linux/arch/powerpc/include/asm/book3s/64/mmu-hash.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
   3#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
   4/*
   5 * PowerPC64 memory management structures
   6 *
   7 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
   8 *   PPC64 rework.
   9 */
  10
  11#include <asm/page.h>
  12#include <asm/bug.h>
  13#include <asm/asm-const.h>
  14
  15/*
  16 * This is necessary to get the definition of PGTABLE_RANGE which we
  17 * need for various slices related matters. Note that this isn't the
  18 * complete pgtable.h but only a portion of it.
  19 */
  20#include <asm/book3s/64/pgtable.h>
  21#include <asm/task_size_64.h>
  22#include <asm/cpu_has_feature.h>
  23
  24/*
  25 * SLB
  26 */
  27
  28#define SLB_NUM_BOLTED          2
  29#define SLB_CACHE_ENTRIES       8
  30#define SLB_MIN_SIZE            32
  31
  32/* Bits in the SLB ESID word */
  33#define SLB_ESID_V              ASM_CONST(0x0000000008000000) /* valid */
  34
  35/* Bits in the SLB VSID word */
  36#define SLB_VSID_SHIFT          12
  37#define SLB_VSID_SHIFT_256M     SLB_VSID_SHIFT
  38#define SLB_VSID_SHIFT_1T       24
  39#define SLB_VSID_SSIZE_SHIFT    62
  40#define SLB_VSID_B              ASM_CONST(0xc000000000000000)
  41#define SLB_VSID_B_256M         ASM_CONST(0x0000000000000000)
  42#define SLB_VSID_B_1T           ASM_CONST(0x4000000000000000)
  43#define SLB_VSID_KS             ASM_CONST(0x0000000000000800)
  44#define SLB_VSID_KP             ASM_CONST(0x0000000000000400)
  45#define SLB_VSID_N              ASM_CONST(0x0000000000000200) /* no-execute */
  46#define SLB_VSID_L              ASM_CONST(0x0000000000000100)
  47#define SLB_VSID_C              ASM_CONST(0x0000000000000080) /* class */
  48#define SLB_VSID_LP             ASM_CONST(0x0000000000000030)
  49#define SLB_VSID_LP_00          ASM_CONST(0x0000000000000000)
  50#define SLB_VSID_LP_01          ASM_CONST(0x0000000000000010)
  51#define SLB_VSID_LP_10          ASM_CONST(0x0000000000000020)
  52#define SLB_VSID_LP_11          ASM_CONST(0x0000000000000030)
  53#define SLB_VSID_LLP            (SLB_VSID_L|SLB_VSID_LP)
  54
  55#define SLB_VSID_KERNEL         (SLB_VSID_KP)
  56#define SLB_VSID_USER           (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  57
  58#define SLBIE_C                 (0x08000000)
  59#define SLBIE_SSIZE_SHIFT       25
  60
  61/*
  62 * Hash table
  63 */
  64
  65#define HPTES_PER_GROUP 8
  66
  67#define HPTE_V_SSIZE_SHIFT      62
  68#define HPTE_V_AVPN_SHIFT       7
  69#define HPTE_V_COMMON_BITS      ASM_CONST(0x000fffffffffffff)
  70#define HPTE_V_AVPN             ASM_CONST(0x3fffffffffffff80)
  71#define HPTE_V_AVPN_3_0         ASM_CONST(0x000fffffffffff80)
  72#define HPTE_V_AVPN_VAL(x)      (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  73#define HPTE_V_COMPARE(x,y)     (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  74#define HPTE_V_BOLTED           ASM_CONST(0x0000000000000010)
  75#define HPTE_V_LOCK             ASM_CONST(0x0000000000000008)
  76#define HPTE_V_LARGE            ASM_CONST(0x0000000000000004)
  77#define HPTE_V_SECONDARY        ASM_CONST(0x0000000000000002)
  78#define HPTE_V_VALID            ASM_CONST(0x0000000000000001)
  79
  80/*
  81 * ISA 3.0 has a different HPTE format.
