linux/arch/parisc/kernel/firmware.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *      PDC == Processor Dependent Code
   6 *
   7 * See PDC documentation at
   8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
   9 * for documentation describing the entry points and calling
  10 * conventions defined below.
  11 *
  12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  17 */
  18
  19/*      I think it would be in everyone's best interest to follow this
  20 *      guidelines when writing PDC wrappers:
  21 *
  22 *       - the name of the pdc wrapper should match one of the macros
  23 *         used for the first two arguments
  24 *       - don't use caps for random parts of the name
  25 *       - use the static PDC result buffers and "copyout" to structs
  26 *         supplied by the caller to encapsulate alignment restrictions
  27 *       - hold pdc_lock while in PDC or using static result buffers
  28 *       - use __pa() to convert virtual (kernel) pointers to physical
  29 *         ones.
  30 *       - the name of the struct used for pdc return values should equal
  31 *         one of the macros used for the first two arguments to the
  32 *         corresponding PDC call
  33 *       - keep the order of arguments
  34 *       - don't be smart (setting trailing NUL bytes for strings, return
  35 *         something useful even if the call failed) unless you are sure
  36 *         it's not going to affect functionality or performance
  37 *
  38 *      Example:
  39 *      int pdc_cache_info(struct pdc_cache_info *cache_info )
  40 *      {
  41 *              int retval;
  42 *
  43 *              spin_lock_irq(&pdc_lock);
  44 *              retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  45 *              convert_to_wide(pdc_result);
  46 *              memcpy(cache_info, pdc_result, sizeof(*cache_info));
  47 *              spin_unlock_irq(&pdc_lock);
  48 *
  49 *              return retval;
  50 *      }
  51 *                                      prumpf  991016  
  52 */
  53
  54#include <linux/stdarg.h>
  55
  56#include <linux/delay.h>
  57#include <linux/init.h>
  58#include <linux/kernel.h>
  59#include <linux/module.h>
  60#include <linux/string.h>
  61#include <linux/spinlock.h>
  62
  63#include <asm/page.h>
  64#include <asm/pdc.h>
  65#include <asm/pdcpat.h>
  66#include <asm/processor.h>      /* for boot_cpu_data */
  67
  68#if defined(BOOTLOADER)
  69# undef  spin_lock_irqsave
  70# define spin_lock_irqsave(a, b) { b = 1; }
  71# undef  spin_unlock_irqrestore
  72# define spin_unlock_irqrestore(a, b)
  73#else
  74static DEFINE_SPINLOCK(pdc_lock);
  75#endif
  76
  77extern unsigned long pdc_result[NUM_PDC_RESULT];
  78extern unsigned long pdc_result2[NUM_PDC_RESULT];
  79
  80#ifdef CONFIG_64BIT
  81#define WIDE_FIRMWARE 0x1
  82#define NARROW_FIRMWARE 0x2
  83
  84/* Firmware needs to be initially set to narrow to determine the 
  85 * actual firmware width. */
  86int parisc_narrow_firmware __ro_after_init = 1;
  87#endif
  88
  89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  90 * and MEM_PDC calls are always the same width as the OS.
  91 * Some PAT boxes may have 64-bit IODC I/O.
  92 *
  93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  95 * This allowed wide kernels to run on Cxxx boxes.
  96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  98 */
  99
 100#ifdef CONFIG_64BIT
 101long real64_call(unsigned long function, ...);
 102#endif
 103long real32_call(unsigned long function, ...);
 104
 105#ifdef CONFIG_64BIT
 106#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 108#else
 109#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 110#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 111#endif
 112
 113
 114/**
 115 * f_extend - Convert PDC addresses to kernel addresses.
 116 * @address: Address returned from PDC.
 117 *
 118 * This function is used to convert PDC addresses into kernel addresses
 119 * when the PDC address size and kernel address size are different.
 120 */
 121static unsigned long f_extend(unsigned long address)
 122{
 123#ifdef CONFIG_64BIT
 124        if(unlikely(parisc_narrow_firmware)) {
 125                if((address & 0xff000000) == 0xf0000000)
 126                        return 0xf0f0f0f000000000UL | (u32)address;
 127
 128                if((address & 0xf0000000) == 0xf0000000)
 129                        return 0xffffffff00000000UL | (u32)address;
 130        }
 131#endif
 132        return address;
 133}
 134
 135/**
 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 137 * @address: The return buffer from PDC.
 138 *
 139 * This function is used to convert the return buffer addresses retrieved from PDC
 140 * into kernel addresses when the PDC address size and kernel address size are
 141 * different.
 142 */
 143static void convert_to_wide(unsigned long *addr)
 144{
 145#ifdef CONFIG_64BIT
 146        int i;
 147        unsigned int *p = (unsigned int *)addr;
 148
 149        if (unlikely(parisc_narrow_firmware)) {
 150                for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 151                        addr[i] = p[i];
 152        }
 153#endif
 154}
 155
 156#ifdef CONFIG_64BIT
 157void set_firmware_width_unlocked(void)
 158{
 159        int ret;
 160
 161        ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 162                __pa(pdc_result), 0);
 163        convert_to_wide(pdc_result);
 164        if (pdc_result[0] != NARROW_FIRMWARE)
 165                parisc_narrow_firmware = 0;
 166}
 167        
 168/**
 169 * set_firmware_width - Determine if the firmware is wide or narrow.
 170 * 
 171 * This function must be called before any pdc_* function that uses the
 172 * convert_to_wide function.
 173 */
 174void set_firmware_width(void)
 175{
 176        unsigned long flags;
 177        spin_lock_irqsave(&pdc_lock, flags);
 178        set_firmware_width_unlocked();
 179        spin_unlock_irqrestore(&pdc_lock, flags);
 180}
 181#else
 182void set_firmware_width_unlocked(void)
 183{
 184        return;
 185}
 186
 187void set_firmware_width(void)
 188{
 189        return;
 190}
 191#endif /*CONFIG_64BIT*/
 192
 193
 194#if !defined(BOOTLOADER)
 195/**
 196 * pdc_emergency_unlock - Unlock the linux pdc lock
 197 *
 198 * This call unlocks the linux pdc lock in case we need some PDC functions
 199 * (like pdc_add_valid) during kernel stack dump.
 200 */
 201void pdc_emergency_unlock(void)
 202{
 203        /* Spinlock DEBUG code freaks out if we unconditionally unlock */
 204        if (spin_is_locked(&pdc_lock))
 205                spin_unlock(&pdc_lock);
 206}
 207
 208
 209/**
 210 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 211 * @address: Address to be verified.
 212 *
 213 * This PDC call attempts to read from the specified address and verifies
 214 * if the address is valid.
 215 * 
 216 * The return value is PDC_OK (0) in case accessing this address is valid.
