linux/arch/powerpc/crypto/sha256-spe-glue.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Glue code for SHA-256 implementation for SPE instructions (PPC)
   4 *
   5 * Based on generic implementation. The assembler module takes care 
   6 * about the SPE registers so it can run from interrupt context.
   7 *
   8 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
   9 */
  10
  11#include <crypto/internal/hash.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mm.h>
  15#include <linux/types.h>
  16#include <crypto/sha2.h>
  17#include <asm/byteorder.h>
  18#include <asm/switch_to.h>
  19#include <linux/hardirq.h>
  20
  21/*
  22 * MAX_BYTES defines the number of bytes that are allowed to be processed
  23 * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000
  24 * operations per 64 bytes. e500 cores can issue two arithmetic instructions
  25 * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
  26 * Thus 1KB of input data will need an estimated maximum of 18,000 cycles.
  27 * Headroom for cache misses included. Even with the low end model clocked
  28 * at 667 MHz this equals to a critical time window of less than 27us.
  29 *
  30 */
  31#define MAX_BYTES 1024
  32
  33extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks);
  34
  35static void spe_begin(void)
  36{
  37        /* We just start SPE operations and will save SPE registers later. */
  38        preempt_disable();
  39        enable_kernel_spe();
  40}
  41
  42static void spe_end(void)
  43{
  44        disable_kernel_spe();
  45        /* reenable preemption */
  46        preempt_enable();
  47}
  48
  49static inline void ppc_sha256_clear_context(struct sha256_state *sctx)
  50{
  51        int count = sizeof(struct sha256_state) >> 2;
  52        u32 *ptr = (u32 *)sctx;
  53
  54        /* make sure we can clear the fast way */
  55        BUILD_BUG_ON(sizeof(struct sha256_state) % 4);
  56        do { *ptr++ = 0; } while (--count);
  57}
  58
  59static int ppc_spe_sha256_init(struct shash_desc *desc)
  60{
  61        struct sha256_state *sctx = shash_desc_ctx(desc);
  62
  63        sctx->state[0] = SHA256_H0;
  64        sctx->state[1] = SHA256_H1;
  65        sctx->state[2] = SHA256_H2;
  66        sctx->state[3] = SHA256_H3;
  67        sctx->state[4] = SHA256_H4;
  68        sctx->state[5] = SHA256_H5;
  69        sctx->state[6] = SHA256_H6;
  70        sctx->state[7] = SHA256_H7;
  71        sctx->count = 0;
  72
  73        return 0;
  74}
  75
  76static int ppc_spe_sha224_init(struct shash_desc *desc)
  77{
  78        struct sha256_state *sctx = shash_desc_ctx(desc);
  79
  80        sctx->state[0] = SHA224_H0;
  81        sctx->state[1] = SHA224_H1;
  82        sctx->state[2] = SHA224_H2;
  83        sctx->state[3] = SHA224_H3;
  84        sctx->state[4] = SHA224_H4;
  85        sctx->state[5] = SHA224_H5;
  86        sctx->state[6] = SHA224_H6;
  87        sctx->state[7] = SHA224_H7;
  88        sctx->count = 0;
  89
  90        return 0;
  91}
  92
  93static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data,
  94                        unsigned int len)
  95{
  96        struct sha256_state *sctx = shash_desc_ctx(desc);
  97        const unsigned int offset = sctx->count & 0x3f;
  98        const unsigned int avail = 64 - offset;
  99        unsigned int bytes;
 100        const u8 *src = data;
 101
 102        if (avail > len) {
 103                sctx->count += len;
 104                memcpy((char *)sctx->buf + offset, src, len);
 105                return 0;
 106        }
 107
 108        sctx->count += len;
 109
 110        if (offset) {
 111                memcpy((char *)sctx->buf + offset, src, avail);
 112
 113                spe_begin();
 114                ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1);
 115                spe_end();
 116
 117                len -= avail;
 118                src += avail;
 119        }
 120
 121        while (len > 63) {
 122                /* cut input data into smaller blocks */
 123                bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
 124                bytes = bytes & ~0x3f;
 125
 126                spe_begin();
 127                ppc_spe_sha256_transform(sctx->state, src, bytes >> 6);
 128                spe_end();
 129
 130                src += bytes;
 131                len -= bytes;
 132        }
 133
 134        memcpy((char *)sctx->buf, src, len);
 135        return 0;
 136}
 137
 138static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out)
 139{
 140        struct sha256_state *sctx = shash_desc_ctx(desc);