  82 */
  83#define HPTE_R_3_0_SSIZE_SHIFT  58
  84#define HPTE_R_3_0_SSIZE_MASK   (3ull << HPTE_R_3_0_SSIZE_SHIFT)
  85#define HPTE_R_PP0              ASM_CONST(0x8000000000000000)
  86#define HPTE_R_TS               ASM_CONST(0x4000000000000000)
  87#define HPTE_R_KEY_HI           ASM_CONST(0x3000000000000000)
  88#define HPTE_R_KEY_BIT4         ASM_CONST(0x2000000000000000)
  89#define HPTE_R_KEY_BIT3         ASM_CONST(0x1000000000000000)
  90#define HPTE_R_RPN_SHIFT        12
  91#define HPTE_R_RPN              ASM_CONST(0x0ffffffffffff000)
  92#define HPTE_R_RPN_3_0          ASM_CONST(0x01fffffffffff000)
  93#define HPTE_R_PP               ASM_CONST(0x0000000000000003)
  94#define HPTE_R_PPP              ASM_CONST(0x8000000000000003)
  95#define HPTE_R_N                ASM_CONST(0x0000000000000004)
  96#define HPTE_R_G                ASM_CONST(0x0000000000000008)
  97#define HPTE_R_M                ASM_CONST(0x0000000000000010)
  98#define HPTE_R_I                ASM_CONST(0x0000000000000020)
  99#define HPTE_R_W                ASM_CONST(0x0000000000000040)
 100#define HPTE_R_WIMG             ASM_CONST(0x0000000000000078)
 101#define HPTE_R_C                ASM_CONST(0x0000000000000080)
 102#define HPTE_R_R                ASM_CONST(0x0000000000000100)
 103#define HPTE_R_KEY_LO           ASM_CONST(0x0000000000000e00)
 104#define HPTE_R_KEY_BIT2         ASM_CONST(0x0000000000000800)
 105#define HPTE_R_KEY_BIT1         ASM_CONST(0x0000000000000400)
 106#define HPTE_R_KEY_BIT0         ASM_CONST(0x0000000000000200)
 107#define HPTE_R_KEY              (HPTE_R_KEY_LO | HPTE_R_KEY_HI)
 108
 109#define HPTE_V_1TB_SEG          ASM_CONST(0x4000000000000000)
 110#define HPTE_V_VRMA_MASK        ASM_CONST(0x4001ffffff000000)
 111
 112/* Values for PP (assumes Ks=0, Kp=1) */
 113#define PP_RWXX 0       /* Supervisor read/write, User none */
 114#define PP_RWRX 1       /* Supervisor read/write, User read */
 115#define PP_RWRW 2       /* Supervisor read/write, User read/write */
 116#define PP_RXRX 3       /* Supervisor read,       User read */
 117#define PP_RXXX (HPTE_R_PP0 | 2)        /* Supervisor read, user none */
 118
 119/* Fields for tlbiel instruction in architecture 2.06 */
 120#define TLBIEL_INVAL_SEL_MASK   0xc00   /* invalidation selector */
 121#define  TLBIEL_INVAL_PAGE      0x000   /* invalidate a single page */
 122#define  TLBIEL_INVAL_SET_LPID  0x800   /* invalidate a set for current LPID */
 123#define  TLBIEL_INVAL_SET       0xc00   /* invalidate a set for all LPIDs */
 124#define TLBIEL_INVAL_SET_MASK   0xfff000        /* set number to inval. */
 125#define TLBIEL_INVAL_SET_SHIFT  12
 126
 127#define POWER7_TLB_SETS         128     /* # sets in POWER7 TLB */
 128#define POWER8_TLB_SETS         512     /* # sets in POWER8 TLB */
 129#define POWER9_TLB_SETS_HASH    256     /* # sets in POWER9 TLB Hash mode */
 130#define POWER9_TLB_SETS_RADIX   128     /* # sets in POWER9 TLB Radix mode */
 131
 132#ifndef __ASSEMBLY__
 133
 134struct mmu_hash_ops {
 135        void            (*hpte_invalidate)(unsigned long slot,
 136                                           unsigned long vpn,
 137                                           int bpsize, int apsize,
 138                                           int ssize, int local);
 139        long            (*hpte_updatepp)(unsigned long slot,
 140                                         unsigned long newpp,
 141                                         unsigned long vpn,
 142                                         int bpsize, int apsize,
 143                                         int ssize, unsigned long flags);
 144        void            (*hpte_updateboltedpp)(unsigned long newpp,
 145                                               unsigned long ea,
 146                                               int psize, int ssize);
 147        long            (*hpte_insert)(unsigned long hpte_group,
 148                                       unsigned long vpn,
 149                                       unsigned long prpn,
 150                                       unsigned long rflags,
 151                                       unsigned long vflags,
 152                                       int psize, int apsize,
 153                                       int ssize);
 154        long            (*hpte_remove)(unsigned long hpte_group);
 155        int             (*hpte_removebolted)(unsigned long ea,
 156                                             int psize, int ssize);
 157        void            (*flush_hash_range)(unsigned long number, int local);
 158        void            (*hugepage_invalidate)(unsigned long vsid,
 159                                               unsigned long addr,
 160                                               unsigned char *hpte_slot_array,
 161                                               int psize, int ssize, int local);
 162        int             (*resize_hpt)(unsigned long shift);
 163        /*
 164         * Special for kexec.
