linux/arch/powerpc/include/asm/io.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2#ifndef _ASM_POWERPC_IO_H
   3#define _ASM_POWERPC_IO_H
   4#ifdef __KERNEL__
   5
   6#define ARCH_HAS_IOREMAP_WC
   7#ifdef CONFIG_PPC32
   8#define ARCH_HAS_IOREMAP_WT
   9#endif
  10
  11/*
  12 */
  13
  14/* Check of existence of legacy devices */
  15extern int check_legacy_ioport(unsigned long base_port);
  16#define I8042_DATA_REG  0x60
  17#define FDC_BASE        0x3f0
  18
  19#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
  20extern struct pci_dev *isa_bridge_pcidev;
  21/*
  22 * has legacy ISA devices ?
  23 */
  24#define arch_has_dev_port()     (isa_bridge_pcidev != NULL || isa_io_special)
  25#endif
  26
  27#include <linux/device.h>
  28#include <linux/compiler.h>
  29#include <linux/mm.h>
  30#include <asm/page.h>
  31#include <asm/byteorder.h>
  32#include <asm/synch.h>
  33#include <asm/delay.h>
  34#include <asm/mmiowb.h>
  35#include <asm/mmu.h>
  36#include <asm/ppc_asm.h>
  37
  38#define SIO_CONFIG_RA   0x398
  39#define SIO_CONFIG_RD   0x399
  40
  41#define SLOW_DOWN_IO
  42
  43/* 32 bits uses slightly different variables for the various IO
  44 * bases. Most of this file only uses _IO_BASE though which we
  45 * define properly based on the platform
  46 */
  47#ifndef CONFIG_PCI
  48#define _IO_BASE        0
  49#define _ISA_MEM_BASE   0
  50#define PCI_DRAM_OFFSET 0
  51#elif defined(CONFIG_PPC32)
  52#define _IO_BASE        isa_io_base
  53#define _ISA_MEM_BASE   isa_mem_base
  54#define PCI_DRAM_OFFSET pci_dram_offset
  55#else
  56#define _IO_BASE        pci_io_base
  57#define _ISA_MEM_BASE   isa_mem_base
  58#define PCI_DRAM_OFFSET 0
  59#endif
  60
  61extern unsigned long isa_io_base;
  62extern unsigned long pci_io_base;
  63extern unsigned long pci_dram_offset;
  64
  65extern resource_size_t isa_mem_base;
  66
  67/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
  68 * is not set or addresses cannot be translated to MMIO. This is typically
  69 * set when the platform supports "special" PIO accesses via a non memory
  70 * mapped mechanism, and allows things like the early udbg UART code to
  71 * function.
  72 */
  73extern bool isa_io_special;
  74
  75#ifdef CONFIG_PPC32
  76#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
  77#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
  78#endif
  79#endif
  80
  81/*
  82 *
  83 * Low level MMIO accessors
  84 *
  85 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
  86 * specific and thus shouldn't be used in generic code. The accessors
  87 * provided here are:
  88 *
  89 *      in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
  90 *      out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
  91 *      _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
  92 *
  93 * Those operate directly on a kernel virtual address. Note that the prototype
  94 * for the out_* accessors has the arguments in opposite order from the usual
  95 * linux PCI accessors. Unlike those, they take the address first and the value
  96 * next.
  97 *
  98 * Note: I might drop the _ns suffix on the stream operations soon as it is
  99 * simply normal for stream operations to not swap in the first place.