 217 */
 218int pdc_add_valid(unsigned long address)
 219{
 220        int retval;
 221        unsigned long flags;
 222
 223        spin_lock_irqsave(&pdc_lock, flags);
 224        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 225        spin_unlock_irqrestore(&pdc_lock, flags);
 226
 227        return retval;
 228}
 229EXPORT_SYMBOL(pdc_add_valid);
 230
 231/**
 232 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 233 * @instr: Pointer to variable which will get instruction opcode.
 234 *
 235 * The return value is PDC_OK (0) in case call succeeded.
 236 */
 237int __init pdc_instr(unsigned int *instr)
 238{
 239        int retval;
 240        unsigned long flags;
 241
 242        spin_lock_irqsave(&pdc_lock, flags);
 243        retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 244        convert_to_wide(pdc_result);
 245        *instr = pdc_result[0];
 246        spin_unlock_irqrestore(&pdc_lock, flags);
 247
 248        return retval;
 249}
 250
 251/**
 252 * pdc_chassis_info - Return chassis information.
 253 * @result: The return buffer.
 254 * @chassis_info: The memory buffer address.
 255 * @len: The size of the memory buffer address.
 256 *
 257 * An HVERSION dependent call for returning the chassis information.
 258 */
 259int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 260{
 261        int retval;
 262        unsigned long flags;
 263
 264        spin_lock_irqsave(&pdc_lock, flags);
 265        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 266        memcpy(&pdc_result2, led_info, len);
 267        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 268                              __pa(pdc_result), __pa(pdc_result2), len);
 269        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 270        memcpy(led_info, pdc_result2, len);
 271        spin_unlock_irqrestore(&pdc_lock, flags);
 272
 273        return retval;
 274}
 275
 276/**
 277 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 278 * @retval: -1 on error, 0 on success. Other value are PDC errors
 279 * 
 280 * Must be correctly formatted or expect system crash
 281 */
 282#ifdef CONFIG_64BIT
 283int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 284{
 285        int retval = 0;
 286        unsigned long flags;
 287        
 288        if (!is_pdc_pat())
 289                return -1;
 290
 291        spin_lock_irqsave(&pdc_lock, flags);
 292        retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 293        spin_unlock_irqrestore(&pdc_lock, flags);
 294
 295        return retval;
 296}
 297#endif
 298
 299/**
 300 * pdc_chassis_disp - Updates chassis code
 301 * @retval: -1 on error, 0 on success
 302 */
 303int pdc_chassis_disp(unsigned long disp)
 304{
 305        int retval = 0;
 306        unsigned long flags;
 307
 308        spin_lock_irqsave(&pdc_lock, flags);
 309        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 310        spin_unlock_irqrestore(&pdc_lock, flags);
 311
 312        return retval;
 313}
 314
 315/**
 316 * pdc_cpu_rendenzvous - Stop currently executing CPU
 317 * @retval: -1 on error, 0 on success
 318 */
 319int __pdc_cpu_rendezvous(void)
 320{
 321        if (is_pdc_pat())
 322                return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 323        else
 324                return mem_pdc_call(PDC_PROC, 1, 0);
 325}
 326
 327
 328/**
 329 * pdc_chassis_warn - Fetches chassis warnings
 330 * @retval: -1 on error, 0 on success
 331 */
 332int pdc_chassis_warn(unsigned long *warn)
 333{
 334        int retval = 0;
 335        unsigned long flags;
 336
 337        spin_lock_irqsave(&pdc_lock, flags);
 338        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 339        *warn = pdc_result[0];
 340        spin_unlock_irqrestore(&pdc_lock, flags);
 341
 342        return retval;
 343}
 344
 345int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 346{
 347        int ret;
 348
 349        ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 350        convert_to_wide(pdc_result);
 351        pdc_coproc_info->ccr_functional = pdc_result[0];
 352        pdc_coproc_info->ccr_present = pdc_result[1];
 353        pdc_coproc_info->revision = pdc_result[17];
 354        pdc_coproc_info->model = pdc_result[18];
 355
 356        return ret;
 357}
 358
 359/**
 360 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 361 * @pdc_coproc_info: Return buffer address.
 362 *
 363 * This PDC call returns the presence and status of all the coprocessors
 364 * attached to the processor.
 365 */
 366int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 367{
 368        int ret;
 369        unsigned long flags;
 370
 371        spin_lock_irqsave(&pdc_lock, flags);
 372        ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 373        spin_unlock_irqrestore(&pdc_lock, flags);
 374
 375        return ret;
 376}
 377
 378/**
 379 * pdc_iodc_read - Read data from the modules IODC.
 380 * @actcnt: The actual number of bytes.
 381 * @hpa: The HPA of the module for the iodc read.
 382 * @index: The iodc entry point.
 383 * @iodc_data: A buffer memory for the iodc options.
 384 * @iodc_data_size: Size of the memory buffer.
 385 *
 386 * This PDC call reads from the IODC of the module specified by the hpa
 387 * argument.
 388 */
 389int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 390                  void *iodc_data, unsigned int iodc_data_size)
 391{
 392        int retval;
 393        unsigned long flags;
 394
 395        spin_lock_irqsave(&pdc_lock, flags);
 396        retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 397                              index, __pa(pdc_result2), iodc_data_size);
 398        convert_to_wide(pdc_result);
 399        *actcnt = pdc_result[0];
 400        memcpy(iodc_data, pdc_result2, iodc_data_size);
 401        spin_unlock_irqrestore(&pdc_lock, flags);
 402
 403        return retval;
 404}
 405EXPORT_SYMBOL(pdc_iodc_read);
 406
 407/**
 408 * pdc_system_map_find_mods - Locate unarchitected modules.
 409 * @pdc_mod_info: Return buffer address.
 410 * @mod_path: pointer to dev path structure.
 411 * @mod_index: fixed address module index.
 412 *
 413 * To locate and identify modules which reside at fixed I/O addresses, which
 414 * do not self-identify via architected bus walks.
 415 */
 416int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 417                             struct pdc_module_path *mod_path, long mod_index)
 418{
 419        int retval;
 420        unsigned long flags;
 421
 422        spin_lock_irqsave(&pdc_lock, flags);
 423        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 424                              __pa(pdc_result2), mod_index);
 425        convert_to_wide(pdc_result);
 426        memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 427        memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 428        spin_unlock_irqrestore(&pdc_lock, flags);
 429
 430        pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 431        return retval;
 432}
 433
 434/**
 435 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 436 * @pdc_addr_info: Return buffer address.
 437 * @mod_index: Fixed address module index.
 438 * @addr_index: Address range index.
 439 * 
 440 * Retrieve additional information about subsequent address ranges for modules
 441 * with multiple address ranges.  
