linux/arch/mips/pci/pci-octeon.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2005-2009 Cavium Networks
   7 */
   8#include <linux/kernel.h>
   9#include <linux/init.h>
  10#include <linux/pci.h>
  11#include <linux/interrupt.h>
  12#include <linux/time.h>
  13#include <linux/delay.h>
  14#include <linux/platform_device.h>
  15#include <linux/swiotlb.h>
  16
  17#include <asm/time.h>
  18
  19#include <asm/octeon/octeon.h>
  20#include <asm/octeon/cvmx-npi-defs.h>
  21#include <asm/octeon/cvmx-pci-defs.h>
  22#include <asm/octeon/pci-octeon.h>
  23
  24#define USE_OCTEON_INTERNAL_ARBITER
  25
  26/*
  27 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
  28 * addresses. Use PCI endian swapping 1 so no address swapping is
  29 * necessary. The Linux io routines will endian swap the data.
  30 */
  31#define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
  32#define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
  33
  34/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
  35#define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
  36
  37u64 octeon_bar1_pci_phys;
  38
  39/**
  40 * This is the bit decoding used for the Octeon PCI controller addresses
  41 */
  42union octeon_pci_address {
  43        uint64_t u64;
  44        struct {
  45                uint64_t upper:2;
  46                uint64_t reserved:13;
  47                uint64_t io:1;
  48                uint64_t did:5;
  49                uint64_t subdid:3;
  50                uint64_t reserved2:4;
  51                uint64_t endian_swap:2;
  52                uint64_t reserved3:10;
  53                uint64_t bus:8;
  54                uint64_t dev:5;
  55                uint64_t func:3;
  56                uint64_t reg:8;
  57        } s;
  58};
  59
  60int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin);
  61enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
  62
  63/**
  64 * Map a PCI device to the appropriate interrupt line
  65 *
  66 * @dev:    The Linux PCI device structure for the device to map
  67 * @slot:   The slot number for this device on __BUS 0__. Linux
  68 *               enumerates through all the bridges and figures out the
  69 *               slot on Bus 0 where this device eventually hooks to.
  70 * @pin:    The PCI interrupt pin read from the device, then swizzled
  71 *               as it goes through each bridge.
  72 * Returns Interrupt number for the device
  73 */
  74int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
  75{
  76        if (octeon_pcibios_map_irq)
  77                return octeon_pcibios_map_irq(dev, slot, pin);
  78        else
  79                panic("octeon_pcibios_map_irq not set.");
  80}
  81
  82
  83/*
  84 * Called to perform platform specific PCI setup
  85 */
  86int pcibios_plat_dev_init(struct pci_dev *dev)
  87{
  88        uint16_t config;
  89        uint32_t dconfig;
  90        int pos;
  91        /*
  92         * Force the Cache line setting to 64 bytes. The standard
  93         * Linux bus scan doesn't seem to set it. Octeon really has
  94         * 128 byte lines, but Intel bridges get really upset if you
  95         * try and set values above 64 bytes. Value is specified in
  96         * 32bit words.
  97         */
  98        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
  99        /* Set latency timers for all devices */
 100        pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
 101
 102        /* Enable reporting System errors and parity errors on all devices */
 103        /* Enable parity checking and error reporting */
 104        pci_read_config_word(dev, PCI_COMMAND, &config);
 105        config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
 106        pci_write_config_word(dev, PCI_COMMAND, config);
 107
 108        if (dev->subordinate) {
 109                /* Set latency timers on sub bridges */
 110                pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
 111                /* More bridge error detection */
 112                pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
 113                config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
 114                pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
 115        }
 116
 117        /* Enable the PCIe normal error reporting */
 118        config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
 119        config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
 120        config |= PCI_EXP_DEVCTL_FERE;  /* Fatal Error Reporting */
 121        config |= PCI_EXP_DEVCTL_URRE;  /* Unsupported Request */
 122        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
 123
 124        /* Find the Advanced Error Reporting capability */
 125        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
 126        if (pos) {
 127                /* Clear Uncorrectable Error Status */
 128                pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 129                                      &dconfig);
 130                pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 131                                       dconfig);
 132                /* Enable reporting of all uncorrectable errors */
 133                /* Uncorrectable Error Mask - turned on bits disable errors */
 134                pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
 135                /*
 136                 * Leave severity at HW default. This only controls if
 137                 * errors are reported as uncorrectable or
 138                 * correctable, not if the error is reported.