 100 *
 101 */
 102
 103#define DEF_MMIO_IN_X(name, size, insn)                         \
 104static inline u##size name(const volatile u##size __iomem *addr)        \
 105{                                                                       \
 106        u##size ret;                                                    \
 107        __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"     \
 108                : "=r" (ret) : "Z" (*addr) : "memory");                 \
 109        return ret;                                                     \
 110}
 111
 112#define DEF_MMIO_OUT_X(name, size, insn)                                \
 113static inline void name(volatile u##size __iomem *addr, u##size val)    \
 114{                                                                       \
 115        __asm__ __volatile__("sync;"#insn" %1,%y0"                      \
 116                : "=Z" (*addr) : "r" (val) : "memory");                 \
 117        mmiowb_set_pending();                                           \
 118}
 119
 120#define DEF_MMIO_IN_D(name, size, insn)                         \
 121static inline u##size name(const volatile u##size __iomem *addr)        \
 122{                                                                       \
 123        u##size ret;                                                    \
 124        __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
 125                : "=r" (ret) : "m"UPD_CONSTR (*addr) : "memory");       \
 126        return ret;                                                     \
 127}
 128
 129#define DEF_MMIO_OUT_D(name, size, insn)                                \
 130static inline void name(volatile u##size __iomem *addr, u##size val)    \
 131{                                                                       \
 132        __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"                 \
 133                : "=m"UPD_CONSTR (*addr) : "r" (val) : "memory");       \
 134        mmiowb_set_pending();                                           \
 135}
 136
 137DEF_MMIO_IN_D(in_8,     8, lbz);
 138DEF_MMIO_OUT_D(out_8,   8, stb);
 139
 140#ifdef __BIG_ENDIAN__
 141DEF_MMIO_IN_D(in_be16, 16, lhz);
 142DEF_MMIO_IN_D(in_be32, 32, lwz);
 143DEF_MMIO_IN_X(in_le16, 16, lhbrx);
 144DEF_MMIO_IN_X(in_le32, 32, lwbrx);
 145
 146DEF_MMIO_OUT_D(out_be16, 16, sth);
 147DEF_MMIO_OUT_D(out_be32, 32, stw);
 148DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
 149DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
 150#else
 151DEF_MMIO_IN_X(in_be16, 16, lhbrx);
 152DEF_MMIO_IN_X(in_be32, 32, lwbrx);
 153DEF_MMIO_IN_D(in_le16, 16, lhz);
 154DEF_MMIO_IN_D(in_le32, 32, lwz);
 155
 156DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
 157DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
 158DEF_MMIO_OUT_D(out_le16, 16, sth);
 159DEF_MMIO_OUT_D(out_le32, 32, stw);
 160
 161#endif /* __BIG_ENDIAN */
 162
 163#ifdef __powerpc64__
 164
 165#ifdef __BIG_ENDIAN__
 166DEF_MMIO_OUT_D(out_be64, 64, std);
 167DEF_MMIO_IN_D(in_be64, 64, ld);
 168
 169/* There is no asm instructions for 64 bits reverse loads and stores */
 170static inline u64 in_le64(const volatile u64 __iomem *addr)
 171{
 172        return swab64(in_be64(addr));
 173}
 174
 175static inline void out_le64(volatile u64 __iomem *addr, u64 val)
 176{
 177        out_be64(addr, swab64(val));
 178}
 179#else
 180DEF_MMIO_OUT_D(out_le64, 64, std);
 181DEF_MMIO_IN_D(in_le64, 64, ld);
 182
 183/* There is no asm instructions for 64 bits reverse loads and stores */
 184static inline u64 in_be64(const volatile u64 __iomem *addr)
 185{
 186        return swab64(in_le64(addr));
 187}
 188
 189static inline void out_be64(volatile u64 __iomem *addr, u64 val)
 190{
 191        out_le64(addr, swab64(val));
 192}
 193
 194#endif
 195#endif /* __powerpc64__ */
 196
 197/*
 198 * Low level IO stream instructions are defined out of line for now
 199 */
 200extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
 201extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
 202extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
 203extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
 204extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
 205extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
 206
 207/* The _ns naming is historical and will be removed. For now, just #define
 208 * the non _ns equivalent names
 209 */
 210#define _insw   _insw_ns
 211#define _insl   _insl_ns
 212#define _outsw  _outsw_ns
 213#define _outsl  _outsl_ns
 214
 215
 216/*
 217 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
 218 */
 219
 220extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
 221extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
 222                           unsigned long n);
 223extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
 224                         unsigned long n);
 225
 226/*
 227 *
 228 * PCI and standard ISA accessors
 229 *
 230 * Those are globally defined linux accessors for devices on PCI or ISA
 231 * busses. They follow the Linux defined semantics. The current implementation
 232 * for PowerPC is as close as possible to the x86 version of these, and thus
 233 * provides fairly heavy weight barriers for the non-raw versions
 234 *
 235 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
 236 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
 237 * own implementation of some or all of the accessors.
