linux/arch/parisc/kernel/perf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Parisc performance counters
   4 *  Copyright (C) 2001 Randolph Chung <tausq@debian.org>
   5 *
   6 *  This code is derived, with permission, from HP/UX sources.
   7 */
   8
   9/*
  10 *  Edited comment from original sources:
  11 *
  12 *  This driver programs the PCX-U/PCX-W performance counters
  13 *  on the PA-RISC 2.0 chips.  The driver keeps all images now
  14 *  internally to the kernel to hopefully eliminate the possibility
  15 *  of a bad image halting the CPU.  Also, there are different
  16 *  images for the PCX-W and later chips vs the PCX-U chips.
  17 *
  18 *  Only 1 process is allowed to access the driver at any time,
  19 *  so the only protection that is needed is at open and close.
  20 *  A variable "perf_enabled" is used to hold the state of the
  21 *  driver.  The spinlock "perf_lock" is used to protect the
  22 *  modification of the state during open/close operations so
  23 *  multiple processes don't get into the driver simultaneously.
  24 *
  25 *  This driver accesses the processor directly vs going through
  26 *  the PDC INTRIGUE calls.  This is done to eliminate bugs introduced
  27 *  in various PDC revisions.  The code is much more maintainable
  28 *  and reliable this way vs having to debug on every version of PDC
  29 *  on every box.
  30 */
  31
  32#include <linux/capability.h>
  33#include <linux/init.h>
  34#include <linux/proc_fs.h>
  35#include <linux/miscdevice.h>
  36#include <linux/spinlock.h>
  37
  38#include <linux/uaccess.h>
  39#include <asm/perf.h>
  40#include <asm/parisc-device.h>
  41#include <asm/processor.h>
  42#include <asm/runway.h>
  43#include <asm/io.h>             /* for __raw_read() */
  44
  45#include "perf_images.h"
  46
  47#define MAX_RDR_WORDS   24
  48#define PERF_VERSION    2       /* derived from hpux's PI v2 interface */
  49
  50/* definition of RDR regs */
  51struct rdr_tbl_ent {
  52        uint16_t        width;
  53        uint8_t         num_words;
  54        uint8_t         write_control;
  55};
  56
  57static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
  58static int perf_enabled __read_mostly;
  59static DEFINE_SPINLOCK(perf_lock);
  60struct parisc_device *cpu_device __read_mostly;
  61
  62/* RDRs to write for PCX-W */
  63static const int perf_rdrs_W[] =
  64        { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
  65
  66/* RDRs to write for PCX-U */
  67static const int perf_rdrs_U[] =
  68        { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
  69
  70/* RDR register descriptions for PCX-W */
  71static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
  72        { 19,   1,      8 },   /* RDR 0 */
  73        { 16,   1,      16 },  /* RDR 1 */
  74        { 72,   2,      0 },   /* RDR 2 */
  75        { 81,   2,      0 },   /* RDR 3 */
  76        { 328,  6,      0 },   /* RDR 4 */
  77        { 160,  3,      0 },   /* RDR 5 */
  78        { 336,  6,      0 },   /* RDR 6 */
  79        { 164,  3,      0 },   /* RDR 7 */
  80        { 0,    0,      0 },   /* RDR 8 */
  81        { 35,   1,      0 },   /* RDR 9 */
  82        { 6,    1,      0 },   /* RDR 10 */
  83        { 18,   1,      0 },   /* RDR 11 */
  84        { 13,   1,      0 },   /* RDR 12 */
  85        { 8,    1,      0 },   /* RDR 13 */
  86        { 8,    1,      0 },   /* RDR 14 */
  87        { 8,    1,      0 },   /* RDR 15 */
  88        { 1530, 24,     0 },   /* RDR 16 */