 165         * To be called in real mode with interrupts disabled. No locks are
 166         * taken as such, concurrent access on pre POWER5 hardware could result
 167         * in a deadlock.
 168         * The linear mapping is destroyed as well.
 169         */
 170        void            (*hpte_clear_all)(void);
 171};
 172extern struct mmu_hash_ops mmu_hash_ops;
 173
 174struct hash_pte {
 175        __be64 v;
 176        __be64 r;
 177};
 178
 179extern struct hash_pte *htab_address;
 180extern unsigned long htab_size_bytes;
 181extern unsigned long htab_hash_mask;
 182
 183
 184static inline int shift_to_mmu_psize(unsigned int shift)
 185{
 186        int psize;
 187
 188        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
 189                if (mmu_psize_defs[psize].shift == shift)
 190                        return psize;
 191        return -1;
 192}
 193
 194static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
 195{
 196        if (mmu_psize_defs[mmu_psize].shift)
 197                return mmu_psize_defs[mmu_psize].shift;
 198        BUG();
 199}
 200
 201static inline unsigned int ap_to_shift(unsigned long ap)
 202{
 203        int psize;
 204
 205        for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
 206                if (mmu_psize_defs[psize].ap == ap)
 207                        return mmu_psize_defs[psize].shift;
 208        }
 209
 210        return -1;
 211}
 212
 213static inline unsigned long get_sllp_encoding(int psize)
 214{
 215        unsigned long sllp;
 216
 217        sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
 218                ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
 219        return sllp;
 220}
 221
 222#endif /* __ASSEMBLY__ */
 223
 224/*
 225 * Segment sizes.
 226 * These are the values used by hardware in the B field of
 227 * SLB entries and the first dword of MMU hashtable entries.
 228 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
 229 */
 230#define MMU_SEGSIZE_256M        0
 231#define MMU_SEGSIZE_1T          1
 232
 233/*
 234 * encode page number shift.
 235 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
 236 * 12 bits. This enable us to address upto 76 bit va.
 237 * For hpt hash from a va we can ignore the page size bits of va and for
 238 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
 239 * we work in all cases including 4k page size.
 240 */
 241#define VPN_SHIFT       12
 242
 243/*
 244 * HPTE Large Page (LP) details
 245 */
 246#define LP_SHIFT        12
 247#define LP_BITS         8
 248#define LP_MASK(i)      ((0xFF >> (i)) << LP_SHIFT)
 249
 250#ifndef __ASSEMBLY__
 251
 252static inline int slb_vsid_shift(int ssize)
 253{
 254        if (ssize == MMU_SEGSIZE_256M)
 255                return SLB_VSID_SHIFT;
 256        return SLB_VSID_SHIFT_1T;
 257}
 258
 259static inline int segment_shift(int ssize)
 260{
 261        if (ssize == MMU_SEGSIZE_256M)
 262                return SID_SHIFT;
 263        return SID_SHIFT_1T;
 264}
 265
 266/*
 267 * This array is indexed by the LP field of the HPTE second dword.
 268 * Since this field may contain some RPN bits, some entries are
 269 * replicated so that we get the same value irrespective of RPN.
 270 * The top 4 bits are the page size index (MMU_PAGE_*) for the
 271 * actual page size, the bottom 4 bits are the base page size.