 238 */
 239
 240/*
 241 * Include the EEH definitions when EEH is enabled only so they don't get
 242 * in the way when building for 32 bits
 243 */
 244#ifdef CONFIG_EEH
 245#include <asm/eeh.h>
 246#endif
 247
 248/* Shortcut to the MMIO argument pointer */
 249#define PCI_IO_ADDR     volatile void __iomem *
 250
 251/* Indirect IO address tokens:
 252 *
 253 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
 254 * on all MMIOs. (Note that this is all 64 bits only for now)
 255 *
 256 * To help platforms who may need to differentiate MMIO addresses in
 257 * their hooks, a bitfield is reserved for use by the platform near the
 258 * top of MMIO addresses (not PIO, those have to cope the hard way).
 259 *
 260 * The highest address in the kernel virtual space are:
 261 *
 262 *  d0003fffffffffff    # with Hash MMU
 263 *  c00fffffffffffff    # with Radix MMU
 264 *
 265 * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
 266 * that can be used for the field.
 267 *
 268 * The direct IO mapping operations will then mask off those bits
 269 * before doing the actual access, though that only happen when
 270 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
 271 * mechanism
 272 *
 273 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
 274 * all PIO functions call through a hook.
 275 */
 276
 277#ifdef CONFIG_PPC_INDIRECT_MMIO
 278#define PCI_IO_IND_TOKEN_SHIFT  52
 279#define PCI_IO_IND_TOKEN_MASK   (0xfful << PCI_IO_IND_TOKEN_SHIFT)
 280#define PCI_FIX_ADDR(addr)                                              \
 281        ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
 282#define PCI_GET_ADDR_TOKEN(addr)                                        \
 283        (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >>             \
 284                PCI_IO_IND_TOKEN_SHIFT)
 285#define PCI_SET_ADDR_TOKEN(addr, token)                                 \
 286do {                                                                    \
 287        unsigned long __a = (unsigned long)(addr);                      \
 288        __a &= ~PCI_IO_IND_TOKEN_MASK;                                  \
 289        __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;      \
 290        (addr) = (void __iomem *)__a;                                   \
 291} while(0)
 292#else
 293#define PCI_FIX_ADDR(addr) (addr)
 294#endif
 295
 296
 297/*
 298 * Non ordered and non-swapping "raw" accessors
 299 */
 300
 301static inline unsigned char __raw_readb(const volatile void __iomem *addr)
 302{
 303        return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
 304}
 305#define __raw_readb __raw_readb
 306
 307static inline unsigned short __raw_readw(const volatile void __iomem *addr)
 308{
 309        return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
 310}
 311#define __raw_readw __raw_readw
 312
 313static inline unsigned int __raw_readl(const volatile void __iomem *addr)
 314{
 315        return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
 316}
 317#define __raw_readl __raw_readl
 318
 319static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
 320{
 321        *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
 322}
 323#define __raw_writeb __raw_writeb
 324
 325static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
 326{
 327        *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
 328}
 329#define __raw_writew __raw_writew
 330
 331static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
 332{
 333        *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
 334}
 335#define __raw_writel __raw_writel
 336
 337#ifdef __powerpc64__
 338static inline unsigned long __raw_readq(const volatile void __iomem *addr)
 339{
 340        return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
 341}
 342#define __raw_readq __raw_readq
 343
 344static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
 345{
 346        *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
 347}
 348#define __raw_writeq __raw_writeq
 349
 350static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
 351{
 352        __raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
 353}
 354#define __raw_writeq_be __raw_writeq_be
 355
 356/*
 357 * Real mode versions of the above. Those instructions are only supposed
 358 * to be used in hypervisor real mode as per the architecture spec.