  89        { 16,   1,      0 },   /* RDR 17 */
  90        { 4,    1,      0 },   /* RDR 18 */
  91        { 0,    0,      0 },   /* RDR 19 */
  92        { 152,  3,      24 },  /* RDR 20 */
  93        { 152,  3,      24 },  /* RDR 21 */
  94        { 233,  4,      48 },  /* RDR 22 */
  95        { 233,  4,      48 },  /* RDR 23 */
  96        { 71,   2,      0 },   /* RDR 24 */
  97        { 71,   2,      0 },   /* RDR 25 */
  98        { 11,   1,      0 },   /* RDR 26 */
  99        { 18,   1,      0 },   /* RDR 27 */
 100        { 128,  2,      0 },   /* RDR 28 */
 101        { 0,    0,      0 },   /* RDR 29 */
 102        { 16,   1,      0 },   /* RDR 30 */
 103        { 16,   1,      0 },   /* RDR 31 */
 104};
 105
 106/* RDR register descriptions for PCX-U */
 107static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
 108        { 19,   1,      8 },              /* RDR 0 */
 109        { 32,   1,      16 },             /* RDR 1 */
 110        { 20,   1,      0 },              /* RDR 2 */
 111        { 0,    0,      0 },              /* RDR 3 */
 112        { 344,  6,      0 },              /* RDR 4 */
 113        { 176,  3,      0 },              /* RDR 5 */
 114        { 336,  6,      0 },              /* RDR 6 */
 115        { 0,    0,      0 },              /* RDR 7 */
 116        { 0,    0,      0 },              /* RDR 8 */
 117        { 0,    0,      0 },              /* RDR 9 */
 118        { 28,   1,      0 },              /* RDR 10 */
 119        { 33,   1,      0 },              /* RDR 11 */
 120        { 0,    0,      0 },              /* RDR 12 */
 121        { 230,  4,      0 },              /* RDR 13 */
 122        { 32,   1,      0 },              /* RDR 14 */
 123        { 128,  2,      0 },              /* RDR 15 */
 124        { 1494, 24,     0 },              /* RDR 16 */
 125        { 18,   1,      0 },              /* RDR 17 */
 126        { 4,    1,      0 },              /* RDR 18 */
 127        { 0,    0,      0 },              /* RDR 19 */
 128        { 158,  3,      24 },             /* RDR 20 */
 129        { 158,  3,      24 },             /* RDR 21 */
 130        { 194,  4,      48 },             /* RDR 22 */
 131        { 194,  4,      48 },             /* RDR 23 */
 132        { 71,   2,      0 },              /* RDR 24 */
 133        { 71,   2,      0 },              /* RDR 25 */
 134        { 28,   1,      0 },              /* RDR 26 */
 135        { 33,   1,      0 },              /* RDR 27 */
 136        { 88,   2,      0 },              /* RDR 28 */
 137        { 32,   1,      0 },              /* RDR 29 */
 138        { 24,   1,      0 },              /* RDR 30 */
 139        { 16,   1,      0 },              /* RDR 31 */
 140};
 141
 142/*
 143 * A non-zero write_control in the above tables is a byte offset into
 144 * this array.
 145 */
 146static const uint64_t perf_bitmasks[] = {
 147        0x0000000000000000ul,     /* first dbl word must be zero */
 148        0xfdffe00000000000ul,     /* RDR0 bitmask */
 149        0x003f000000000000ul,     /* RDR1 bitmask */
 150        0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (152 bits) */
 151        0xfffffffffffffffful,
 152        0xfffffffc00000000ul,
 153        0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (233 bits) */
 154        0xfffffffffffffffful,
 155        0xfffffffffffffffcul,
 156        0xff00000000000000ul
 157};
 158
 159/*
 160 * Write control bitmasks for Pa-8700 processor given
 161 * some things have changed slightly.