 272 */
 273extern u8 hpte_page_sizes[1 << LP_BITS];
 274
 275static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
 276                                             bool is_base_size)
 277{
 278        unsigned int i, lp;
 279
 280        if (!(h & HPTE_V_LARGE))
 281                return 1ul << 12;
 282
 283        /* Look at the 8 bit LP value */
 284        lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
 285        i = hpte_page_sizes[lp];
 286        if (!i)
 287                return 0;
 288        if (!is_base_size)
 289                i >>= 4;
 290        return 1ul << mmu_psize_defs[i & 0xf].shift;
 291}
 292
 293static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
 294{
 295        return __hpte_page_size(h, l, 0);
 296}
 297
 298static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
 299{
 300        return __hpte_page_size(h, l, 1);
 301}
 302
 303/*
 304 * The current system page and segment sizes
 305 */
 306extern int mmu_kernel_ssize;
 307extern int mmu_highuser_ssize;
 308extern u16 mmu_slb_size;
 309extern unsigned long tce_alloc_start, tce_alloc_end;
 310
 311/*
 312 * If the processor supports 64k normal pages but not 64k cache
 313 * inhibited pages, we have to be prepared to switch processes
 314 * to use 4k pages when they create cache-inhibited mappings.
 315 * If this is the case, mmu_ci_restrictions will be set to 1.
 316 */
 317extern int mmu_ci_restrictions;
 318
 319/*
 320 * This computes the AVPN and B fields of the first dword of a HPTE,
 321 * for use when we want to match an existing PTE.  The bottom 7 bits
 322 * of the returned value are zero.
 323 */
 324static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
 325                                             int ssize)
 326{
 327        unsigned long v;
 328        /*
 329         * The AVA field omits the low-order 23 bits of the 78 bits VA.
 330         * These bits are not needed in the PTE, because the
 331         * low-order b of these bits are part of the byte offset
 332         * into the virtual page and, if b < 23, the high-order
 333         * 23-b of these bits are always used in selecting the
 334         * PTEGs to be searched
 335         */
 336        v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
 337        v <<= HPTE_V_AVPN_SHIFT;
 338        v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
 339        return v;
 340}
 341
 342/*
 343 * ISA v3.0 defines a new HPTE format, which differs from the old
 344 * format in having smaller AVPN and ARPN fields, and the B field
 345 * in the second dword instead of the first.
 346 */
 347static inline unsigned long hpte_old_to_new_v(unsigned long v)
 348{
 349        /* trim AVPN, drop B */
 350        return v & HPTE_V_COMMON_BITS;
 351}
 352
 353static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
 354{
 355        /* move B field from 1st to 2nd dword, trim ARPN */
 356        return (r & ~HPTE_R_3_0_SSIZE_MASK) |
 357                (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
 358}
 359
 360static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
 361{
 362        /* insert B field */
 363        return (v & HPTE_V_COMMON_BITS) |
 364                ((r & HPTE_R_3_0_SSIZE_MASK) <<
 365                 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
 366}
 367
 368static inline unsigned long hpte_new_to_old_r(unsigned long r)
 369{
 370        /* clear out B field */
 371        return r & ~HPTE_R_3_0_SSIZE_MASK;
 372}
 373
 374static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)
 375{
 376        unsigned long hpte_v;
 377
 378        hpte_v = be64_to_cpu(hptep->v);
 379        if (cpu_has_feature(CPU_FTR_ARCH_300))
 380                hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
 381        return hpte_v;
 382}
 383
 384/*
 385 * This function sets the AVPN and L fields of the HPTE  appropriately
 386 * using the base page size and actual page size.