 359 */
 360static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
 361{
 362        __asm__ __volatile__("stbcix %0,0,%1"
 363                : : "r" (val), "r" (paddr) : "memory");
 364}
 365
 366static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
 367{
 368        __asm__ __volatile__("sthcix %0,0,%1"
 369                : : "r" (val), "r" (paddr) : "memory");
 370}
 371
 372static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
 373{
 374        __asm__ __volatile__("stwcix %0,0,%1"
 375                : : "r" (val), "r" (paddr) : "memory");
 376}
 377
 378static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
 379{
 380        __asm__ __volatile__("stdcix %0,0,%1"
 381                : : "r" (val), "r" (paddr) : "memory");
 382}
 383
 384static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
 385{
 386        __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
 387}
 388
 389static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
 390{
 391        u8 ret;
 392        __asm__ __volatile__("lbzcix %0,0, %1"
 393                             : "=r" (ret) : "r" (paddr) : "memory");
 394        return ret;
 395}
 396
 397static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
 398{
 399        u16 ret;
 400        __asm__ __volatile__("lhzcix %0,0, %1"
 401                             : "=r" (ret) : "r" (paddr) : "memory");
 402        return ret;
 403}
 404
 405static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
 406{
 407        u32 ret;
 408        __asm__ __volatile__("lwzcix %0,0, %1"
 409                             : "=r" (ret) : "r" (paddr) : "memory");
 410        return ret;
 411}
 412
 413static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
 414{
 415        u64 ret;
 416        __asm__ __volatile__("ldcix %0,0, %1"
 417                             : "=r" (ret) : "r" (paddr) : "memory");
 418        return ret;
 419}
 420#endif /* __powerpc64__ */
 421
 422/*
 423 *
 424 * PCI PIO and MMIO accessors.
 425 *
 426 *
 427 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
 428 * machine checks (which they occasionally do when probing non existing
 429 * IO ports on some platforms, like PowerMac and 8xx).
 430 * I always found it to be of dubious reliability and I am tempted to get
 431 * rid of it one of these days. So if you think it's important to keep it,
 432 * please voice up asap. We never had it for 64 bits and I do not intend
 433 * to port it over
 434 */
 435
 436#ifdef CONFIG_PPC32
 437
 438#define __do_in_asm(name, op)                           \
 439static inline unsigned int name(unsigned int port)      \
 440{                                                       \
 441        unsigned int x;                                 \
 442        __asm__ __volatile__(                           \
 443                "sync\n"                                \
 444                "0:"    op "    %0,0,%1\n"              \
 445                "1:     twi     0,%0,0\n"               \
 446                "2:     isync\n"                        \
 447                "3:     nop\n"                          \
 448                "4:\n"                                  \
 449                ".section .fixup,\"ax\"\n"              \
 450                "5:     li      %0,-1\n"                \
 451                "       b       4b\n"                   \
 452                ".previous\n"                           \
 453                EX_TABLE(0b, 5b)                        \
 454                EX_TABLE(1b, 5b)                        \
 455                EX_TABLE(2b, 5b)                        \
 456                EX_TABLE(3b, 5b)                        \
 457                : "=&r" (x)                             \
 458                : "r" (port + _IO_BASE)                 \
 459                : "memory");                            \
 460        return x;                                       \
 461}
 462
 463#define __do_out_asm(name, op)                          \
 464static inline void name(unsigned int val, unsigned int port) \
 465{                                                       \
 466        __asm__ __volatile__(                           \
 467                "sync\n"                                \
 468                "0:" op " %0,0,%1\n"                    \
 469                "1:     sync\n"                         \
 470                "2:\n"                                  \
 471                EX_TABLE(0b, 2b)                        \
 472                EX_TABLE(1b, 2b)                        \
 473                : : "r" (val), "r" (port + _IO_BASE)    \
 474                : "memory");                            \
 475}
 476
 477__do_in_asm(_rec_inb, "lbzx")
 478__do_in_asm(_rec_inw, "lhbrx")
 479__do_in_asm(_rec_inl, "lwbrx")
 480__do_out_asm(_rec_outb, "stbx")
 481__do_out_asm(_rec_outw, "sthbrx")
 482__do_out_asm(_rec_outl, "stwbrx")
 483
 484#endif /* CONFIG_PPC32 */
 485
 486/* The "__do_*" operations below provide the actual "base" implementation
 487 * for each of the defined accessors. Some of them use the out_* functions
 488 * directly, some of them still use EEH, though we might change that in the
 489 * future. Those macros below provide the necessary argument swapping and
 490 * handling of the IO base for PIO.