 162 */
 163static const uint64_t perf_bitmasks_piranha[] = {
 164        0x0000000000000000ul,     /* first dbl word must be zero */
 165        0xfdffe00000000000ul,     /* RDR0 bitmask */
 166        0x003f000000000000ul,     /* RDR1 bitmask */
 167        0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (158 bits) */
 168        0xfffffffffffffffful,
 169        0xfffffffc00000000ul,
 170        0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (210 bits) */
 171        0xfffffffffffffffful,
 172        0xfffffffffffffffful,
 173        0xfffc000000000000ul
 174};
 175
 176static const uint64_t *bitmask_array;   /* array of bitmasks to use */
 177
 178/******************************************************************************
 179 * Function Prototypes
 180 *****************************************************************************/
 181static int perf_config(uint32_t *image_ptr);
 182static int perf_release(struct inode *inode, struct file *file);
 183static int perf_open(struct inode *inode, struct file *file);
 184static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
 185static ssize_t perf_write(struct file *file, const char __user *buf,
 186        size_t count, loff_t *ppos);
 187static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 188static void perf_start_counters(void);
 189static int perf_stop_counters(uint32_t *raddr);
 190static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
 191static int perf_rdr_read_ubuf(uint32_t  rdr_num, uint64_t *buffer);
 192static int perf_rdr_clear(uint32_t rdr_num);
 193static int perf_write_image(uint64_t *memaddr);
 194static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
 195
 196/* External Assembly Routines */
 197extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
 198extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
 199extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
 200extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
 201extern void perf_intrigue_enable_perf_counters (void);
 202extern void perf_intrigue_disable_perf_counters (void);
 203
 204/******************************************************************************
 205 * Function Definitions
 206 *****************************************************************************/
 207
 208
 209/*
 210 * configure:
 211 *
 212 * Configure the cpu with a given data image.  First turn off the counters,
 213 * then download the image, then turn the counters back on.
 214 */
 215static int perf_config(uint32_t *image_ptr)
 216{
 217        long error;
 218        uint32_t raddr[4];
 219
 220        /* Stop the counters*/
 221        error = perf_stop_counters(raddr);
 222        if (error != 0) {
 223                printk("perf_config: perf_stop_counters = %ld\n", error);
 224                return -EINVAL;
 225        }
 226
 227printk("Preparing to write image\n");
 228        /* Write the image to the chip */
 229        error = perf_write_image((uint64_t *)image_ptr);
 230        if (error != 0) {
 231                printk("perf_config: DOWNLOAD = %ld\n", error);
 232                return -EINVAL;
 233        }
 234
 235printk("Preparing to start counters\n");
 236
 237        /* Start the counters */
 238        perf_start_counters();
 239
 240        return sizeof(uint32_t);
 241}
 242
 243/*
 244 * Open the device and initialize all of its memory.  The device is only
 245 * opened once, but can be "queried" by multiple processes that know its
 246 * file descriptor.
 247 */
 248static int perf_open(struct inode *inode, struct file *file)
 249{
 250        spin_lock(&perf_lock);
 251        if (perf_enabled) {
 252                spin_unlock(&perf_lock);
 253                return -EBUSY;
 254        }
 255        perf_enabled = 1;
 256        spin_unlock(&perf_lock);
 257
 258        return 0;
 259}
 260
 261/*
 262 * Close the device.
 263 */
 264static int perf_release(struct inode *inode, struct file *file)
 265{
 266        spin_lock(&perf_lock);
 267        perf_enabled = 0;
 268        spin_unlock(&perf_lock);
 269
 270        return 0;
 271}
 272
 273/*
 274 * Read does nothing for this driver
 275 */
 276static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
 277{
 278        return 0;
 279}
 280
 281/*
 282 * write:
 283 *
 284 * This routine downloads the image to the chip.  It must be
 285 * called on the processor that the download should happen
 286 * on.
 287 */
 288static ssize_t perf_write(struct file *file, const char __user *buf,
 289        size_t count, loff_t *ppos)
 290{
 291        size_t image_size;
 292        uint32_t image_type;
 293        uint32_t interface_type;
 294        uint32_t test;
 295
 296        if (perf_processor_interface == ONYX_INTF)
 297                image_size = PCXU_IMAGE_SIZE;
 298        else if (perf_processor_interface == CUDA_INTF)
 299                image_size = PCXW_IMAGE_SIZE;
 300        else
 301                return -EFAULT;
 302
 303        if (!perfmon_capable())
 304                return -EACCES;
 305
 306        if (count != sizeof(uint32_t))
 307                return -EIO;
 308
 309        if (copy_from_user(&image_type, buf, sizeof(uint32_t)))
 310                return -EFAULT;
 311
 312        /* Get the interface type and test type */
 313        interface_type = (image_type >> 16) & 0xffff;
 314        test           = (image_type & 0xffff);
 315
 316        /* Make sure everything makes sense */
 317
 318        /* First check the machine type is correct for
 319           the requested image */
 320        if (((perf_processor_interface == CUDA_INTF) &&
 321                        (interface_type != CUDA_INTF)) ||
 322                ((perf_processor_interface == ONYX_INTF) &&
 323                        (interface_type != ONYX_INTF)))
 324                return -EINVAL;
 325
 326        /* Next check to make sure the requested image
 327           is valid */
 328        if (((interface_type == CUDA_INTF) &&
 329                       (test >= MAX_CUDA_IMAGES)) ||
 330            ((interface_type == ONYX_INTF) &&
 331                       (test >= MAX_ONYX_IMAGES)))
 332                return -EINVAL;
 333
 334        /* Copy the image into the processor */
 335        if (interface_type == CUDA_INTF)
 336                return perf_config(cuda_images[test]);
 337        else
 338                return perf_config(onyx_images[test]);
 339
 340        return count;
 341}
 342
 343/*
 344 * Patch the images that need to know the IVA addresses.