 387 */
 388static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
 389                                          int actual_psize, int ssize)
 390{
 391        unsigned long v;
 392        v = hpte_encode_avpn(vpn, base_psize, ssize);
 393        if (actual_psize != MMU_PAGE_4K)
 394                v |= HPTE_V_LARGE;
 395        return v;
 396}
 397
 398/*
 399 * This function sets the ARPN, and LP fields of the HPTE appropriately
 400 * for the page size. We assume the pa is already "clean" that is properly
 401 * aligned for the requested page size
 402 */
 403static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
 404                                          int actual_psize)
 405{
 406        /* A 4K page needs no special encoding */
 407        if (actual_psize == MMU_PAGE_4K)
 408                return pa & HPTE_R_RPN;
 409        else {
 410                unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
 411                unsigned int shift = mmu_psize_defs[actual_psize].shift;
 412                return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
 413        }
 414}
 415
 416/*
 417 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
 418 */
 419static inline unsigned long hpt_vpn(unsigned long ea,
 420                                    unsigned long vsid, int ssize)
 421{
 422        unsigned long mask;
 423        int s_shift = segment_shift(ssize);
 424
 425        mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
 426        return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
 427}
 428
 429/*
 430 * This hashes a virtual address
 431 */
 432static inline unsigned long hpt_hash(unsigned long vpn,
 433                                     unsigned int shift, int ssize)
 434{
 435        unsigned long mask;
 436        unsigned long hash, vsid;
 437
 438        /* VPN_SHIFT can be atmost 12 */
 439        if (ssize == MMU_SEGSIZE_256M) {
 440                mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
 441                hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
 442                        ((vpn & mask) >> (shift - VPN_SHIFT));
 443        } else {
 444                mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
 445                vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
 446                hash = vsid ^ (vsid << 25) ^
 447                        ((vpn & mask) >> (shift - VPN_SHIFT)) ;
 448        }
 449        return hash & 0x7fffffffffUL;
 450}
 451
 452#define HPTE_LOCAL_UPDATE       0x1
 453#define HPTE_NOHPTE_UPDATE      0x2
 454#define HPTE_USE_KERNEL_KEY     0x4
 455
 456long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa,
 457                           unsigned long rlags, unsigned long vflags, int psize, int ssize);
 458extern int __hash_page_4K(unsigned long ea, unsigned long access,
 459                          unsigned long vsid, pte_t *ptep, unsigned long trap,
 460                          unsigned long flags, int ssize, int subpage_prot);
 461extern int __hash_page_64K(unsigned long ea, unsigned long access,
 462                           unsigned long vsid, pte_t *ptep, unsigned long trap,
 463                           unsigned long flags, int ssize);
 464struct mm_struct;
 465unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
 466extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
 467                        unsigned long access, unsigned long trap,
 468                        unsigned long flags);
 469extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
 470                     unsigned long dsisr);
 471void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc);
 472int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr);
 473int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
 474                     pte_t *ptep, unsigned long trap, unsigned long flags,
 475                     int ssize, unsigned int shift, unsigned int mmu_psize);
 476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 477extern int __hash_page_thp(unsigned long ea, unsigned long access,
 478                           unsigned long vsid, pmd_t *pmdp, unsigned long trap,
 479                           unsigned long flags, int ssize, unsigned int psize);
 480#else
 481static inline int __hash_page_thp(unsigned long ea, unsigned long access,
 482                                  unsigned long vsid, pmd_t *pmdp,
 483                                  unsigned long trap, unsigned long flags,
 484                                  int ssize, unsigned int psize)
 485{
 486        BUG();
 487        return -1;
 488}
 489#endif
 490extern void hash_failure_debug(unsigned long ea, unsigned long access,
 491                               unsigned long vsid, unsigned long trap,
 492                               int ssize, int psize, int lpsize,
 493                               unsigned long pte);
 494extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 495                             unsigned long pstart, unsigned long prot,
 496                             int psize, int ssize);
 497int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 498                        int psize, int ssize);
 499extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
 500extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
 501
 502extern void hash__setup_new_exec(void);
 503
 504#ifdef CONFIG_PPC_PSERIES
 505void hpte_init_pseries(void);
 506#else
 507static inline void hpte_init_pseries(void) { }
 508#endif
 509
 510extern void hpte_init_native(void);
 511
 512struct slb_entry {
 513        u64     esid;
 514        u64     vsid;
 515};
 516
 517extern void slb_initialize(void);
 518void slb_flush_and_restore_bolted(void);
 519void slb_flush_all_realmode(void);
 520void __slb_restore_bolted_realmode(void);
 521void slb_restore_bolted_realmode(void);
 522void slb_save_contents(struct slb_entry *slb_ptr);
 523void slb_dump_contents(struct slb_entry *slb_ptr);
 524
 525extern void slb_vmalloc_update(void);
 526extern void slb_set_size(u16 size);
 527void preload_new_slb_context(unsigned long start, unsigned long sp);
 528#endif /* __ASSEMBLY__ */
 529
 530/*
 531 * VSID allocation (256MB segment)
 532 *
 533 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
 534 * from mmu context id and effective segment id of the address.
 535 *
 536 * For user processes max context id is limited to MAX_USER_CONTEXT.