 491 *
 492 * They are themselves used by the macros that define the actual accessors
 493 * and can be used by the hooks if any.
 494 *
 495 * Note that PIO operations are always defined in terms of their corresonding
 496 * MMIO operations. That allows platforms like iSeries who want to modify the
 497 * behaviour of both to only hook on the MMIO version and get both. It's also
 498 * possible to hook directly at the toplevel PIO operation if they have to
 499 * be handled differently
 500 */
 501#define __do_writeb(val, addr)  out_8(PCI_FIX_ADDR(addr), val)
 502#define __do_writew(val, addr)  out_le16(PCI_FIX_ADDR(addr), val)
 503#define __do_writel(val, addr)  out_le32(PCI_FIX_ADDR(addr), val)
 504#define __do_writeq(val, addr)  out_le64(PCI_FIX_ADDR(addr), val)
 505#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
 506#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
 507#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
 508
 509#ifdef CONFIG_EEH
 510#define __do_readb(addr)        eeh_readb(PCI_FIX_ADDR(addr))
 511#define __do_readw(addr)        eeh_readw(PCI_FIX_ADDR(addr))
 512#define __do_readl(addr)        eeh_readl(PCI_FIX_ADDR(addr))
 513#define __do_readq(addr)        eeh_readq(PCI_FIX_ADDR(addr))
 514#define __do_readw_be(addr)     eeh_readw_be(PCI_FIX_ADDR(addr))
 515#define __do_readl_be(addr)     eeh_readl_be(PCI_FIX_ADDR(addr))
 516#define __do_readq_be(addr)     eeh_readq_be(PCI_FIX_ADDR(addr))
 517#else /* CONFIG_EEH */
 518#define __do_readb(addr)        in_8(PCI_FIX_ADDR(addr))
 519#define __do_readw(addr)        in_le16(PCI_FIX_ADDR(addr))
 520#define __do_readl(addr)        in_le32(PCI_FIX_ADDR(addr))
 521#define __do_readq(addr)        in_le64(PCI_FIX_ADDR(addr))
 522#define __do_readw_be(addr)     in_be16(PCI_FIX_ADDR(addr))
 523#define __do_readl_be(addr)     in_be32(PCI_FIX_ADDR(addr))
 524#define __do_readq_be(addr)     in_be64(PCI_FIX_ADDR(addr))
 525#endif /* !defined(CONFIG_EEH) */
 526
 527#ifdef CONFIG_PPC32
 528#define __do_outb(val, port)    _rec_outb(val, port)
 529#define __do_outw(val, port)    _rec_outw(val, port)
 530#define __do_outl(val, port)    _rec_outl(val, port)
 531#define __do_inb(port)          _rec_inb(port)
 532#define __do_inw(port)          _rec_inw(port)
 533#define __do_inl(port)          _rec_inl(port)
 534#else /* CONFIG_PPC32 */
 535#define __do_outb(val, port)    writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
 536#define __do_outw(val, port)    writew(val,(PCI_IO_ADDR)_IO_BASE+port);
 537#define __do_outl(val, port)    writel(val,(PCI_IO_ADDR)_IO_BASE+port);
 538#define __do_inb(port)          readb((PCI_IO_ADDR)_IO_BASE + port);
 539#define __do_inw(port)          readw((PCI_IO_ADDR)_IO_BASE + port);
 540#define __do_inl(port)          readl((PCI_IO_ADDR)_IO_BASE + port);
 541#endif /* !CONFIG_PPC32 */
 542
 543#ifdef CONFIG_EEH
 544#define __do_readsb(a, b, n)    eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
 545#define __do_readsw(a, b, n)    eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
 546#define __do_readsl(a, b, n)    eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
 547#else /* CONFIG_EEH */
 548#define __do_readsb(a, b, n)    _insb(PCI_FIX_ADDR(a), (b), (n))
 549#define __do_readsw(a, b, n)    _insw(PCI_FIX_ADDR(a), (b), (n))