 141        const unsigned int offset = sctx->count & 0x3f;
 142        char *p = (char *)sctx->buf + offset;
 143        int padlen;
 144        __be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56);
 145        __be32 *dst = (__be32 *)out;
 146
 147        padlen = 55 - offset;
 148        *p++ = 0x80;
 149
 150        spe_begin();
 151
 152        if (padlen < 0) {
 153                memset(p, 0x00, padlen + sizeof (u64));
 154                ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
 155                p = (char *)sctx->buf;
 156                padlen = 56;
 157        }
 158
 159        memset(p, 0, padlen);
 160        *pbits = cpu_to_be64(sctx->count << 3);
 161        ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
 162
 163        spe_end();
 164
 165        dst[0] = cpu_to_be32(sctx->state[0]);
 166        dst[1] = cpu_to_be32(sctx->state[1]);
 167        dst[2] = cpu_to_be32(sctx->state[2]);
 168        dst[3] = cpu_to_be32(sctx->state[3]);
 169        dst[4] = cpu_to_be32(sctx->state[4]);
 170        dst[5] = cpu_to_be32(sctx->state[5]);
 171        dst[6] = cpu_to_be32(sctx->state[6]);
 172        dst[7] = cpu_to_be32(sctx->state[7]);
 173
 174        ppc_sha256_clear_context(sctx);
 175        return 0;
 176}
 177
 178static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out)
 179{
 180        __be32 D[SHA256_DIGEST_SIZE >> 2];
 181        __be32 *dst = (__be32 *)out;
 182
 183        ppc_spe_sha256_final(desc, (u8 *)D);
 184
 185        /* avoid bytewise memcpy */
 186        dst[0] = D[0];
 187        dst[1] = D[1];
 188        dst[2] = D[2];
 189        dst[3] = D[3];
 190        dst[4] = D[4];
 191        dst[5] = D[5];
 192        dst[6] = D[6];
 193
 194        /* clear sensitive data */
 195        memzero_explicit(D, SHA256_DIGEST_SIZE);
 196        return 0;
 197}
 198
 199static int ppc_spe_sha256_export(struct shash_desc *desc, void *out)
 200{
 201        struct sha256_state *sctx = shash_desc_ctx(desc);
 202
 203        memcpy(out, sctx, sizeof(*sctx));
 204        return 0;
 205}
 206
 207static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in)
 208{
 209        struct sha256_state *sctx = shash_desc_ctx(desc);
 210
 211        memcpy(sctx, in, sizeof(*sctx));
 212        return 0;
 213}
 214
 215static struct shash_alg algs[2] = { {
 216        .digestsize     =       SHA256_DIGEST_SIZE,
 217        .init           =       ppc_spe_sha256_init,
 218        .update         =       ppc_spe_sha256_update,
 219        .final          =       ppc_spe_sha256_final,
 220        .export         =       ppc_spe_sha256_export,
 221        .import         =       ppc_spe_sha256_import,
 222        .descsize       =       sizeof(struct sha256_state),
 223        .statesize      =       sizeof(struct sha256_state),
 224        .base           =       {
 225                .cra_name       =       "sha256",
 226                .cra_driver_name=       "sha256-ppc-spe",
 227                .cra_priority   =       300,
 228                .cra_blocksize  =       SHA256_BLOCK_SIZE,
 229                .cra_module     =       THIS_MODULE,
 230        }
 231}, {
 232        .digestsize     =       SHA224_DIGEST_SIZE,
 233        .init           =       ppc_spe_sha224_init,
 234        .update         =       ppc_spe_sha256_update,
 235        .final          =       ppc_spe_sha224_final,
 236        .export         =       ppc_spe_sha256_export,
 237        .import         =       ppc_spe_sha256_import,
 238        .descsize       =       sizeof(struct sha256_state),
 239        .statesize      =       sizeof(struct sha256_state),
 240        .base           =       {
 241                .cra_name       =       "sha224",
 242                .cra_driver_name=       "sha224-ppc-spe",
 243                .cra_priority   =       300,
 244                .cra_blocksize  =       SHA224_BLOCK_SIZE,
 245                .cra_module     =       THIS_MODULE,
 246        }
 247} };
 248
 249static int __init ppc_spe_sha256_mod_init(void)
 250{
 251        return crypto_register_shashes(algs, ARRAY_SIZE(algs));
 252}
 253
 254static void __exit ppc_spe_sha256_mod_fini(void)
 255{
 256        crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
 257}
 258
 259module_init(ppc_spe_sha256_mod_init);
 260module_exit(ppc_spe_sha256_mod_fini);
 261
 262MODULE_LICENSE("GPL");
 263MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized");
 264
 265MODULE_ALIAS_CRYPTO("sha224");
 266MODULE_ALIAS_CRYPTO("sha224-ppc-spe");
 267MODULE_ALIAS_CRYPTO("sha256");
 268MODULE_ALIAS_CRYPTO("sha256-ppc-spe");
 269