 442 */
 443int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 444                              long mod_index, long addr_index)
 445{
 446        int retval;
 447        unsigned long flags;
 448
 449        spin_lock_irqsave(&pdc_lock, flags);
 450        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 451                              mod_index, addr_index);
 452        convert_to_wide(pdc_result);
 453        memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 454        spin_unlock_irqrestore(&pdc_lock, flags);
 455
 456        pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 457        return retval;
 458}
 459
 460/**
 461 * pdc_model_info - Return model information about the processor.
 462 * @model: The return buffer.
 463 *
 464 * Returns the version numbers, identifiers, and capabilities from the processor module.
 465 */
 466int pdc_model_info(struct pdc_model *model) 
 467{
 468        int retval;
 469        unsigned long flags;
 470
 471        spin_lock_irqsave(&pdc_lock, flags);
 472        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 473        convert_to_wide(pdc_result);
 474        memcpy(model, pdc_result, sizeof(*model));
 475        spin_unlock_irqrestore(&pdc_lock, flags);
 476
 477        return retval;
 478}
 479
 480/**
 481 * pdc_model_sysmodel - Get the system model name.
 482 * @name: A char array of at least 81 characters.
 483 *
 484 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 485 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 486 * on HP/UX.
 487 */
 488int pdc_model_sysmodel(char *name)
 489{
 490        int retval;
 491        unsigned long flags;
 492
 493        spin_lock_irqsave(&pdc_lock, flags);
 494        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 495                              OS_ID_HPUX, __pa(name));
 496        convert_to_wide(pdc_result);
 497
 498        if (retval == PDC_OK) {
 499                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 500        } else {
 501                name[0] = 0;
 502        }
 503        spin_unlock_irqrestore(&pdc_lock, flags);
 504
 505        return retval;
 506}
 507
 508/**
 509 * pdc_model_versions - Identify the version number of each processor.
 510 * @cpu_id: The return buffer.
 511 * @id: The id of the processor to check.
 512 *
 513 * Returns the version number for each processor component.
 514 *
 515 * This comment was here before, but I do not know what it means :( -RB
 516 * id: 0 = cpu revision, 1 = boot-rom-version
 517 */
 518int pdc_model_versions(unsigned long *versions, int id)
 519{
 520        int retval;
 521        unsigned long flags;
 522
 523        spin_lock_irqsave(&pdc_lock, flags);
 524        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 525        convert_to_wide(pdc_result);
 526        *versions = pdc_result[0];
 527        spin_unlock_irqrestore(&pdc_lock, flags);
 528
 529        return retval;
 530}
 531
 532/**
 533 * pdc_model_cpuid - Returns the CPU_ID.
 534 * @cpu_id: The return buffer.
 535 *
 536 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 537 * the processor module.
 538 */
 539int pdc_model_cpuid(unsigned long *cpu_id)
 540{
 541        int retval;
 542        unsigned long flags;
 543
 544        spin_lock_irqsave(&pdc_lock, flags);
 545        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 546        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 547        convert_to_wide(pdc_result);
 548        *cpu_id = pdc_result[0];
 549        spin_unlock_irqrestore(&pdc_lock, flags);
 550
 551        return retval;
 552}
 553
 554/**
 555 * pdc_model_capabilities - Returns the platform capabilities.
 556 * @capabilities: The return buffer.
 557 *
 558 * Returns information about platform support for 32- and/or 64-bit
 559 * OSes, IO-PDIR coherency, and virtual aliasing.
 560 */
 561int pdc_model_capabilities(unsigned long *capabilities)
 562{
 563        int retval;
 564        unsigned long flags;
 565
 566        spin_lock_irqsave(&pdc_lock, flags);
 567        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 568        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 569        convert_to_wide(pdc_result);
 570        if (retval == PDC_OK) {
 571                *capabilities = pdc_result[0];
 572        } else {
 573                *capabilities = PDC_MODEL_OS32;
 574        }
 575        spin_unlock_irqrestore(&pdc_lock, flags);
 576
 577        return retval;
 578}
 579
 580/**
 581 * pdc_model_platform_info - Returns machine product and serial number.
 582 * @orig_prod_num: Return buffer for original product number.
 583 * @current_prod_num: Return buffer for current product number.
 584 * @serial_no: Return buffer for serial number.
 585 *
 586 * Returns strings containing the original and current product numbers and the
 587 * serial number of the system.
 588 */
 589int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 590                char *serial_no)
 591{
 592        int retval;
 593        unsigned long flags;
 594
 595        spin_lock_irqsave(&pdc_lock, flags);
 596        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 597                __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 598        convert_to_wide(pdc_result);
 599        spin_unlock_irqrestore(&pdc_lock, flags);
 600
 601        return retval;
 602}
 603
 604/**
 605 * pdc_cache_info - Return cache and TLB information.
 606 * @cache_info: The return buffer.
 607 *
 608 * Returns information about the processor's cache and TLB.
 609 */
 610int pdc_cache_info(struct pdc_cache_info *cache_info)
 611{
 612        int retval;
 613        unsigned long flags;
 614
 615        spin_lock_irqsave(&pdc_lock, flags);
 616        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 617        convert_to_wide(pdc_result);
 618        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 619        spin_unlock_irqrestore(&pdc_lock, flags);
 620
 621        return retval;
 622}
 623
 624/**
 625 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 626 * @space_bits: Should be 0, if not, bad mojo!
 627 *
 628 * Returns information about Space ID hashing.
 629 */
 630int pdc_spaceid_bits(unsigned long *space_bits)
 631{
 632        int retval;
 633        unsigned long flags;
 634
 635        spin_lock_irqsave(&pdc_lock, flags);
 636        pdc_result[0] = 0;
 637        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 638        convert_to_wide(pdc_result);
 639        *space_bits = pdc_result[0];
 640        spin_unlock_irqrestore(&pdc_lock, flags);
 641
 642        return retval;
 643}
 644
 645#ifndef CONFIG_PA20
 646/**
 647 * pdc_btlb_info - Return block TLB information.
 648 * @btlb: The return buffer.
 649 *
 650 * Returns information about the hardware Block TLB.
 651 */
 652int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 653{
 654        int retval;
 655        unsigned long flags;
 656
 657        spin_lock_irqsave(&pdc_lock, flags);
 658        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 659        memcpy(btlb, pdc_result, sizeof(*btlb));
 660        spin_unlock_irqrestore(&pdc_lock, flags);
 661
 662        if(retval < 0) {
 663                btlb->max_size = 0;
 664        }
 665        return retval;
 666}
 667
 668/**
 669 * pdc_mem_map_hpa - Find fixed module information.  
 670 * @address: The return buffer
 671 * @mod_path: pointer to dev path structure.
 672 *
 673 * This call was developed for S700 workstations to allow the kernel to find
 674 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 675 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 676 * call.
 677 *
 678 * This call is supported by all existing S700 workstations (up to  Gecko).