 550#define __do_readsl(a, b, n)    _insl(PCI_FIX_ADDR(a), (b), (n))
 551#endif /* !CONFIG_EEH */
 552#define __do_writesb(a, b, n)   _outsb(PCI_FIX_ADDR(a),(b),(n))
 553#define __do_writesw(a, b, n)   _outsw(PCI_FIX_ADDR(a),(b),(n))
 554#define __do_writesl(a, b, n)   _outsl(PCI_FIX_ADDR(a),(b),(n))
 555
 556#define __do_insb(p, b, n)      readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
 557#define __do_insw(p, b, n)      readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
 558#define __do_insl(p, b, n)      readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
 559#define __do_outsb(p, b, n)     writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
 560#define __do_outsw(p, b, n)     writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
 561#define __do_outsl(p, b, n)     writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
 562
 563#define __do_memset_io(addr, c, n)      \
 564                                _memset_io(PCI_FIX_ADDR(addr), c, n)
 565#define __do_memcpy_toio(dst, src, n)   \
 566                                _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
 567
 568#ifdef CONFIG_EEH
 569#define __do_memcpy_fromio(dst, src, n) \
 570                                eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
 571#else /* CONFIG_EEH */
 572#define __do_memcpy_fromio(dst, src, n) \
 573                                _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
 574#endif /* !CONFIG_EEH */
 575
 576#ifdef CONFIG_PPC_INDIRECT_PIO
 577#define DEF_PCI_HOOK_pio(x)     x
 578#else
 579#define DEF_PCI_HOOK_pio(x)     NULL
 580#endif
 581
 582#ifdef CONFIG_PPC_INDIRECT_MMIO
 583#define DEF_PCI_HOOK_mem(x)     x
 584#else
 585#define DEF_PCI_HOOK_mem(x)     NULL
 586#endif
 587
 588/* Structure containing all the hooks */
 589extern struct ppc_pci_io {
 590
 591#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)    ret (*name) at;
 592#define DEF_PCI_AC_NORET(name, at, al, space, aa)       void (*name) at;
 593
 594#include <asm/io-defs.h>
 595
 596#undef DEF_PCI_AC_RET
 597#undef DEF_PCI_AC_NORET
 598
 599} ppc_pci_io;
 600
 601/* The inline wrappers */
 602#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)            \
 603static inline ret name at                                       \
 604{                                                               \
 605        if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)      \
 606                return ppc_pci_io.name al;                      \
 607        return __do_##name al;                                  \
 608}
 609
 610#define DEF_PCI_AC_NORET(name, at, al, space, aa)               \
 611static inline void name at                                      \
 612{                                                               \
 613        if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)              \
 614                ppc_pci_io.name al;                             \
 615        else                                                    \
 616                __do_##name al;                                 \
 617}
 618
 619#include <asm/io-defs.h>
 620
 621#undef DEF_PCI_AC_RET
 622#undef DEF_PCI_AC_NORET
 623
 624/* Some drivers check for the presence of readq & writeq with
 625 * a #ifdef, so we make them happy here.