 537 * more details in get_user_context
 538 *
 539 * For kernel space get_kernel_context
 540 *
 541 * The proto-VSIDs are then scrambled into real VSIDs with the
 542 * multiplicative hash:
 543 *
 544 *      VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 545 *
 546 * VSID_MULTIPLIER is prime, so in particular it is
 547 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 548 * Because the modulus is 2^n-1 we can compute it efficiently without
 549 * a divide or extra multiply (see below). The scramble function gives
 550 * robust scattering in the hash table (at least based on some initial
 551 * results).
 552 *
 553 * We use VSID 0 to indicate an invalid VSID. The means we can't use context id
 554 * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
 555 * will produce a VSID of 0.
 556 *
 557 * We also need to avoid the last segment of the last context, because that
 558 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
 559 * because of the modulo operation in vsid scramble.
 560 */
 561
 562/*
 563 * Max Va bits we support as of now is 68 bits. We want 19 bit
 564 * context ID.
 565 * Restrictions:
 566 * GPU has restrictions of not able to access beyond 128TB
 567 * (47 bit effective address). We also cannot do more than 20bit PID.
 568 * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
 569 * to 16 bits (ie, we can only have 2^16 pids at the same time).
 570 */
 571#define VA_BITS                 68
 572#define CONTEXT_BITS            19
 573#define ESID_BITS               (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
 574#define ESID_BITS_1T            (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
 575
 576#define ESID_BITS_MASK          ((1 << ESID_BITS) - 1)
 577#define ESID_BITS_1T_MASK       ((1 << ESID_BITS_1T) - 1)
 578
 579/*
 580 * Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need
 581 * to use more than one context for linear mapping the kernel.
 582 * For vmalloc and memmap, we use just one context with 512TB. With 64 byte
 583 * struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)).
 584 */
 585#if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT)
 586#define MAX_KERNEL_CTX_CNT      (1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT))
 587#else
 588#define MAX_KERNEL_CTX_CNT      1
 589#endif
 590
 591#define MAX_VMALLOC_CTX_CNT     1
 592#define MAX_IO_CTX_CNT          1
 593#define MAX_VMEMMAP_CTX_CNT     1
 594
 595/*
 596 * 256MB segment
 597 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
 598 * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
 599 * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
 600 * context maps 2^49 bytes (512TB).
 601 *
 602 * We also need to avoid the last segment of the last context, because that
 603 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
 604 * because of the modulo operation in vsid scramble.
 605 *
 606 */
 607#define MAX_USER_CONTEXT        ((ASM_CONST(1) << CONTEXT_BITS) - 2)
 608
 609// The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel
 610#define MIN_USER_CONTEXT        (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \
 611                                 MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2)
 612
 613/*
 614 * For platforms that support on 65bit VA we limit the context bits
 615 */
 616#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
 617
 618/*
 619 * This should be computed such that protovosid * vsid_mulitplier
 620 * doesn't overflow 64 bits. The vsid_mutliplier should also be
 621 * co-prime to vsid_modulus. We also need to make sure that number
 622 * of bits in multiplied result (dividend) is less than twice the number of
 623 * protovsid bits for our modulus optmization to work.
 624 *
 625 * The below table shows the current values used.