 345 */
 346static void perf_patch_images(void)
 347{
 348#if 0 /* FIXME!! */
 349/*
 350 * NOTE:  this routine is VERY specific to the current TLB image.
 351 * If the image is changed, this routine might also need to be changed.
 352 */
 353        extern void $i_itlb_miss_2_0();
 354        extern void $i_dtlb_miss_2_0();
 355        extern void PA2_0_iva();
 356
 357        /*
 358         * We can only use the lower 32-bits, the upper 32-bits should be 0
 359         * anyway given this is in the kernel
 360         */
 361        uint32_t itlb_addr  = (uint32_t)&($i_itlb_miss_2_0);
 362        uint32_t dtlb_addr  = (uint32_t)&($i_dtlb_miss_2_0);
 363        uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
 364
 365        if (perf_processor_interface == ONYX_INTF) {
 366                /* clear last 2 bytes */
 367                onyx_images[TLBMISS][15] &= 0xffffff00;
 368                /* set 2 bytes */
 369                onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
 370                onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
 371                onyx_images[TLBMISS][17] = itlb_addr;
 372
 373                /* clear last 2 bytes */
 374                onyx_images[TLBHANDMISS][15] &= 0xffffff00;
 375                /* set 2 bytes */
 376                onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
 377                onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
 378                onyx_images[TLBHANDMISS][17] = itlb_addr;
 379
 380                /* clear last 2 bytes */
 381                onyx_images[BIG_CPI][15] &= 0xffffff00;
 382                /* set 2 bytes */
 383                onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
 384                onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
 385                onyx_images[BIG_CPI][17] = itlb_addr;
 386
 387            onyx_images[PANIC][15] &= 0xffffff00;  /* clear last 2 bytes */
 388                onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
 389                onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
 390
 391
 392        } else if (perf_processor_interface == CUDA_INTF) {
 393                /* Cuda interface */
 394                cuda_images[TLBMISS][16] =
 395                        (cuda_images[TLBMISS][16]&0xffff0000) |
 396                        ((dtlb_addr >> 8)&0x0000ffff);
 397                cuda_images[TLBMISS][17] =
 398                        ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
 399                cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
 400
 401                cuda_images[TLBHANDMISS][16] =
 402                        (cuda_images[TLBHANDMISS][16]&0xffff0000) |
 403                        ((dtlb_addr >> 8)&0x0000ffff);
 404                cuda_images[TLBHANDMISS][17] =
 405                        ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
 406                cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
 407
 408                cuda_images[BIG_CPI][16] =
 409                        (cuda_images[BIG_CPI][16]&0xffff0000) |
 410                        ((dtlb_addr >> 8)&0x0000ffff);
 411                cuda_images[BIG_CPI][17] =
 412                        ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
 413                cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
 414        } else {
 415                /* Unknown type */
 416        }
 417#endif
 418}
 419
 420
 421/*
 422 * ioctl routine
 423 * All routines effect the processor that they are executed on.  Thus you
 424 * must be running on the processor that you wish to change.