 679 */
 680int pdc_mem_map_hpa(struct pdc_memory_map *address,
 681                struct pdc_module_path *mod_path)
 682{
 683        int retval;
 684        unsigned long flags;
 685
 686        spin_lock_irqsave(&pdc_lock, flags);
 687        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 688        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 689                                __pa(pdc_result2));
 690        memcpy(address, pdc_result, sizeof(*address));
 691        spin_unlock_irqrestore(&pdc_lock, flags);
 692
 693        return retval;
 694}
 695#endif  /* !CONFIG_PA20 */
 696
 697/**
 698 * pdc_lan_station_id - Get the LAN address.
 699 * @lan_addr: The return buffer.
 700 * @hpa: The network device HPA.
 701 *
 702 * Get the LAN station address when it is not directly available from the LAN hardware.
 703 */
 704int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 705{
 706        int retval;
 707        unsigned long flags;
 708
 709        spin_lock_irqsave(&pdc_lock, flags);
 710        retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 711                        __pa(pdc_result), hpa);
 712        if (retval < 0) {
 713                /* FIXME: else read MAC from NVRAM */
 714                memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 715        } else {
 716                memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 717        }
 718        spin_unlock_irqrestore(&pdc_lock, flags);
 719
 720        return retval;
 721}
 722EXPORT_SYMBOL(pdc_lan_station_id);
 723
 724/**
 725 * pdc_stable_read - Read data from Stable Storage.
 726 * @staddr: Stable Storage address to access.
 727 * @memaddr: The memory address where Stable Storage data shall be copied.
 728 * @count: number of bytes to transfer. count is multiple of 4.
 729 *
 730 * This PDC call reads from the Stable Storage address supplied in staddr
 731 * and copies count bytes to the memory address memaddr.
 732 * The call will fail if staddr+count > PDC_STABLE size.
 733 */
 734int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 735{
 736       int retval;
 737        unsigned long flags;
 738
 739       spin_lock_irqsave(&pdc_lock, flags);
 740       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 741               __pa(pdc_result), count);
 742       convert_to_wide(pdc_result);
 743       memcpy(memaddr, pdc_result, count);
 744       spin_unlock_irqrestore(&pdc_lock, flags);
 745
 746       return retval;
 747}
 748EXPORT_SYMBOL(pdc_stable_read);
 749
 750/**
 751 * pdc_stable_write - Write data to Stable Storage.
 752 * @staddr: Stable Storage address to access.
 753 * @memaddr: The memory address where Stable Storage data shall be read from.
 754 * @count: number of bytes to transfer. count is multiple of 4.
 755 *
 756 * This PDC call reads count bytes from the supplied memaddr address,
 757 * and copies count bytes to the Stable Storage address staddr.
 758 * The call will fail if staddr+count > PDC_STABLE size.
 759 */
 760int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 761{
 762       int retval;
 763        unsigned long flags;
 764
 765       spin_lock_irqsave(&pdc_lock, flags);
 766       memcpy(pdc_result, memaddr, count);
 767       convert_to_wide(pdc_result);
 768       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 769               __pa(pdc_result), count);
 770       spin_unlock_irqrestore(&pdc_lock, flags);
 771
 772       return retval;
 773}
 774EXPORT_SYMBOL(pdc_stable_write);
 775
 776/**
 777 * pdc_stable_get_size - Get Stable Storage size in bytes.
 778 * @size: pointer where the size will be stored.
 779 *
 780 * This PDC call returns the number of bytes in the processor's Stable
 781 * Storage, which is the number of contiguous bytes implemented in Stable
 782 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 783 * which is a multiple of four.
 784 */
 785int pdc_stable_get_size(unsigned long *size)
 786{
 787       int retval;
 788        unsigned long flags;
 789
 790       spin_lock_irqsave(&pdc_lock, flags);
 791       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 792       *size = pdc_result[0];
 793       spin_unlock_irqrestore(&pdc_lock, flags);
 794
 795       return retval;
 796}
 797EXPORT_SYMBOL(pdc_stable_get_size);
 798
 799/**
 800 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 801 *
 802 * This PDC call is meant to be used to check the integrity of the current
 803 * contents of Stable Storage.
 804 */
 805int pdc_stable_verify_contents(void)
 806{
 807       int retval;
 808        unsigned long flags;
 809
 810       spin_lock_irqsave(&pdc_lock, flags);
 811       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 812       spin_unlock_irqrestore(&pdc_lock, flags);
 813
 814       return retval;
 815}
 816EXPORT_SYMBOL(pdc_stable_verify_contents);
 817
 818/**
 819 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 820 * the validity indicator.
 821 *
 822 * This PDC call will erase all contents of Stable Storage. Use with care!
 823 */
 824int pdc_stable_initialize(void)
 825{
 826       int retval;
 827        unsigned long flags;
 828
 829       spin_lock_irqsave(&pdc_lock, flags);
 830       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 831       spin_unlock_irqrestore(&pdc_lock, flags);
 832
 833       return retval;
 834}
 835EXPORT_SYMBOL(pdc_stable_initialize);
 836
 837/**
 838 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 839 * @hwpath: fully bc.mod style path to the device.
 840 * @initiator: the array to return the result into
 841 *
 842 * Get the SCSI operational parameters from PDC.
 843 * Needed since HPUX never used BIOS or symbios card NVRAM.
 844 * Most ncr/sym cards won't have an entry and just use whatever
 845 * capabilities of the card are (eg Ultra, LVD). But there are
 846 * several cases where it's useful:
 847 *    o set SCSI id for Multi-initiator clusters,
 848 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 849 *    o bus width exported is less than what the interface chip supports.
 850 */
 851int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 852{
 853        int retval;
 854        unsigned long flags;
 855
 856        spin_lock_irqsave(&pdc_lock, flags);
 857
 858/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 859#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 860        strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 861
 862        retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 863                              __pa(pdc_result), __pa(hwpath));
 864        if (retval < PDC_OK)
 865                goto out;
 866
 867        if (pdc_result[0] < 16) {
 868                initiator->host_id = pdc_result[0];
 869        } else {
 870                initiator->host_id = -1;
 871        }
 872
 873        /*
 874         * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 875         * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 876         */
 877        switch (pdc_result[1]) {
 878                case  1: initiator->factor = 50; break;
 879                case  2: initiator->factor = 25; break;
 880                case  5: initiator->factor = 12; break;
 881                case 25: initiator->factor = 10; break;
 882                case 20: initiator->factor = 12; break;
 883                case 40: initiator->factor = 10; break;
 884                default: initiator->factor = -1; break;
 885        }
 886
 887        if (IS_SPROCKETS()) {
 888                initiator->width = pdc_result[4];
 889                initiator->mode = pdc_result[5];
 890        } else {
 891                initiator->width = -1;
 892                initiator->mode = -1;
 893        }
 894
 895 out:
 896        spin_unlock_irqrestore(&pdc_lock, flags);
 897
 898        return (retval >= PDC_OK);
 899}
 900EXPORT_SYMBOL(pdc_get_initiator);
 901
 902
 903/**
 904 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 905 * @num_entries: The return value.