 139                 */
 140                /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
 141                /* Clear Correctable Error Status */
 142                pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
 143                pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
 144                /* Enable reporting of all correctable errors */
 145                /* Correctable Error Mask - turned on bits disable errors */
 146                pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
 147                /* Advanced Error Capabilities */
 148                pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
 149                /* ECRC Generation Enable */
 150                if (config & PCI_ERR_CAP_ECRC_GENC)
 151                        config |= PCI_ERR_CAP_ECRC_GENE;
 152                /* ECRC Check Enable */
 153                if (config & PCI_ERR_CAP_ECRC_CHKC)
 154                        config |= PCI_ERR_CAP_ECRC_CHKE;
 155                pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
 156                /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
 157                /* Report all errors to the root complex */
 158                pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
 159                                       PCI_ERR_ROOT_CMD_COR_EN |
 160                                       PCI_ERR_ROOT_CMD_NONFATAL_EN |
 161                                       PCI_ERR_ROOT_CMD_FATAL_EN);
 162                /* Clear the Root status register */
 163                pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
 164                pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
 165        }
 166
 167        return 0;
 168}
 169
 170/**
 171 * Return the mapping of PCI device number to IRQ line. Each
 172 * character in the return string represents the interrupt
 173 * line for the device at that position. Device 1 maps to the
 174 * first character, etc. The characters A-D are used for PCI
 175 * interrupts.
 176 *
 177 * Returns PCI interrupt mapping
 178 */
 179const char *octeon_get_pci_interrupts(void)
 180{
 181        /*
 182         * Returning an empty string causes the interrupts to be
 183         * routed based on the PCI specification. From the PCI spec:
 184         *
 185         * INTA# of Device Number 0 is connected to IRQW on the system
 186         * board.  (Device Number has no significance regarding being
 187         * located on the system board or in a connector.) INTA# of
 188         * Device Number 1 is connected to IRQX on the system
 189         * board. INTA# of Device Number 2 is connected to IRQY on the
 190         * system board. INTA# of Device Number 3 is connected to IRQZ
 191         * on the system board. The table below describes how each
 192         * agent's INTx# lines are connected to the system board
 193         * interrupt lines. The following equation can be used to
 194         * determine to which INTx# signal on the system board a given
 195         * device's INTx# line(s) is connected.
 196         *
 197         * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
 198         * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
 199         * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
 200         * INTD# = 3)
 201         */
 202        if (of_machine_is_compatible("dlink,dsr-500n"))
 203                return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
 204        switch (octeon_bootinfo->board_type) {
 205        case CVMX_BOARD_TYPE_NAO38:
 206                /* This is really the NAC38 */
 207                return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
 208        case CVMX_BOARD_TYPE_EBH3100:
 209        case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
 210        case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
 211                return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
 212        case CVMX_BOARD_TYPE_BBGW_REF:
 213                return "AABCD";
 214        case CVMX_BOARD_TYPE_CUST_DSR1000N:
 215                return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
 216        case CVMX_BOARD_TYPE_THUNDER:
 217        case CVMX_BOARD_TYPE_EBH3000:
 218        default:
 219                return "";
 220        }
 221}
 222
 223/**
 224 * Map a PCI device to the appropriate interrupt line
 225 *
 226 * @dev:    The Linux PCI device structure for the device to map
 227 * @slot:   The slot number for this device on __BUS 0__. Linux
 228 *               enumerates through all the bridges and figures out the
 229 *               slot on Bus 0 where this device eventually hooks to.
 230 * @pin:    The PCI interrupt pin read from the device, then swizzled
 231 *               as it goes through each bridge.