 626 */
 627#define readb readb
 628#define readw readw
 629#define readl readl
 630#define writeb writeb
 631#define writew writew
 632#define writel writel
 633#define readsb readsb
 634#define readsw readsw
 635#define readsl readsl
 636#define writesb writesb
 637#define writesw writesw
 638#define writesl writesl
 639#define inb inb
 640#define inw inw
 641#define inl inl
 642#define outb outb
 643#define outw outw
 644#define outl outl
 645#define insb insb
 646#define insw insw
 647#define insl insl
 648#define outsb outsb
 649#define outsw outsw
 650#define outsl outsl
 651#ifdef __powerpc64__
 652#define readq   readq
 653#define writeq  writeq
 654#endif
 655#define memset_io memset_io
 656#define memcpy_fromio memcpy_fromio
 657#define memcpy_toio memcpy_toio
 658
 659/*
 660 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
 661 * access
 662 */
 663#define xlate_dev_mem_ptr(p)    __va(p)
 664
 665/*
 666 * We don't do relaxed operations yet, at least not with this semantic
 667 */
 668#define readb_relaxed(addr)     readb(addr)
 669#define readw_relaxed(addr)     readw(addr)
 670#define readl_relaxed(addr)     readl(addr)
 671#define readq_relaxed(addr)     readq(addr)
 672#define writeb_relaxed(v, addr) writeb(v, addr)
 673#define writew_relaxed(v, addr) writew(v, addr)
 674#define writel_relaxed(v, addr) writel(v, addr)
 675#define writeq_relaxed(v, addr) writeq(v, addr)
 676
 677#ifdef CONFIG_GENERIC_IOMAP
 678#include <asm-generic/iomap.h>
 679#else
 680/*
 681 * Here comes the implementation of the IOMAP interfaces.
 682 */
 683static inline unsigned int ioread16be(const void __iomem *addr)
 684{
 685        return readw_be(addr);
 686}
 687#define ioread16be ioread16be
 688
 689static inline unsigned int ioread32be(const void __iomem *addr)
 690{
 691        return readl_be(addr);
 692}
 693#define ioread32be ioread32be
 694
 695#ifdef __powerpc64__
 696static inline u64 ioread64_lo_hi(const void __iomem *addr)
 697{
 698        return readq(addr);
 699}
 700#define ioread64_lo_hi ioread64_lo_hi
 701
 702static inline u64 ioread64_hi_lo(const void __iomem *addr)
 703{
 704        return readq(addr);
 705}
 706#define ioread64_hi_lo ioread64_hi_lo
 707
 708static inline u64 ioread64be(const void __iomem *addr)
 709{
 710        return readq_be(addr);
 711}
 712#define ioread64be ioread64be
 713
 714static inline u64 ioread64be_lo_hi(const void __iomem *addr)
 715{
 716        return readq_be(addr);
 717}
 718#define ioread64be_lo_hi ioread64be_lo_hi
 719
 720static inline u64 ioread64be_hi_lo(const void __iomem *addr)
 721{
 722        return readq_be(addr);
 723}
 724#define ioread64be_hi_lo ioread64be_hi_lo
 725#endif /* __powerpc64__ */
 726
 727static inline void iowrite16be(u16 val, void __iomem *addr)
 728{
 729        writew_be(val, addr);
 730}
 731#define iowrite16be iowrite16be
 732
 733static inline void iowrite32be(u32 val, void __iomem *addr)
 734{
 735        writel_be(val, addr);
 736}
 737#define iowrite32be iowrite32be
 738
 739#ifdef __powerpc64__
 740static inline void iowrite64_lo_hi(u64 val, void __iomem *addr)
 741{
 742        writeq(val, addr);
 743}
 744#define iowrite64_lo_hi iowrite64_lo_hi
 745
 746static inline void iowrite64_hi_lo(u64 val, void __iomem *addr)
 747{
 748        writeq(val, addr);
 749}
 750#define iowrite64_hi_lo iowrite64_hi_lo
 751
 752static inline void iowrite64be(u64 val, void __iomem *addr)
 753{
 754        writeq_be(val, addr);
 755}
 756#define iowrite64be iowrite64be
 757
 758static inline void iowrite64be_lo_hi(u64 val, void __iomem *addr)
 759{
 760        writeq_be(val, addr);
 761}
 762#define iowrite64be_lo_hi iowrite64be_lo_hi
 763
 764static inline void iowrite64be_hi_lo(u64 val, void __iomem *addr)
 765{
 766        writeq_be(val, addr);
 767}
 768#define iowrite64be_hi_lo iowrite64be_hi_lo
 769#endif /* __powerpc64__ */
 770
 771struct pci_dev;
 772void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
 773#define pci_iounmap pci_iounmap
 774void __iomem *ioport_map(unsigned long port, unsigned int len);
 775#define ioport_map ioport_map
 776#endif
 777
 778static inline void iosync(void)
 779{
 780        __asm__ __volatile__ ("sync" : : : "memory");
 781}
 782
 783/* Enforce in-order execution of data I/O.
