linux/arch/mips/pci/msi-octeon.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2005-2009, 2010 Cavium Networks
   7 */
   8#include <linux/kernel.h>
   9#include <linux/init.h>
  10#include <linux/msi.h>
  11#include <linux/spinlock.h>
  12#include <linux/interrupt.h>
  13
  14#include <asm/octeon/octeon.h>
  15#include <asm/octeon/cvmx-npi-defs.h>
  16#include <asm/octeon/cvmx-pci-defs.h>
  17#include <asm/octeon/cvmx-npei-defs.h>
  18#include <asm/octeon/cvmx-sli-defs.h>
  19#include <asm/octeon/cvmx-pexp-defs.h>
  20#include <asm/octeon/pci-octeon.h>
  21
  22/*
  23 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
  24 * in use.
  25 */
  26static u64 msi_free_irq_bitmask[4];
  27
  28/*
  29 * Each bit in msi_multiple_irq_bitmask tells that the device using
  30 * this bit in msi_free_irq_bitmask is also using the next bit. This
  31 * is used so we can disable all of the MSI interrupts when a device
  32 * uses multiple.
  33 */
  34static u64 msi_multiple_irq_bitmask[4];
  35
  36/*
  37 * This lock controls updates to msi_free_irq_bitmask and
  38 * msi_multiple_irq_bitmask.
  39 */
  40static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
  41
  42/*
  43 * Number of MSI IRQs used. This variable is set up in
  44 * the module init time.
  45 */
  46static int msi_irq_size;
  47
  48/**
  49 * Called when a driver request MSI interrupts instead of the
  50 * legacy INT A-D. This routine will allocate multiple interrupts
  51 * for MSI devices that support them. A device can override this by
  52 * programming the MSI control bits [6:4] before calling
  53 * pci_enable_msi().
  54 *
  55 * @dev:    Device requesting MSI interrupts
  56 * @desc:   MSI descriptor
  57 *
  58 * Returns 0 on success.
  59 */
  60int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
  61{
  62        struct msi_msg msg;
  63        u16 control;
  64        int configured_private_bits;
  65        int request_private_bits;
  66        int irq = 0;
  67        int irq_step;
  68        u64 search_mask;
  69        int index;
  70
  71        /*
  72         * Read the MSI config to figure out how many IRQs this device
  73         * wants.  Most devices only want 1, which will give
  74         * configured_private_bits and request_private_bits equal 0.
  75         */
  76        pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
  77
  78        /*
  79         * If the number of private bits has been configured then use
  80         * that value instead of the requested number. This gives the
  81         * driver the chance to override the number of interrupts
  82         * before calling pci_enable_msi().
  83         */
  84        configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
  85        if (configured_private_bits == 0) {
  86                /* Nothing is configured, so use the hardware requested size */
  87                request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
  88        } else {
  89                /*
  90                 * Use the number of configured bits, assuming the
  91                 * driver wanted to override the hardware request
  92                 * value.
  93                 */
  94                request_private_bits = configured_private_bits;
  95        }
  96
  97        /*
  98         * The PCI 2.3 spec mandates that there are at most 32
  99         * interrupts. If this device asks for more, only give it one.
 100         */
 101        if (request_private_bits > 5)
 102                request_private_bits = 0;
 103
 104try_only_one:
 105        /*
 106         * The IRQs have to be aligned on a power of two based on the
 107         * number being requested.
 108         */
 109        irq_step = 1 << request_private_bits;
 110
 111        /* Mask with one bit for each IRQ */
 112        search_mask = (1 << irq_step) - 1;
 113
 114        /*
 115         * We're going to search msi_free_irq_bitmask_lock for zero
 116         * bits. This represents an MSI interrupt number that isn't in
 117         * use.