 232 * Returns Interrupt number for the device
 233 */
 234int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
 235                                      u8 slot, u8 pin)
 236{
 237        int irq_num;
 238        const char *interrupts;
 239        int dev_num;
 240
 241        /* Get the board specific interrupt mapping */
 242        interrupts = octeon_get_pci_interrupts();
 243
 244        dev_num = dev->devfn >> 3;
 245        if (dev_num < strlen(interrupts))
 246                irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
 247                        OCTEON_IRQ_PCI_INT0;
 248        else
 249                irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
 250        return irq_num;
 251}
 252
 253
 254/*
 255 * Read a value from configuration space
 256 */
 257static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
 258                              int reg, int size, u32 *val)
 259{
 260        union octeon_pci_address pci_addr;
 261
 262        pci_addr.u64 = 0;
 263        pci_addr.s.upper = 2;
 264        pci_addr.s.io = 1;
 265        pci_addr.s.did = 3;
 266        pci_addr.s.subdid = 1;
 267        pci_addr.s.endian_swap = 1;
 268        pci_addr.s.bus = bus->number;
 269        pci_addr.s.dev = devfn >> 3;
 270        pci_addr.s.func = devfn & 0x7;
 271        pci_addr.s.reg = reg;
 272
 273        switch (size) {
 274        case 4:
 275                *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
 276                return PCIBIOS_SUCCESSFUL;
 277        case 2:
 278                *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
 279                return PCIBIOS_SUCCESSFUL;
 280        case 1:
 281                *val = cvmx_read64_uint8(pci_addr.u64);
 282                return PCIBIOS_SUCCESSFUL;
 283        }
 284        return PCIBIOS_FUNC_NOT_SUPPORTED;
 285}
 286
 287
 288/*
 289 * Write a value to PCI configuration space
 290 */
 291static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
 292                               int reg, int size, u32 val)
 293{
 294        union octeon_pci_address pci_addr;
 295
 296        pci_addr.u64 = 0;
 297        pci_addr.s.upper = 2;
 298        pci_addr.s.io = 1;
 299        pci_addr.s.did = 3;
 300        pci_addr.s.subdid = 1;
 301        pci_addr.s.endian_swap = 1;
 302        pci_addr.s.bus = bus->number;
 303        pci_addr.s.dev = devfn >> 3;
 304        pci_addr.s.func = devfn & 0x7;
 305        pci_addr.s.reg = reg;
 306
 307        switch (size) {
 308        case 4:
 309                cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
 310                return PCIBIOS_SUCCESSFUL;
 311        case 2:
 312                cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
 313                return PCIBIOS_SUCCESSFUL;
 314        case 1:
 315                cvmx_write64_uint8(pci_addr.u64, val);
 316                return PCIBIOS_SUCCESSFUL;
 317        }
 318        return PCIBIOS_FUNC_NOT_SUPPORTED;
 319}
 320
 321
 322static struct pci_ops octeon_pci_ops = {
 323        .read   = octeon_read_config,
 324        .write  = octeon_write_config,
 325};
 326
 327static struct resource octeon_pci_mem_resource = {
 328        .start = 0,
 329        .end = 0,
 330        .name = "Octeon PCI MEM",
 331        .flags = IORESOURCE_MEM,
 332};
 333
 334/*
 335 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
 336 * bridge
 337 */
 338static struct resource octeon_pci_io_resource = {
 339        .start = 0x4000,
 340        .end = OCTEON_PCI_IOSPACE_SIZE - 1,
 341        .name = "Octeon PCI IO",
 342        .flags = IORESOURCE_IO,
 343};
 344
 345static struct pci_controller octeon_pci_controller = {
 346        .pci_ops = &octeon_pci_ops,
 347        .mem_resource = &octeon_pci_mem_resource,
 348        .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
 349        .io_resource = &octeon_pci_io_resource,
 350        .io_offset = 0,
 351        .io_map_base = OCTEON_PCI_IOSPACE_BASE,
 352};
 353
 354
 355/*
 356 * Low level initialize the Octeon PCI controller
 357 */
 358static void octeon_pci_initialize(void)
 359{
 360        union cvmx_pci_cfg01 cfg01;
 361        union cvmx_npi_ctl_status ctl_status;
 362        union cvmx_pci_ctl_status_2 ctl_status_2;
 363        union cvmx_pci_cfg19 cfg19;
 364        union cvmx_pci_cfg16 cfg16;
 365        union cvmx_pci_cfg22 cfg22;
 366        union cvmx_pci_cfg56 cfg56;
 367
 368        /* Reset the PCI Bus */
 369        cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
 370        cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 371
 372        udelay(2000);           /* Hold PCI reset for 2 ms */
 373
 374        ctl_status.u64 = 0;     /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
 375        ctl_status.s.max_word = 1;
 376        ctl_status.s.timer = 1;
 377        cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
 378
 379        /* Deassert PCI reset and advertize PCX Host Mode Device Capability
 380           (64b) */