 906 * @hpa: The HPA for the device.
 907 *
 908 * This PDC function returns the number of entries in the specified cell's
 909 * interrupt table.
 910 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 911 */ 
 912int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 913{
 914        int retval;
 915        unsigned long flags;
 916
 917        spin_lock_irqsave(&pdc_lock, flags);
 918        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 919                              __pa(pdc_result), hpa);
 920        convert_to_wide(pdc_result);
 921        *num_entries = pdc_result[0];
 922        spin_unlock_irqrestore(&pdc_lock, flags);
 923
 924        return retval;
 925}
 926
 927/** 
 928 * pdc_pci_irt - Get the PCI interrupt routing table.
 929 * @num_entries: The number of entries in the table.
 930 * @hpa: The Hard Physical Address of the device.
 931 * @tbl: 
 932 *
 933 * Get the PCI interrupt routing table for the device at the given HPA.
 934 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 935 */
 936int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 937{
 938        int retval;
 939        unsigned long flags;
 940
 941        BUG_ON((unsigned long)tbl & 0x7);
 942
 943        spin_lock_irqsave(&pdc_lock, flags);
 944        pdc_result[0] = num_entries;
 945        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 946                              __pa(pdc_result), hpa, __pa(tbl));
 947        spin_unlock_irqrestore(&pdc_lock, flags);
 948
 949        return retval;
 950}
 951
 952
 953#if 0   /* UNTEST CODE - left here in case someone needs it */
 954
 955/** 
 956 * pdc_pci_config_read - read PCI config space.
 957 * @hpa         token from PDC to indicate which PCI device
 958 * @pci_addr    configuration space address to read from
 959 *
 960 * Read PCI Configuration space *before* linux PCI subsystem is running.
 961 */
 962unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 963{
 964        int retval;
 965        unsigned long flags;
 966
 967        spin_lock_irqsave(&pdc_lock, flags);
 968        pdc_result[0] = 0;
 969        pdc_result[1] = 0;
 970        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 971                              __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 972        spin_unlock_irqrestore(&pdc_lock, flags);
 973
 974        return retval ? ~0 : (unsigned int) pdc_result[0];
 975}
 976
 977
 978/** 
 979 * pdc_pci_config_write - read PCI config space.
 980 * @hpa         token from PDC to indicate which PCI device
 981 * @pci_addr    configuration space address to write
 982 * @val         value we want in the 32-bit register
 983 *
 984 * Write PCI Configuration space *before* linux PCI subsystem is running.
 985 */
 986void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 987{
 988        int retval;
 989        unsigned long flags;
 990
 991        spin_lock_irqsave(&pdc_lock, flags);
 992        pdc_result[0] = 0;
 993        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 994                              __pa(pdc_result), hpa,
 995                              cfg_addr&~3UL, 4UL, (unsigned long) val);
 996        spin_unlock_irqrestore(&pdc_lock, flags);
 997
 998        return retval;
 999}
1000#endif /* UNTESTED CODE */
1001
1002/**
1003 * pdc_tod_read - Read the Time-Of-Day clock.
1004 * @tod: The return buffer:
1005 *
1006 * Read the Time-Of-Day clock
1007 */
1008int pdc_tod_read(struct pdc_tod *tod)
1009{
1010        int retval;
1011        unsigned long flags;
1012
1013        spin_lock_irqsave(&pdc_lock, flags);
1014        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1015        convert_to_wide(pdc_result);
1016        memcpy(tod, pdc_result, sizeof(*tod));
1017        spin_unlock_irqrestore(&pdc_lock, flags);
1018
1019        return retval;
1020}
1021EXPORT_SYMBOL(pdc_tod_read);
1022
1023int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1024{
1025        int retval;
1026        unsigned long flags;
1027
1028        spin_lock_irqsave(&pdc_lock, flags);
1029        retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1030        convert_to_wide(pdc_result);
1031        memcpy(rinfo, pdc_result, sizeof(*rinfo));
1032        spin_unlock_irqrestore(&pdc_lock, flags);
1033
1034        return retval;
1035}
1036
1037int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1038                unsigned long *pdt_entries_ptr)
1039{
1040        int retval;
1041        unsigned long flags;
1042
1043        spin_lock_irqsave(&pdc_lock, flags);
1044        retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1045                        __pa(pdt_entries_ptr));
1046        if (retval == PDC_OK) {
1047                convert_to_wide(pdc_result);
1048                memcpy(pret, pdc_result, sizeof(*pret));
1049        }
1050        spin_unlock_irqrestore(&pdc_lock, flags);
1051
1052#ifdef CONFIG_64BIT
1053        /*
1054         * 64-bit kernels should not call this PDT function in narrow mode.
1055         * The pdt_entries_ptr array above will now contain 32-bit values
1056         */
1057        if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1058                return PDC_ERROR;
1059#endif
1060
1061        return retval;
1062}
1063
1064/**
1065 * pdc_tod_set - Set the Time-Of-Day clock.
1066 * @sec: The number of seconds since epoch.
1067 * @usec: The number of micro seconds.
1068 *
1069 * Set the Time-Of-Day clock.
1070 */ 
1071int pdc_tod_set(unsigned long sec, unsigned long usec)
1072{
1073        int retval;
1074        unsigned long flags;
1075
1076        spin_lock_irqsave(&pdc_lock, flags);
1077        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1078        spin_unlock_irqrestore(&pdc_lock, flags);
1079
1080        return retval;
1081}
1082EXPORT_SYMBOL(pdc_tod_set);
1083
1084#ifdef CONFIG_64BIT
1085int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1086                struct pdc_memory_table *tbl, unsigned long entries)
1087{
1088        int retval;
1089        unsigned long flags;
1090
1091        spin_lock_irqsave(&pdc_lock, flags);
1092        retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1093        convert_to_wide(pdc_result);
1094        memcpy(r_addr, pdc_result, sizeof(*r_addr));
1095        memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1096        spin_unlock_irqrestore(&pdc_lock, flags);
1097
1098        return retval;
1099}
1100#endif /* CONFIG_64BIT */
1101
1102/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1103 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1104 * it later. :)
1105 */
1106int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1107{
1108        int retval;
1109        unsigned long flags;
1110
1111        spin_lock_irqsave(&pdc_lock, flags);
1112        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1113                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1114        spin_unlock_irqrestore(&pdc_lock, flags);
1115
1116        return retval;
1117}
1118
1119/*
1120 * pdc_do_reset - Reset the system.
1121 *
1122 * Reset the system.