 425 */
 426
 427static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 428{
 429        long error_start;
 430        uint32_t raddr[4];
 431        int error = 0;
 432
 433        switch (cmd) {
 434
 435            case PA_PERF_ON:
 436                        /* Start the counters */
 437                        perf_start_counters();
 438                        break;
 439
 440            case PA_PERF_OFF:
 441                        error_start = perf_stop_counters(raddr);
 442                        if (error_start != 0) {
 443                                printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
 444                                error = -EFAULT;
 445                                break;
 446                        }
 447
 448                        /* copy out the Counters */
 449                        if (copy_to_user((void __user *)arg, raddr,
 450                                        sizeof (raddr)) != 0) {
 451                                error =  -EFAULT;
 452                                break;
 453                        }
 454                        break;
 455
 456            case PA_PERF_VERSION:
 457                        /* Return the version # */
 458                        error = put_user(PERF_VERSION, (int *)arg);
 459                        break;
 460
 461            default:
 462                        error = -ENOTTY;
 463        }
 464
 465        return error;
 466}
 467
 468static const struct file_operations perf_fops = {
 469        .llseek = no_llseek,
 470        .read = perf_read,
 471        .write = perf_write,
 472        .unlocked_ioctl = perf_ioctl,
 473        .compat_ioctl = perf_ioctl,
 474        .open = perf_open,
 475        .release = perf_release
 476};
 477
 478static struct miscdevice perf_dev = {
 479        MISC_DYNAMIC_MINOR,
 480        PA_PERF_DEV,
 481        &perf_fops
 482};
 483
 484/*
 485 * Initialize the module
 486 */
 487static int __init perf_init(void)
 488{
 489        int ret;
 490
 491        /* Determine correct processor interface to use */
 492        bitmask_array = perf_bitmasks;
 493
 494        if (boot_cpu_data.cpu_type == pcxu ||
 495            boot_cpu_data.cpu_type == pcxu_) {
 496                perf_processor_interface = ONYX_INTF;
 497        } else if (boot_cpu_data.cpu_type == pcxw ||
 498                 boot_cpu_data.cpu_type == pcxw_ ||
 499                 boot_cpu_data.cpu_type == pcxw2 ||
 500                 boot_cpu_data.cpu_type == mako ||
 501                 boot_cpu_data.cpu_type == mako2) {
 502                perf_processor_interface = CUDA_INTF;
 503                if (boot_cpu_data.cpu_type == pcxw2 ||
 504                    boot_cpu_data.cpu_type == mako ||
 505                    boot_cpu_data.cpu_type == mako2)
 506                        bitmask_array = perf_bitmasks_piranha;
 507        } else {
 508                perf_processor_interface = UNKNOWN_INTF;
 509                printk("Performance monitoring counters not supported on this processor\n");
 510                return -ENODEV;
 511        }
 512
 513        ret = misc_register(&perf_dev);
 514        if (ret) {
 515                printk(KERN_ERR "Performance monitoring counters: "
 516                        "cannot register misc device.\n");
 517                return ret;
 518        }
 519
 520        /* Patch the images to match the system */
 521        perf_patch_images();
 522
 523        /* TODO: this only lets us access the first cpu.. what to do for SMP? */
 524        cpu_device = per_cpu(cpu_data, 0).dev;
 525        printk("Performance monitoring counters enabled for %s\n",
 526                per_cpu(cpu_data, 0).dev->name);
 527
 528        return 0;
 529}
 530device_initcall(perf_init);
 531
 532/*
 533 * perf_start_counters(void)
 534 *
 535 * Start the counters.
 536 */
 537static void perf_start_counters(void)
 538{
 539        /* Enable performance monitor counters */
 540        perf_intrigue_enable_perf_counters();
 541}
 542
 543/*
 544 * perf_stop_counters
 545 *
 546 * Stop the performance counters and save counts
 547 * in a per_processor array.