 381        cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
 382        cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 383
 384        udelay(2000);           /* Wait 2 ms after deasserting PCI reset */
 385
 386        ctl_status_2.u32 = 0;
 387        ctl_status_2.s.tsr_hwm = 1;     /* Initializes to 0.  Must be set
 388                                           before any PCI reads. */
 389        ctl_status_2.s.bar2pres = 1;    /* Enable BAR2 */
 390        ctl_status_2.s.bar2_enb = 1;
 391        ctl_status_2.s.bar2_cax = 1;    /* Don't use L2 */
 392        ctl_status_2.s.bar2_esx = 1;
 393        ctl_status_2.s.pmo_amod = 1;    /* Round robin priority */
 394        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 395                /* BAR1 hole */
 396                ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
 397                ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
 398                ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
 399                ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
 400                ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
 401                ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
 402        }
 403
 404        octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
 405        udelay(2000);           /* Wait 2 ms before doing PCI reads */
 406
 407        ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
 408        pr_notice("PCI Status: %s %s-bit\n",
 409                  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
 410                  ctl_status_2.s.ap_64ad ? "64" : "32");
 411
 412        if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
 413                union cvmx_pci_cnt_reg cnt_reg_start;
 414                union cvmx_pci_cnt_reg cnt_reg_end;
 415                unsigned long cycles, pci_clock;
 416
 417                cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 418                cycles = read_c0_cvmcount();
 419                udelay(1000);
 420                cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 421                cycles = read_c0_cvmcount() - cycles;
 422                pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
 423                            (cycles / (mips_hpt_frequency / 1000000));
 424                pr_notice("PCI Clock: %lu MHz\n", pci_clock);
 425        }
 426
 427        /*
 428         * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
 429         * in PCI-X mode to allow four outstanding splits. Otherwise,
 430         * should not change from its reset value. Don't write PCI_CFG19
 431         * in PCI mode (0x82000001 reset value), write it to 0x82000004
 432         * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
 433         * MRBCM -> must be one.
 434         */
 435        if (ctl_status_2.s.ap_pcix) {
 436                cfg19.u32 = 0;
 437                /*
 438                 * Target Delayed/Split request outstanding maximum
 439                 * count. [1..31] and 0=32.  NOTE: If the user
 440                 * programs these bits beyond the Designed Maximum
 441                 * outstanding count, then the designed maximum table
 442                 * depth will be used instead.  No additional
 443                 * Deferred/Split transactions will be accepted if
 444                 * this outstanding maximum count is
 445                 * reached. Furthermore, no additional deferred/split
 446                 * transactions will be accepted if the I/O delay/ I/O
 447                 * Split Request outstanding maximum is reached.
 448                 */
 449                cfg19.s.tdomc = 4;
 450                /*
 451                 * Master Deferred Read Request Outstanding Max Count
 452                 * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
 453                 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
 454                 * 5 2 110 6 3 111 7 3 For example, if these bits are
 455                 * programmed to 100, the core can support 2 DAC
 456                 * cycles, 4 SAC cycles or a combination of 1 DAC and
 457                 * 2 SAC cycles. NOTE: For the PCI-X maximum
 458                 * outstanding split transactions, refer to
 459                 * CRE0[22:20].
 460                 */
 461                cfg19.s.mdrrmc = 2;
 462                /*
 463                 * Master Request (Memory Read) Byte Count/Byte Enable
 464                 * select. 0 = Byte Enables valid. In PCI mode, a
 465                 * burst transaction cannot be performed using Memory
 466                 * Read command=4?h6. 1 = DWORD Byte Count valid
 467                 * (default). In PCI Mode, the memory read byte
 468                 * enables are automatically generated by the
 469                 * core. Note: N3 Master Request transaction sizes are
 470                 * always determined through the
 471                 * am_attr[<35:32>|<7:0>] field.