 626 * |-------+------------+----------------------+------------+-------------------|
 627 * |       | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
 628 * |-------+------------+----------------------+------------+-------------------|
 629 * | 1T    |         24 |                   25 |         49 |                50 |
 630 * |-------+------------+----------------------+------------+-------------------|
 631 * | 256MB |         24 |                   37 |         61 |                74 |
 632 * |-------+------------+----------------------+------------+-------------------|
 633 *
 634 * |-------+------------+----------------------+------------+--------------------|
 635 * |       | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
 636 * |-------+------------+----------------------+------------+--------------------|
 637 * | 1T    |         24 |                   28 |         52 |                 56 |
 638 * |-------+------------+----------------------+------------+--------------------|
 639 * | 256MB |         24 |                   40 |         64 |                 80 |
 640 * |-------+------------+----------------------+------------+--------------------|
 641 *
 642 */
 643#define VSID_MULTIPLIER_256M    ASM_CONST(12538073)     /* 24-bit prime */
 644#define VSID_BITS_256M          (VA_BITS - SID_SHIFT)
 645#define VSID_BITS_65_256M       (65 - SID_SHIFT)
 646/*
 647 * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
 648 */
 649#define VSID_MULINV_256M        ASM_CONST(665548017062)
 650
 651#define VSID_MULTIPLIER_1T      ASM_CONST(12538073)     /* 24-bit prime */
 652#define VSID_BITS_1T            (VA_BITS - SID_SHIFT_1T)
 653#define VSID_BITS_65_1T         (65 - SID_SHIFT_1T)
 654#define VSID_MULINV_1T          ASM_CONST(209034062)
 655
 656/* 1TB VSID reserved for VRMA */
 657#define VRMA_VSID       0x1ffffffUL
 658#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
 659
 660/* 4 bits per slice and we have one slice per 1TB */
 661#define SLICE_ARRAY_SIZE        (H_PGTABLE_RANGE >> 41)
 662#define LOW_SLICE_ARRAY_SZ      (BITS_PER_LONG / BITS_PER_BYTE)
 663#define TASK_SLICE_ARRAY_SZ(x)  ((x)->hash_context->slb_addr_limit >> 41)
 664#ifndef __ASSEMBLY__
 665
 666#ifdef CONFIG_PPC_SUBPAGE_PROT
 667/*
 668 * For the sub-page protection option, we extend the PGD with one of
 669 * these.  Basically we have a 3-level tree, with the top level being
 670 * the protptrs array.  To optimize speed and memory consumption when
 671 * only addresses < 4GB are being protected, pointers to the first
 672 * four pages of sub-page protection words are stored in the low_prot
 673 * array.
 674 * Each page of sub-page protection words protects 1GB (4 bytes
 675 * protects 64k).  For the 3-level tree, each page of pointers then
 676 * protects 8TB.
 677 */
 678struct subpage_prot_table {
 679        unsigned long maxaddr;  /* only addresses < this are protected */
 680        unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
 681        unsigned int *low_prot[4];
 682};
 683
 684#define SBP_L1_BITS             (PAGE_SHIFT - 2)
 685#define SBP_L2_BITS             (PAGE_SHIFT - 3)
 686#define SBP_L1_COUNT            (1 << SBP_L1_BITS)
 687#define SBP_L2_COUNT            (1 << SBP_L2_BITS)
 688#define SBP_L2_SHIFT            (PAGE_SHIFT + SBP_L1_BITS)
 689#define SBP_L3_SHIFT            (SBP_L2_SHIFT + SBP_L2_BITS)
 690
 691extern void subpage_prot_free(struct mm_struct *mm);
 692#else
 693static inline void subpage_prot_free(struct mm_struct *mm) {}
 694#endif /* CONFIG_PPC_SUBPAGE_PROT */
 695
 696/*
 697 * One bit per slice. We have lower slices which cover 256MB segments
 698 * upto 4G range. That gets us 16 low slices. For the rest we track slices
 699 * in 1TB size.
 700 */
 701struct slice_mask {
 702        u64 low_slices;
 703        DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);
 704};
 705
 706struct hash_mm_context {
 707        u16 user_psize; /* page size index */
 708
 709        /* SLB page size encodings*/
 710        unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ];
 711        unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
 712        unsigned long slb_addr_limit;
 713#ifdef CONFIG_PPC_64K_PAGES
 714        struct slice_mask mask_64k;
 715#endif
 716        struct slice_mask mask_4k;
 717#ifdef CONFIG_HUGETLB_PAGE
 718        struct slice_mask mask_16m;
 719        struct slice_mask mask_16g;
 720#endif
 721
 722#ifdef CONFIG_PPC_SUBPAGE_PROT
 723        struct subpage_prot_table *spt;
 724#endif /* CONFIG_PPC_SUBPAGE_PROT */
 725};
 726
 727#if 0
 728/*
 729 * The code below is equivalent to this function for arguments
 730 * < 2^VSID_BITS, which is all this should ever be called
 731 * with.  However gcc is not clever enough to compute the
 732 * modulus (2^n-1) without a second multiply.