1123 */
1124int pdc_do_reset(void)
1125{
1126        int retval;
1127        unsigned long flags;
1128
1129        spin_lock_irqsave(&pdc_lock, flags);
1130        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1131        spin_unlock_irqrestore(&pdc_lock, flags);
1132
1133        return retval;
1134}
1135
1136/*
1137 * pdc_soft_power_info - Enable soft power switch.
1138 * @power_reg: address of soft power register
1139 *
1140 * Return the absolute address of the soft power switch register
1141 */
1142int __init pdc_soft_power_info(unsigned long *power_reg)
1143{
1144        int retval;
1145        unsigned long flags;
1146
1147        *power_reg = (unsigned long) (-1);
1148        
1149        spin_lock_irqsave(&pdc_lock, flags);
1150        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1151        if (retval == PDC_OK) {
1152                convert_to_wide(pdc_result);
1153                *power_reg = f_extend(pdc_result[0]);
1154        }
1155        spin_unlock_irqrestore(&pdc_lock, flags);
1156
1157        return retval;
1158}
1159
1160/*
1161 * pdc_soft_power_button - Control the soft power button behaviour
1162 * @sw_control: 0 for hardware control, 1 for software control 
1163 *
1164 *
1165 * This PDC function places the soft power button under software or
1166 * hardware control.
1167 * Under software control the OS may control to when to allow to shut 
1168 * down the system. Under hardware control pressing the power button 
1169 * powers off the system immediately.
1170 */
1171int pdc_soft_power_button(int sw_control)
1172{
1173        int retval;
1174        unsigned long flags;
1175
1176        spin_lock_irqsave(&pdc_lock, flags);
1177        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1178        spin_unlock_irqrestore(&pdc_lock, flags);
1179
1180        return retval;
1181}
1182
1183/*
1184 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1185 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1186 * who knows what other platform firmware might do with this OS "hook".
1187 */
1188void pdc_io_reset(void)
1189{
1190        unsigned long flags;
1191
1192        spin_lock_irqsave(&pdc_lock, flags);
1193        mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1194        spin_unlock_irqrestore(&pdc_lock, flags);
1195}
1196
1197/*
1198 * pdc_io_reset_devices - Hack to Stop USB controller
1199 *
1200 * If PDC used the usb controller, the usb controller
1201 * is still running and will crash the machines during iommu 
1202 * setup, because of still running DMA. This PDC call
1203 * stops the USB controller.
1204 * Normally called after calling pdc_io_reset().
1205 */
1206void pdc_io_reset_devices(void)
1207{
1208        unsigned long flags;
1209
1210        spin_lock_irqsave(&pdc_lock, flags);
1211        mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1212        spin_unlock_irqrestore(&pdc_lock, flags);
1213}
1214
1215#endif /* defined(BOOTLOADER) */
1216
1217/* locked by pdc_console_lock */
1218static int __attribute__((aligned(8)))   iodc_retbuf[32];
1219static char __attribute__((aligned(64))) iodc_dbuf[4096];
1220
1221/**
1222 * pdc_iodc_print - Console print using IODC.
1223 * @str: the string to output.
1224 * @count: length of str
1225 *
1226 * Note that only these special chars are architected for console IODC io:
1227 * BEL, BS, CR, and LF. Others are passed through.
1228 * Since the HP console requires CR+LF to perform a 'newline', we translate
1229 * "\n" to "\r\n".
1230 */
1231int pdc_iodc_print(const unsigned char *str, unsigned count)
1232{
1233        unsigned int i;
1234        unsigned long flags;
1235
1236        for (i = 0; i < count;) {
1237                switch(str[i]) {
1238                case '\n':
1239                        iodc_dbuf[i+0] = '\r';
1240                        iodc_dbuf[i+1] = '\n';
1241                        i += 2;
1242                        goto print;
1243                default:
1244                        iodc_dbuf[i] = str[i];
1245                        i++;
1246                        break;
1247                }
1248        }
1249
1250print:
1251        spin_lock_irqsave(&pdc_lock, flags);
1252        real32_call(PAGE0->mem_cons.iodc_io,
1253                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1254                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1255                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1256        spin_unlock_irqrestore(&pdc_lock, flags);
1257
1258        return i;
1259}
1260
1261#if !defined(BOOTLOADER)
1262/**
1263 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1264 *
1265 * Read a character (non-blocking) from the PDC console, returns -1 if
1266 * key is not present.
1267 */
1268int pdc_iodc_getc(void)
1269{
1270        int ch;
1271        int status;
1272        unsigned long flags;
1273
1274        /* Bail if no console input device. */
1275        if (!PAGE0->mem_kbd.iodc_io)
1276                return 0;
1277        
1278        /* wait for a keyboard (rs232)-input */
1279        spin_lock_irqsave(&pdc_lock, flags);
1280        real32_call(PAGE0->mem_kbd.iodc_io,
1281                    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1282                    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1283                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1284
1285        ch = *iodc_dbuf;
1286        status = *iodc_retbuf;
1287        spin_unlock_irqrestore(&pdc_lock, flags);
1288
1289        if (status == 0)
1290            return -1;
1291        
1292        return ch;
1293}
1294
1295int pdc_sti_call(unsigned long func, unsigned long flags,
1296                 unsigned long inptr, unsigned long outputr,
1297                 unsigned long glob_cfg)
1298{
1299        int retval;
1300        unsigned long irqflags;
1301
1302        spin_lock_irqsave(&pdc_lock, irqflags);  
1303        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1304        spin_unlock_irqrestore(&pdc_lock, irqflags);
1305
1306        return retval;
1307}
1308EXPORT_SYMBOL(pdc_sti_call);
1309
1310#ifdef CONFIG_64BIT
1311/**
1312 * pdc_pat_cell_get_number - Returns the cell number.
1313 * @cell_info: The return buffer.
1314 *
1315 * This PDC call returns the cell number of the cell from which the call
1316 * is made.
1317 */
1318int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1319{
1320        int retval;
1321        unsigned long flags;
1322
1323        spin_lock_irqsave(&pdc_lock, flags);
1324        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1325        memcpy(cell_info, pdc_result, sizeof(*cell_info));
1326        spin_unlock_irqrestore(&pdc_lock, flags);
1327
1328        return retval;
1329}
1330
1331/**
1332 * pdc_pat_cell_module - Retrieve the cell's module information.
1333 * @actcnt: The number of bytes written to mem_addr.
1334 * @ploc: The physical location.
1335 * @mod: The module index.
1336 * @view_type: The view of the address type.
1337 * @mem_addr: The return buffer.
1338 *
1339 * This PDC call returns information about each module attached to the cell
1340 * at the specified location.