 472                 */
 473                cfg19.s.mrbcm = 1;
 474                octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
 475        }
 476
 477
 478        cfg01.u32 = 0;
 479        cfg01.s.msae = 1;       /* Memory Space Access Enable */
 480        cfg01.s.me = 1;         /* Master Enable */
 481        cfg01.s.pee = 1;        /* PERR# Enable */
 482        cfg01.s.see = 1;        /* System Error Enable */
 483        cfg01.s.fbbe = 1;       /* Fast Back to Back Transaction Enable */
 484
 485        octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
 486
 487#ifdef USE_OCTEON_INTERNAL_ARBITER
 488        /*
 489         * When OCTEON is a PCI host, most systems will use OCTEON's
 490         * internal arbiter, so must enable it before any PCI/PCI-X
 491         * traffic can occur.
 492         */
 493        {
 494                union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
 495
 496                pci_int_arb_cfg.u64 = 0;
 497                pci_int_arb_cfg.s.en = 1;       /* Internal arbiter enable */
 498                cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
 499        }
 500#endif  /* USE_OCTEON_INTERNAL_ARBITER */
 501
 502        /*
 503         * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
 504         * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
 505         * 1..7.
 506         */
 507        cfg16.u32 = 0;
 508        cfg16.s.mltd = 1;       /* Master Latency Timer Disable */
 509        octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
 510
 511        /*
 512         * Should be written to 0x4ff00. MTTV -> must be zero.
 513         * FLUSH -> must be 1. MRV -> should be 0xFF.
 514         */
 515        cfg22.u32 = 0;
 516        /* Master Retry Value [1..255] and 0=infinite */
 517        cfg22.s.mrv = 0xff;
 518        /*
 519         * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
 520         * N3K operation.
 521         */
 522        cfg22.s.flush = 1;
 523        octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
 524
 525        /*
 526         * MOST Indicates the maximum number of outstanding splits (in -1
 527         * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
 528         * affected by the MOST selection.  Should generally be written
 529         * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
 530         * depending on the desired MOST of 3, 2, 1, or 0, respectively.
 531         */
 532        cfg56.u32 = 0;
 533        cfg56.s.pxcid = 7;      /* RO - PCI-X Capability ID */
 534        cfg56.s.ncp = 0xe8;     /* RO - Next Capability Pointer */
 535        cfg56.s.dpere = 1;      /* Data Parity Error Recovery Enable */
 536        cfg56.s.roe = 1;        /* Relaxed Ordering Enable */
 537        cfg56.s.mmbc = 1;       /* Maximum Memory Byte Count
 538                                   [0=512B,1=1024B,2=2048B,3=4096B] */
 539        cfg56.s.most = 3;       /* Maximum outstanding Split transactions [0=1
 540                                   .. 7=32] */
 541
 542        octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
 543
 544        /*
 545         * Affects PCI performance when OCTEON services reads to its
 546         * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
 547         * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
 548         * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
 549         * these values need to be changed so they won't possibly prefetch off
 550         * of the end of memory if PCI is DMAing a buffer at the end of
 551         * memory. Note that these values differ from their reset values.
 552         */
 553        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
 554        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
 555        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
 556}
 557
 558
 559/*
 560 * Initialize the Octeon PCI controller
 561 */
 562static int __init octeon_pci_setup(void)
 563{
 564        union cvmx_npi_mem_access_subidx mem_access;
 565        int index;
 566
 567        /* Only these chips have PCI */
 568        if (octeon_has_feature(OCTEON_FEATURE_PCIE))
 569                return 0;
 570
 571        if (!octeon_is_pci_host()) {
 572                pr_notice("Not in host mode, PCI Controller not initialized\n");
 573                return 0;
 574        }
 575
 576        /* Point pcibios_map_irq() to the PCI version of it */
 577        octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
 578
 579        /* Only use the big bars on chips that support it */
 580        if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
 581            OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
 582            OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
 583                octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
 584        else
 585                octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
 586
 587        /* PCI I/O and PCI MEM values */
 588        set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
 589        ioport_resource.start = 0;
 590        ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
 591
 592        pr_notice("%s Octeon big bar support\n",
 593                  (octeon_dma_bar_type ==
 594                  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
 595
 596        octeon_pci_initialize();
 597
 598        mem_access.u64 = 0;
 599        mem_access.s.esr = 1;   /* Endian-Swap on read. */
 600        mem_access.s.esw = 1;   /* Endian-Swap on write. */
 601        mem_access.s.nsr = 0;   /* No-Snoop on read. */
 602        mem_access.s.nsw = 0;   /* No-Snoop on write. */
 603        mem_access.s.ror = 0;   /* Relax Read on read. */
 604        mem_access.s.row = 0;   /* Relax Order on write. */
 605        mem_access.s.ba = 0;    /* PCI Address bits [63:36]. */
 606        cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
 607
 608        /*
 609         * Remap the Octeon BAR 2 above all 32 bit devices
 610         * (0x8000000000ul).  This is done here so it is remapped
 611         * before the readl()'s below. We don't want BAR2 overlapping
 612         * with BAR0/BAR1 during these reads.