 733 */
 734#define vsid_scramble(protovsid, size) \
 735        ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
 736
 737/* simplified form avoiding mod operation */
 738#define vsid_scramble(protovsid, size) \
 739        ({                                                               \
 740                unsigned long x;                                         \
 741                x = (protovsid) * VSID_MULTIPLIER_##size;                \
 742                x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
 743                (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
 744        })
 745
 746#else /* 1 */
 747static inline unsigned long vsid_scramble(unsigned long protovsid,
 748                                  unsigned long vsid_multiplier, int vsid_bits)
 749{
 750        unsigned long vsid;
 751        unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
 752        /*
 753         * We have same multipler for both 256 and 1T segements now
 754         */
 755        vsid = protovsid * vsid_multiplier;
 756        vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
 757        return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
 758}
 759
 760#endif /* 1 */
 761
 762/* Returns the segment size indicator for a user address */
 763static inline int user_segment_size(unsigned long addr)
 764{
 765        /* Use 1T segments if possible for addresses >= 1T */
 766        if (addr >= (1UL << SID_SHIFT_1T))
 767                return mmu_highuser_ssize;
 768        return MMU_SEGSIZE_256M;
 769}
 770
 771static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
 772                                     int ssize)
 773{
 774        unsigned long va_bits = VA_BITS;
 775        unsigned long vsid_bits;
 776        unsigned long protovsid;
 777
 778        /*
 779         * Bad address. We return VSID 0 for that
 780         */
 781        if ((ea & EA_MASK)  >= H_PGTABLE_RANGE)
 782                return 0;
 783
 784        if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
 785                va_bits = 65;
 786
 787        if (ssize == MMU_SEGSIZE_256M) {
 788                vsid_bits = va_bits - SID_SHIFT;
 789                protovsid = (context << ESID_BITS) |
 790                        ((ea >> SID_SHIFT) & ESID_BITS_MASK);
 791                return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
 792        }
 793        /* 1T segment */
 794        vsid_bits = va_bits - SID_SHIFT_1T;
 795        protovsid = (context << ESID_BITS_1T) |
 796                ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
 797        return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
 798}
 799
 800/*
 801 * For kernel space, we use context ids as
 802 * below. Range is 512TB per context.
 803 *
 804 * 0x00001 -  [ 0xc000000000000000 - 0xc001ffffffffffff]
 805 * 0x00002 -  [ 0xc002000000000000 - 0xc003ffffffffffff]
 806 * 0x00003 -  [ 0xc004000000000000 - 0xc005ffffffffffff]
 807 * 0x00004 -  [ 0xc006000000000000 - 0xc007ffffffffffff]
 808 *
 809 * vmap, IO, vmemap
 810 *
 811 * 0x00005 -  [ 0xc008000000000000 - 0xc009ffffffffffff]
 812 * 0x00006 -  [ 0xc00a000000000000 - 0xc00bffffffffffff]
 813 * 0x00007 -  [ 0xc00c000000000000 - 0xc00dffffffffffff]
 814 *
 815 */
 816static inline unsigned long get_kernel_context(unsigned long ea)
 817{
 818        unsigned long region_id = get_region_id(ea);
 819        unsigned long ctx;
 820        /*
 821         * Depending on Kernel config, kernel region can have one context
 822         * or more.
 823         */
 824        if (region_id == LINEAR_MAP_REGION_ID) {
 825                /*
 826                 * We already verified ea to be not beyond the addr limit.
 827                 */
 828                ctx =  1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT);
 829        } else
 830                ctx = region_id + MAX_KERNEL_CTX_CNT - 1;
 831        return ctx;
 832}
 833
 834/*
 835 * This is only valid for addresses >= PAGE_OFFSET
 836 */
 837static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
 838{
 839        unsigned long context;
 840
 841        if (!is_kernel_addr(ea))
 842                return 0;
 843
 844        context = get_kernel_context(ea);
 845        return get_vsid(context, ea, ssize);
 846}
 847
 848unsigned htab_shift_for_mem_size(unsigned long mem_size);
 849
 850enum slb_index {
 851        LINEAR_INDEX    = 0, /* Kernel linear map  (0xc000000000000000) */
 852        KSTACK_INDEX    = 1, /* Kernel stack map */
 853};
 854
 855#define slb_esid_mask(ssize)    \
 856        (((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T)
 857
 858static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
 859                                         enum slb_index index)
 860{
 861        return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
 862}
 863
 864static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
 865                                           unsigned long flags)
 866{
 867        return (vsid << slb_vsid_shift(ssize)) | flags |
 868                ((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT);
 869}
 870
 871static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
 872                                         unsigned long flags)
 873{
 874        return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
 875}
 876
 877#endif /* __ASSEMBLY__ */
 878#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
 879