1341 */
1342int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1343                        unsigned long view_type, void *mem_addr)
1344{
1345        int retval;
1346        unsigned long flags;
1347        static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1348
1349        spin_lock_irqsave(&pdc_lock, flags);
1350        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1351                              ploc, mod, view_type, __pa(&result));
1352        if(!retval) {
1353                *actcnt = pdc_result[0];
1354                memcpy(mem_addr, &result, *actcnt);
1355        }
1356        spin_unlock_irqrestore(&pdc_lock, flags);
1357
1358        return retval;
1359}
1360
1361/**
1362 * pdc_pat_cell_info - Retrieve the cell's information.
1363 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1364 * @actcnt: The number of bytes which should be written to info.
1365 * @offset: offset of the structure.
1366 * @cell_number: The cell number which should be asked, or -1 for current cell.
1367 *
1368 * This PDC call returns information about the given cell (or all cells).
1369 */
1370int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1371                unsigned long *actcnt, unsigned long offset,
1372                unsigned long cell_number)
1373{
1374        int retval;
1375        unsigned long flags;
1376        struct pdc_pat_cell_info_rtn_block result;
1377
1378        spin_lock_irqsave(&pdc_lock, flags);
1379        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1380                        __pa(pdc_result), __pa(&result), *actcnt,
1381                        offset, cell_number);
1382        if (!retval) {
1383                *actcnt = pdc_result[0];
1384                memcpy(info, &result, *actcnt);
1385        }
1386        spin_unlock_irqrestore(&pdc_lock, flags);
1387
1388        return retval;
1389}
1390
1391/**
1392 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1393 * @cpu_info: The return buffer.
1394 * @hpa: The Hard Physical Address of the CPU.
1395 *
1396 * Retrieve the cpu number for the cpu at the specified HPA.
1397 */
1398int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1399{
1400        int retval;
1401        unsigned long flags;
1402
1403        spin_lock_irqsave(&pdc_lock, flags);
1404        retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1405                              __pa(&pdc_result), hpa);
1406        memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1407        spin_unlock_irqrestore(&pdc_lock, flags);
1408
1409        return retval;
1410}
1411
1412/**
1413 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1414 * @num_entries: The return value.
1415 * @cell_num: The target cell.
1416 *
1417 * This PDC function returns the number of entries in the specified cell's
1418 * interrupt table.
1419 */
1420int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1421{
1422        int retval;
1423        unsigned long flags;
1424
1425        spin_lock_irqsave(&pdc_lock, flags);
1426        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1427                              __pa(pdc_result), cell_num);
1428        *num_entries = pdc_result[0];
1429        spin_unlock_irqrestore(&pdc_lock, flags);
1430
1431        return retval;
1432}
1433
1434/**
1435 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1436 * @r_addr: The return buffer.
1437 * @cell_num: The target cell.
1438 *
1439 * This PDC function returns the actual interrupt table for the specified cell.
1440 */
1441int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1442{
1443        int retval;
1444        unsigned long flags;
1445
1446        spin_lock_irqsave(&pdc_lock, flags);
1447        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1448                              __pa(r_addr), cell_num);
1449        spin_unlock_irqrestore(&pdc_lock, flags);
1450
1451        return retval;
1452}
1453
1454/**
1455 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1456 * @actlen: The return buffer.
1457 * @mem_addr: Pointer to the memory buffer.
1458 * @count: The number of bytes to read from the buffer.
1459 * @offset: The offset with respect to the beginning of the buffer.
1460 *
1461 */
1462int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1463                            unsigned long count, unsigned long offset)
1464{
1465        int retval;
1466        unsigned long flags;
1467
1468        spin_lock_irqsave(&pdc_lock, flags);
1469        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1470                              __pa(pdc_result2), count, offset);
1471        *actual_len = pdc_result[0];
1472        memcpy(mem_addr, pdc_result2, *actual_len);
1473        spin_unlock_irqrestore(&pdc_lock, flags);
1474
1475        return retval;
1476}
1477
1478/**
1479 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1480 * @legacy_rev: The legacy revision.
1481 * @pat_rev: The PAT revision.
1482 * @pdc_cap: The PDC capabilities.
1483 *
1484 */
1485int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1486                unsigned long *pat_rev, unsigned long *pdc_cap)
1487{
1488        int retval;
1489        unsigned long flags;
1490
1491        spin_lock_irqsave(&pdc_lock, flags);
1492        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1493                                __pa(pdc_result));
1494        if (retval == PDC_OK) {
1495                *legacy_rev = pdc_result[0];
1496                *pat_rev = pdc_result[1];
1497                *pdc_cap = pdc_result[2];
1498        }
1499        spin_unlock_irqrestore(&pdc_lock, flags);
1500
1501        return retval;
1502}
1503
1504
1505/**
1506 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1507 * @pci_addr: PCI configuration space address for which the read request is being made.
1508 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1509 * @mem_addr: Pointer to return memory buffer.
1510 *
1511 */
1512int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1513{
1514        int retval;
1515        unsigned long flags;
1516
1517        spin_lock_irqsave(&pdc_lock, flags);
1518        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1519                                        __pa(pdc_result), pci_addr, pci_size);
1520        switch(pci_size) {
1521                case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1522                case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1523                case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1524        }
1525        spin_unlock_irqrestore(&pdc_lock, flags);
1526
1527        return retval;
1528}
1529
1530/**
1531 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1532 * @pci_addr: PCI configuration space address for which the write  request is being made.
1533 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1534 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1535 *         written to PCI Config space.