 118         */
 119        spin_lock(&msi_free_irq_bitmask_lock);
 120        for (index = 0; index < msi_irq_size/64; index++) {
 121                for (irq = 0; irq < 64; irq += irq_step) {
 122                        if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
 123                                msi_free_irq_bitmask[index] |= search_mask << irq;
 124                                msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
 125                                goto msi_irq_allocated;
 126                        }
 127                }
 128        }
 129msi_irq_allocated:
 130        spin_unlock(&msi_free_irq_bitmask_lock);
 131
 132        /* Make sure the search for available interrupts didn't fail */
 133        if (irq >= 64) {
 134                if (request_private_bits) {
 135                        pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
 136                               1 << request_private_bits);
 137                        request_private_bits = 0;
 138                        goto try_only_one;
 139                } else
 140                        panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
 141        }
 142
 143        /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
 144        irq += index*64;
 145        irq += OCTEON_IRQ_MSI_BIT0;
 146
 147        switch (octeon_dma_bar_type) {
 148        case OCTEON_DMA_BAR_TYPE_SMALL:
 149                /* When not using big bar, Bar 0 is based at 128MB */
 150                msg.address_lo =
 151                        ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
 152                msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
 153                break;
 154        case OCTEON_DMA_BAR_TYPE_BIG:
 155                /* When using big bar, Bar 0 is based at 0 */
 156                msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
 157                msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
 158                break;
 159        case OCTEON_DMA_BAR_TYPE_PCIE:
 160                /* When using PCIe, Bar 0 is based at 0 */
 161                /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
 162                msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
 163                msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
 164                break;
 165        case OCTEON_DMA_BAR_TYPE_PCIE2:
 166                /* When using PCIe2, Bar 0 is based at 0 */
 167                msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff;
 168                msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32;
 169                break;
 170        default:
 171                panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
 172        }
 173        msg.data = irq - OCTEON_IRQ_MSI_BIT0;
 174
 175        /* Update the number of IRQs the device has available to it */
 176        control &= ~PCI_MSI_FLAGS_QSIZE;
 177        control |= request_private_bits << 4;
 178        pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
 179
 180        irq_set_msi_desc(irq, desc);
 181        pci_write_msi_msg(irq, &msg);
 182        return 0;
 183}
 184
 185int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
 186{
 187        struct msi_desc *entry;
 188        int ret;
 189
 190        /*
 191         * MSI-X is not supported.
 192         */
 193        if (type == PCI_CAP_ID_MSIX)
 194                return -EINVAL;
 195
 196        /*
 197         * If an architecture wants to support multiple MSI, it needs to
 198         * override arch_setup_msi_irqs()
 199         */
 200        if (type == PCI_CAP_ID_MSI && nvec > 1)
 201                return 1;
 202
 203        for_each_pci_msi_entry(entry, dev) {
 204                ret = arch_setup_msi_irq(dev, entry);
 205                if (ret < 0)
 206                        return ret;
 207                if (ret > 0)
 208                        return -ENOSPC;
 209        }
 210
 211        return 0;
 212}
 213
 214/**
 215 * Called when a device no longer needs its MSI interrupts. All
 216 * MSI interrupts for the device are freed.
 217 *
 218 * @irq:    The devices first irq number. There may be multple in sequence.
 219 */
 220void arch_teardown_msi_irq(unsigned int irq)
 221{
 222        int number_irqs;
 223        u64 bitmask;
 224        int index = 0;
 225        int irq0;
 226
 227        if ((irq < OCTEON_IRQ_MSI_BIT0)
 228                || (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
 229                panic("arch_teardown_msi_irq: Attempted to teardown illegal "
 230                      "MSI interrupt (%d)", irq);
 231
 232        irq -= OCTEON_IRQ_MSI_BIT0;
 233        index = irq / 64;
 234        irq0 = irq % 64;
 235
 236        /*
 237         * Count the number of IRQs we need to free by looking at the
 238         * msi_multiple_irq_bitmask. Each bit set means that the next
 239         * IRQ is also owned by this device.
 240         */
 241        number_irqs = 0;
 242        while ((irq0 + number_irqs < 64) &&
 243               (msi_multiple_irq_bitmask[index]
 244                & (1ull << (irq0 + number_irqs))))
 245                number_irqs++;
 246        number_irqs++;
 247        /* Mask with one bit for each IRQ */
 248        bitmask = (1 << number_irqs) - 1;
 249        /* Shift the mask to the correct bit location */
 250        bitmask <<= irq0;
 251        if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
 252                panic("arch_teardown_msi_irq: Attempted to teardown MSI "
 253                      "interrupt (%d) not in use", irq);
 254
 255        /* Checks are done, update the in use bitmask */
 256        spin_lock(&msi_free_irq_bitmask_lock);
 257        msi_free_irq_bitmask[index] &= ~bitmask;
 258        msi_multiple_irq_bitmask[index] &= ~bitmask;
 259        spin_unlock(&msi_free_irq_bitmask_lock);
 260}
 261
 262static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
 263
 264static u64 msi_rcv_reg[4];
 265static u64 mis_ena_reg[4];
 266
 267static void octeon_irq_msi_enable_pcie(struct irq_data *data)
 268{
 269        u64 en;
 270        unsigned long flags;
 271        int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
 272        int irq_index = msi_number >> 6;
 273        int irq_bit = msi_number & 0x3f;
 274
 275        raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
 276        en = cvmx_read_csr(mis_ena_reg[irq_index]);
 277        en |= 1ull << irq_bit;
 278        cvmx_write_csr(mis_ena_reg[irq_index], en);
 279        cvmx_read_csr(mis_ena_reg[irq_index]);
 280        raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
 281}
 282
 283static void octeon_irq_msi_disable_pcie(struct irq_data *data)
 284{
 285        u64 en;
 286        unsigned long flags;
 287        int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
 288        int irq_index = msi_number >> 6;
 289        int irq_bit = msi_number & 0x3f;
 290
 291        raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
 292        en = cvmx_read_csr(mis_ena_reg[irq_index]);
 293        en &= ~(1ull << irq_bit);
 294        cvmx_write_csr(mis_ena_reg[irq_index], en);
 295        cvmx_read_csr(mis_ena_reg[irq_index]);
 296        raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
 297}
 298
 299static struct irq_chip octeon_irq_chip_msi_pcie = {
 300        .name = "MSI",
 301        .irq_enable = octeon_irq_msi_enable_pcie,
 302        .irq_disable = octeon_irq_msi_disable_pcie,
 303};
 304
 305static void octeon_irq_msi_enable_pci(struct irq_data *data)
 306{
 307        /*
 308         * Octeon PCI doesn't have the ability to mask/unmask MSI
 309         * interrupts individually. Instead of masking/unmasking them
 310         * in groups of 16, we simple assume MSI devices are well
 311         * behaved. MSI interrupts are always enable and the ACK is
 312         * assumed to be enough
 313         */
 314}
 315
 316static void octeon_irq_msi_disable_pci(struct irq_data *data)
 317{
 318        /* See comment in enable */
 319}
 320
 321static struct irq_chip octeon_irq_chip_msi_pci = {
 322        .name = "MSI",
 323        .irq_enable = octeon_irq_msi_enable_pci,
 324        .irq_disable = octeon_irq_msi_disable_pci,
 325};
 326
 327/*
 328 * Called by the interrupt handling code when an MSI interrupt
 329 * occurs.