 548 */
 549static int perf_stop_counters(uint32_t *raddr)
 550{
 551        uint64_t userbuf[MAX_RDR_WORDS];
 552
 553        /* Disable performance counters */
 554        perf_intrigue_disable_perf_counters();
 555
 556        if (perf_processor_interface == ONYX_INTF) {
 557                uint64_t tmp64;
 558                /*
 559                 * Read the counters
 560                 */
 561                if (!perf_rdr_read_ubuf(16, userbuf))
 562                        return -13;
 563
 564                /* Counter0 is bits 1398 to 1429 */
 565                tmp64 =  (userbuf[21] << 22) & 0x00000000ffc00000;
 566                tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
 567                /* OR sticky0 (bit 1430) to counter0 bit 32 */
 568                tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
 569                raddr[0] = (uint32_t)tmp64;
 570
 571                /* Counter1 is bits 1431 to 1462 */
 572                tmp64 =  (userbuf[22] >> 9) & 0x00000000ffffffff;
 573                /* OR sticky1 (bit 1463) to counter1 bit 32 */
 574                tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
 575                raddr[1] = (uint32_t)tmp64;
 576
 577                /* Counter2 is bits 1464 to 1495 */
 578                tmp64 =  (userbuf[22] << 24) & 0x00000000ff000000;
 579                tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
 580                /* OR sticky2 (bit 1496) to counter2 bit 32 */
 581                tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
 582                raddr[2] = (uint32_t)tmp64;
 583
 584                /* Counter3 is bits 1497 to 1528 */
 585                tmp64 =  (userbuf[23] >> 7) & 0x00000000ffffffff;
 586                /* OR sticky3 (bit 1529) to counter3 bit 32 */
 587                tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
 588                raddr[3] = (uint32_t)tmp64;
 589
 590                /*
 591                 * Zero out the counters
 592                 */
 593
 594                /*
 595                 * The counters and sticky-bits comprise the last 132 bits
 596                 * (1398 - 1529) of RDR16 on a U chip.  We'll zero these
 597                 * out the easy way: zero out last 10 bits of dword 21,
 598                 * all of dword 22 and 58 bits (plus 6 don't care bits) of
 599                 * dword 23.
 600                 */
 601                userbuf[21] &= 0xfffffffffffffc00ul;    /* 0 to last 10 bits */
 602                userbuf[22] = 0;
 603                userbuf[23] = 0;
 604
 605                /*
 606                 * Write back the zeroed bytes + the image given
 607                 * the read was destructive.
 608                 */
 609                perf_rdr_write(16, userbuf);
 610        } else {
 611
 612                /*
 613                 * Read RDR-15 which contains the counters and sticky bits
 614                 */
 615                if (!perf_rdr_read_ubuf(15, userbuf)) {
 616                        return -13;
 617                }
 618
 619                /*
 620                 * Clear out the counters
 621                 */
 622                perf_rdr_clear(15);
 623
 624                /*
 625                 * Copy the counters 
 626                 */
 627                raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
 628                raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
 629                raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
 630                raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
 631        }
 632
 633        return 0;
 634}
 635
 636/*
 637 * perf_rdr_get_entry
 638 *
 639 * Retrieve a pointer to the description of what this
 640 * RDR contains.
 641 */
 642static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
 643{
 644        if (perf_processor_interface == ONYX_INTF) {
 645                return &perf_rdr_tbl_U[rdr_num];
 646        } else {
 647                return &perf_rdr_tbl_W[rdr_num];
 648        }
 649}
 650
 651/*
 652 * perf_rdr_read_ubuf
 653 *
 654 * Read the RDR value into the buffer specified.
 655 */
 656static int perf_rdr_read_ubuf(uint32_t  rdr_num, uint64_t *buffer)
 657{
 658        uint64_t        data, data_mask = 0;
 659        uint32_t        width, xbits, i;
 660        const struct rdr_tbl_ent *tentry;
 661
 662        tentry = perf_rdr_get_entry(rdr_num);
 663        if ((width = tentry->width) == 0)
 664                return 0;
 665
 666        /* Clear out buffer */
 667        i = tentry->num_words;
 668        while (i--) {
 669                buffer[i] = 0;
 670        }
 671
 672        /* Check for bits an even number of 64 */
 673        if ((xbits = width & 0x03f) != 0) {
 674                data_mask = 1;
 675                data_mask <<= (64 - xbits);
 676                data_mask--;
 677        }
 678
 679        /* Grab all of the data */
 680        i = tentry->num_words;
 681        while (i--) {
 682
 683                if (perf_processor_interface == ONYX_INTF) {
