
 449#ifndef __ASSEMBLY__
 450extern unsigned long ioremap_bot, ioremap_base;
 451
 452void setup_memory(void);
 453#endif /* __ASSEMBLY__ */
 454
 455#endif /* _ASM_MICROBLAZE_PGTABLE_H */
 456