 330 */
 331static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
 332{
 333        int irq;
 334        int bit;
 335
 336        bit = fls64(msi_bits);
 337        if (bit) {
 338                bit--;
 339                /* Acknowledge it first. */
 340                cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
 341
 342                irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
 343                do_IRQ(irq);
 344                return IRQ_HANDLED;
 345        }
 346        return IRQ_NONE;
 347}
 348
 349#define OCTEON_MSI_INT_HANDLER_X(x)                                     \
 350static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)       \
 351{                                                                       \
 352        u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);                 \
 353        return __octeon_msi_do_interrupt((x), msi_bits);                \
 354}
 355
 356/*
 357 * Create octeon_msi_interrupt{0-3} function body
 358 */
 359OCTEON_MSI_INT_HANDLER_X(0);
 360OCTEON_MSI_INT_HANDLER_X(1);
 361OCTEON_MSI_INT_HANDLER_X(2);
 362OCTEON_MSI_INT_HANDLER_X(3);
 363
 364/*
 365 * Initializes the MSI interrupt handling code
 366 */
 367int __init octeon_msi_initialize(void)
 368{
 369        int irq;
 370        struct irq_chip *msi;
 371
 372        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_INVALID) {
 373                return 0;
 374        } else if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
 375                msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
 376                msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
 377                msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
 378                msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
 379                mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
 380                mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
 381                mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
 382                mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
 383                msi = &octeon_irq_chip_msi_pcie;
 384        } else {
 385                msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
 386#define INVALID_GENERATE_ADE 0x8700000000000000ULL;
 387                msi_rcv_reg[1] = INVALID_GENERATE_ADE;
 388                msi_rcv_reg[2] = INVALID_GENERATE_ADE;
 389                msi_rcv_reg[3] = INVALID_GENERATE_ADE;
 390                mis_ena_reg[0] = INVALID_GENERATE_ADE;
 391                mis_ena_reg[1] = INVALID_GENERATE_ADE;
 392                mis_ena_reg[2] = INVALID_GENERATE_ADE;
 393                mis_ena_reg[3] = INVALID_GENERATE_ADE;
 394                msi = &octeon_irq_chip_msi_pci;
 395        }
 396
 397        for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
 398                irq_set_chip_and_handler(irq, msi, handle_simple_irq);
 399
 400        if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
 401                if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
 402                                0, "MSI[0:63]", octeon_msi_interrupt0))
 403                        panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
 404
 405                if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
 406                                0, "MSI[64:127]", octeon_msi_interrupt1))
 407                        panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
 408
 409                if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
 410                                0, "MSI[127:191]", octeon_msi_interrupt2))
 411                        panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
 412
 413                if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
 414                                0, "MSI[192:255]", octeon_msi_interrupt3))
 415                        panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
 416
 417                msi_irq_size = 256;
 418        } else if (octeon_is_pci_host()) {
 419                if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
 420                                0, "MSI[0:15]", octeon_msi_interrupt0))
 421                        panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
 422
 423                if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
 424                                0, "MSI[16:31]", octeon_msi_interrupt0))
 425                        panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
 426
 427                if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
 428                                0, "MSI[32:47]", octeon_msi_interrupt0))
 429                        panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
 430
 431                if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
 432                                0, "MSI[48:63]", octeon_msi_interrupt0))
 433                        panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
 434                msi_irq_size = 64;
 435        }
 436        return 0;
 437}
 438subsys_initcall(octeon_msi_initialize);
 439