1536 *
1537 */
1538int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1539{
1540        int retval;
1541        unsigned long flags;
1542
1543        spin_lock_irqsave(&pdc_lock, flags);
1544        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1545                                pci_addr, pci_size, val);
1546        spin_unlock_irqrestore(&pdc_lock, flags);
1547
1548        return retval;
1549}
1550
1551/**
1552 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1553 * @rinfo: memory pdt information
1554 *
1555 */
1556int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1557{
1558        int retval;
1559        unsigned long flags;
1560
1561        spin_lock_irqsave(&pdc_lock, flags);
1562        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1563                        __pa(&pdc_result));
1564        if (retval == PDC_OK)
1565                memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1566        spin_unlock_irqrestore(&pdc_lock, flags);
1567
1568        return retval;
1569}
1570
1571/**
1572 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1573 *                              table of a cell
1574 * @rinfo: memory pdt information
1575 * @cell: cell number
1576 *
1577 */
1578int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1579                unsigned long cell)
1580{
1581        int retval;
1582        unsigned long flags;
1583
1584        spin_lock_irqsave(&pdc_lock, flags);
1585        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1586                        __pa(&pdc_result), cell);
1587        if (retval == PDC_OK)
1588                memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1589        spin_unlock_irqrestore(&pdc_lock, flags);
1590
1591        return retval;
1592}
1593
1594/**
1595 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1596 * @pret: array of PDT entries
1597 * @pdt_entries_ptr: ptr to hold number of PDT entries
1598 * @max_entries: maximum number of entries to be read
1599 *
1600 */
1601int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1602                unsigned long *pdt_entries_ptr, unsigned long max_entries)
1603{
1604        int retval;
1605        unsigned long flags, entries;
1606
1607        spin_lock_irqsave(&pdc_lock, flags);
1608        /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1609        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1610                        __pa(&pdc_result), parisc_cell_num,
1611                        __pa(pdt_entries_ptr));
1612
1613        if (retval == PDC_OK) {
1614                /* build up return value as for PDC_PAT_MEM_PD_READ */
1615                entries = min(pdc_result[0], max_entries);
1616                pret->pdt_entries = entries;
1617                pret->actual_count_bytes = entries * sizeof(unsigned long);
1618        }
1619
1620        spin_unlock_irqrestore(&pdc_lock, flags);
1621        WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1622
1623        return retval;
1624}
1625/**
1626 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1627 * @pret: array of PDT entries
1628 * @pdt_entries_ptr: ptr to hold number of PDT entries
1629 * @count: number of bytes to read
1630 * @offset: offset to start (in bytes)
1631 *
1632 */
1633int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1634                unsigned long *pdt_entries_ptr, unsigned long count,
1635                unsigned long offset)
1636{
1637        int retval;
1638        unsigned long flags, entries;
1639
1640        spin_lock_irqsave(&pdc_lock, flags);
1641        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1642                __pa(&pdc_result), __pa(pdt_entries_ptr),
1643                count, offset);
1644
1645        if (retval == PDC_OK) {
1646                entries = min(pdc_result[0], count);
1647                pret->actual_count_bytes = entries;
1648                pret->pdt_entries = entries / sizeof(unsigned long);
1649        }
1650
1651        spin_unlock_irqrestore(&pdc_lock, flags);
1652
1653        return retval;
1654}
1655
1656/**
1657 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1658 * @pret: ptr to hold returned information
1659 * @phys_addr: physical address to examine
1660 *
1661 */
1662int pdc_pat_mem_get_dimm_phys_location(
1663                struct pdc_pat_mem_phys_mem_location *pret,
1664                unsigned long phys_addr)
1665{
1666        int retval;
1667        unsigned long flags;
1668
1669        spin_lock_irqsave(&pdc_lock, flags);
1670        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1671                __pa(&pdc_result), phys_addr);
1672
1673        if (retval == PDC_OK)
1674                memcpy(pret, &pdc_result, sizeof(*pret));
1675
1676        spin_unlock_irqrestore(&pdc_lock, flags);
1677
1678        return retval;
1679}
1680#endif /* CONFIG_64BIT */
1681#endif /* defined(BOOTLOADER) */
1682
1683
1684/***************** 32-bit real-mode calls ***********/
1685/* The struct below is used
1686 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1687 * real32_call_asm() then uses this stack in narrow real mode
1688 */
1689
1690struct narrow_stack {
1691        /* use int, not long which is 64 bits */
1692        unsigned int arg13;
1693        unsigned int arg12;
1694        unsigned int arg11;
1695        unsigned int arg10;
1696        unsigned int arg9;
1697        unsigned int arg8;
1698        unsigned int arg7;
1699        unsigned int arg6;
1700        unsigned int arg5;
1701        unsigned int arg4;
1702        unsigned int arg3;
1703        unsigned int arg2;
1704        unsigned int arg1;
1705        unsigned int arg0;
1706        unsigned int frame_marker[8];
1707        unsigned int sp;
1708        /* in reality, there's nearly 8k of stack after this */
1709};
1710
1711long real32_call(unsigned long fn, ...)
1712{
1713        va_list args;
1714        extern struct narrow_stack real_stack;
1715        extern unsigned long real32_call_asm(unsigned int *,
1716                                             unsigned int *, 
1717                                             unsigned int);
1718        
1719        va_start(args, fn);
1720        real_stack.arg0 = va_arg(args, unsigned int);
1721        real_stack.arg1 = va_arg(args, unsigned int);
1722        real_stack.arg2 = va_arg(args, unsigned int);
1723        real_stack.arg3 = va_arg(args, unsigned int);
1724        real_stack.arg4 = va_arg(args, unsigned int);
1725        real_stack.arg5 = va_arg(args, unsigned int);
1726        real_stack.arg6 = va_arg(args, unsigned int);
1727        real_stack.arg7 = va_arg(args, unsigned int);
1728        real_stack.arg8 = va_arg(args, unsigned int);
1729        real_stack.arg9 = va_arg(args, unsigned int);
1730        real_stack.arg10 = va_arg(args, unsigned int);
1731        real_stack.arg11 = va_arg(args, unsigned int);
1732        real_stack.arg12 = va_arg(args, unsigned int);
1733        real_stack.arg13 = va_arg(args, unsigned int);
1734        va_end(args);
1735        
1736        return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1737}
1738
1739#ifdef CONFIG_64BIT
1740/***************** 64-bit real-mode calls ***********/
1741
1742struct wide_stack {
1743        unsigned long arg0;
1744        unsigned long arg1;
1745        unsigned long arg2;
1746        unsigned long arg3;
1747        unsigned long arg4;
1748        unsigned long arg5;
1749        unsigned long arg6;
1750        unsigned long arg7;
1751        unsigned long arg8;
1752        unsigned long arg9;
1753        unsigned long arg10;
1754        unsigned long arg11;
1755        unsigned long arg12;
1756        unsigned long arg13;
1757        unsigned long frame_marker[2];  /* rp, previous sp */
1758        unsigned long sp;
1759        /* in reality, there's nearly 8k of stack after this */
1760};
1761
1762long real64_call(unsigned long fn, ...)
1763{
1764        va_list args;
1765        extern struct wide_stack real64_stack;
1766        extern unsigned long real64_call_asm(unsigned long *,
1767                                             unsigned long *, 
1768                                             unsigned long);
1769    
1770        va_start(args, fn);
1771        real64_stack.arg0 = va_arg(args, unsigned long);
1772        real64_stack.arg1 = va_arg(args, unsigned long);
1773        real64_stack.arg2 = va_arg(args, unsigned long);
1774        real64_stack.arg3 = va_arg(args, unsigned long);
1775        real64_stack.arg4 = va_arg(args, unsigned long);
1776        real64_stack.arg5 = va_arg(args, unsigned long);
1777        real64_stack.arg6 = va_arg(args, unsigned long);
1778        real64_stack.arg7 = va_arg(args, unsigned long);
1779        real64_stack.arg8 = va_arg(args, unsigned long);
1780        real64_stack.arg9 = va_arg(args, unsigned long);
1781        real64_stack.arg10 = va_arg(args, unsigned long);
1782        real64_stack.arg11 = va_arg(args, unsigned long);
1783        real64_stack.arg12 = va_arg(args, unsigned long);
1784        real64_stack.arg13 = va_arg(args, unsigned long);
1785        va_end(args);
1786        
1787        return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1788}
1789
1790#endif /* CONFIG_64BIT */
1791