 613         */
 614        octeon_npi_write32(CVMX_NPI_PCI_CFG08,
 615                           (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
 616        octeon_npi_write32(CVMX_NPI_PCI_CFG09,
 617                           (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
 618
 619        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 620                /* Remap the Octeon BAR 0 to 0-2GB */
 621                octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
 622                octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 623
 624                /*
 625                 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
 626                 * BAR 1 hole).
 627                 */
 628                octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
 629                octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 630
 631                /* BAR1 movable mappings set for identity mapping */
 632                octeon_bar1_pci_phys = 0x80000000ull;
 633                for (index = 0; index < 32; index++) {
 634                        union cvmx_pci_bar1_indexx bar1_index;
 635
 636                        bar1_index.u32 = 0;
 637                        /* Address bits[35:22] sent to L2C */
 638                        bar1_index.s.addr_idx =
 639                                (octeon_bar1_pci_phys >> 22) + index;
 640                        /* Don't put PCI accesses in L2. */
 641                        bar1_index.s.ca = 1;
 642                        /* Endian Swap Mode */
 643                        bar1_index.s.end_swp = 1;
 644                        /* Set '1' when the selected address range is valid. */
 645                        bar1_index.s.addr_v = 1;
 646                        octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
 647                                           bar1_index.u32);
 648                }
 649
 650                /* Devices go after BAR1 */
 651                octeon_pci_mem_resource.start =
 652                        OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
 653                        (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
 654                octeon_pci_mem_resource.end =
 655                        octeon_pci_mem_resource.start + (1ul << 30);
 656        } else {
 657                /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
 658                octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
 659                octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 660
 661                /* Remap the Octeon BAR 1 to map 0-128MB */
 662                octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
 663                octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 664
 665                /* BAR1 movable regions contiguous to cover the swiotlb */
 666                octeon_bar1_pci_phys =
 667                        virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
 668
 669                for (index = 0; index < 32; index++) {
 670                        union cvmx_pci_bar1_indexx bar1_index;
 671
 672                        bar1_index.u32 = 0;
 673                        /* Address bits[35:22] sent to L2C */
 674                        bar1_index.s.addr_idx =
 675                                (octeon_bar1_pci_phys >> 22) + index;
 676                        /* Don't put PCI accesses in L2. */
 677                        bar1_index.s.ca = 1;
 678                        /* Endian Swap Mode */
 679                        bar1_index.s.end_swp = 1;
 680                        /* Set '1' when the selected address range is valid. */
 681                        bar1_index.s.addr_v = 1;
 682                        octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
 683                                           bar1_index.u32);
 684                }
 685
 686                /* Devices go after BAR0 */
 687                octeon_pci_mem_resource.start =
 688                        OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
 689                        (4ul << 10);
 690                octeon_pci_mem_resource.end =
 691                        octeon_pci_mem_resource.start + (1ul << 30);
 692        }
 693
 694        register_pci_controller(&octeon_pci_controller);
 695
 696        /*
 697         * Clear any errors that might be pending from before the bus
 698         * was setup properly.
 699         */
 700        cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
 701
 702        if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
 703                                                   -1, NULL, 0)))
 704                pr_err("Registration of co_pci_edac failed!\n");
 705
 706        octeon_pci_dma_init();
 707
 708        return 0;
 709}
 710
 711arch_initcall(octeon_pci_setup);
 712