 684                        data = perf_rdr_shift_in_U(rdr_num, width);
 685                } else {
 686                        data = perf_rdr_shift_in_W(rdr_num, width);
 687                }
 688                if (xbits) {
 689                        buffer[i] |= (data << (64 - xbits));
 690                        if (i) {
 691                                buffer[i-1] |= ((data >> xbits) & data_mask);
 692                        }
 693                } else {
 694                        buffer[i] = data;
 695                }
 696        }
 697
 698        return 1;
 699}
 700
 701/*
 702 * perf_rdr_clear
 703 *
 704 * Zero out the given RDR register
 705 */
 706static int perf_rdr_clear(uint32_t      rdr_num)
 707{
 708        const struct rdr_tbl_ent *tentry;
 709        int32_t         i;
 710
 711        tentry = perf_rdr_get_entry(rdr_num);
 712
 713        if (tentry->width == 0) {
 714                return -1;
 715        }
 716
 717        i = tentry->num_words;
 718        while (i--) {
 719                if (perf_processor_interface == ONYX_INTF) {
 720                        perf_rdr_shift_out_U(rdr_num, 0UL);
 721                } else {
 722                        perf_rdr_shift_out_W(rdr_num, 0UL);
 723                }
 724        }
 725
 726        return 0;
 727}
 728
 729
 730/*
 731 * perf_write_image
 732 *
 733 * Write the given image out to the processor
 734 */
 735static int perf_write_image(uint64_t *memaddr)
 736{
 737        uint64_t buffer[MAX_RDR_WORDS];
 738        uint64_t *bptr;
 739        uint32_t dwords;
 740        const uint32_t *intrigue_rdr;
 741        const uint64_t *intrigue_bitmask;
 742        uint64_t tmp64;
 743        void __iomem *runway;
 744        const struct rdr_tbl_ent *tentry;
 745        int i;
 746
 747        /* Clear out counters */
 748        if (perf_processor_interface == ONYX_INTF) {
 749
 750                perf_rdr_clear(16);
 751
 752                /* Toggle performance monitor */
 753                perf_intrigue_enable_perf_counters();
 754                perf_intrigue_disable_perf_counters();
 755
 756                intrigue_rdr = perf_rdrs_U;
 757        } else {
 758                perf_rdr_clear(15);
 759                intrigue_rdr = perf_rdrs_W;
 760        }
 761
 762        /* Write all RDRs */
 763        while (*intrigue_rdr != -1) {
 764                tentry = perf_rdr_get_entry(*intrigue_rdr);
 765                perf_rdr_read_ubuf(*intrigue_rdr, buffer);
 766                bptr   = &buffer[0];
 767                dwords = tentry->num_words;
 768                if (tentry->write_control) {
 769                        intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
 770                        while (dwords--) {
 771                                tmp64 = *intrigue_bitmask & *memaddr++;
 772                                tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
 773                                *bptr++ = tmp64;
 774                        }
 775                } else {
 776                        while (dwords--) {
 777                                *bptr++ = *memaddr++;
 778                        }
 779                }
 780
 781                perf_rdr_write(*intrigue_rdr, buffer);
 782                intrigue_rdr++;
 783        }
 784
 785        /*
 786         * Now copy out the Runway stuff which is not in RDRs
 787         */
 788
 789        if (cpu_device == NULL)
 790        {
 791                printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
 792                return -1;
 793        }
 794
 795        runway = ioremap(cpu_device->hpa.start, 4096);
 796        if (!runway) {
 797                pr_err("perf_write_image: ioremap failed!\n");
 798                return -ENOMEM;
 799        }
 800
 801        /* Merge intrigue bits into Runway STATUS 0 */
 802        tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
 803        __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
 804                     runway + RUNWAY_STATUS);
 805
 806        /* Write RUNWAY DEBUG registers */
 807        for (i = 0; i < 8; i++) {
 808                __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
 809        }
 810
 811        return 0;
 812}
 813
 814/*
 815 * perf_rdr_write
 816 *
 817 * Write the given RDR register with the contents
 818 * of the given buffer.
 819 */
 820static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
 821{
 822        const struct rdr_tbl_ent *tentry;
 823        int32_t         i;
 824
 825printk("perf_rdr_write\n");
 826        tentry = perf_rdr_get_entry(rdr_num);
 827        if (tentry->width == 0) { return; }
 828
 829        i = tentry->num_words;
 830        while (i--) {
 831                if (perf_processor_interface == ONYX_INTF) {
 832                        perf_rdr_shift_out_U(rdr_num, buffer[i]);
 833                } else {
 834                        perf_rdr_shift_out_W(rdr_num, buffer[i]);
 835                }
 836        }
 837printk("perf_rdr_write done\n");
 838}
 839