 784 * No distinction between read/write on PPC; use eieio for all three.
 785 * Those are fairly week though. They don't provide a barrier between
 786 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
 787 * they only provide barriers between 2 __raw MMIO operations and
 788 * possibly break write combining.
 789 */
 790#define iobarrier_rw() eieio()
 791#define iobarrier_r()  eieio()
 792#define iobarrier_w()  eieio()
 793
 794
 795/*
 796 * output pause versions need a delay at least for the
 797 * w83c105 ide controller in a p610.
 798 */
 799#define inb_p(port)             inb(port)
 800#define outb_p(val, port)       (udelay(1), outb((val), (port)))
 801#define inw_p(port)             inw(port)
 802#define outw_p(val, port)       (udelay(1), outw((val), (port)))
 803#define inl_p(port)             inl(port)
 804#define outl_p(val, port)       (udelay(1), outl((val), (port)))
 805
 806
 807#define IO_SPACE_LIMIT ~(0UL)
 808
 809/**
 810 * ioremap     -   map bus memory into CPU space
 811 * @address:   bus address of the memory
 812 * @size:      size of the resource to map
 813 *
 814 * ioremap performs a platform specific sequence of operations to
 815 * make bus memory CPU accessible via the readb/readw/readl/writeb/
 816 * writew/writel functions and the other mmio helpers. The returned
 817 * address is not guaranteed to be usable directly as a virtual
 818 * address.
 819 *
 820 * We provide a few variations of it:
 821 *
 822 * * ioremap is the standard one and provides non-cacheable guarded mappings
 823 *   and can be hooked by the platform via ppc_md
 824 *
 825 * * ioremap_prot allows to specify the page flags as an argument and can
 826 *   also be hooked by the platform via ppc_md.
 827 *
 828 * * ioremap_wc enables write combining
 829 *
 830 * * ioremap_wt enables write through
 831 *
 832 * * ioremap_coherent maps coherent cached memory
 833 *
 834 * * iounmap undoes such a mapping and can be hooked
 835 *
 836 * * __ioremap_caller is the same as above but takes an explicit caller
 837 *   reference rather than using __builtin_return_address(0)
 838 *
 839 */
 840extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
 841extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
 842                                  unsigned long flags);
 843extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
 844#define ioremap_wc ioremap_wc
 845
 846#ifdef CONFIG_PPC32
 847void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
 848#define ioremap_wt ioremap_wt
 849#endif
 850
 851void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
 852#define ioremap_uc(addr, size)          ioremap((addr), (size))
 853#define ioremap_cache(addr, size) \
 854        ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
 855
 856extern void iounmap(volatile void __iomem *addr);
 857
 858void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size);
 859
 860int early_ioremap_range(unsigned long ea, phys_addr_t pa,
 861                        unsigned long size, pgprot_t prot);
 862void __iomem *do_ioremap(phys_addr_t pa, phys_addr_t offset, unsigned long size,
 863                         pgprot_t prot, void *caller);
 864
 865extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
 866                                      pgprot_t prot, void *caller);
 867
 868/*
 869 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
 870 * which needs some additional definitions here. They basically allow PIO
 871 * space overall to be 1GB. This will work as long as we never try to use
 872 * iomap to map MMIO below 1GB which should be fine on ppc64
 873 */
 874#define HAVE_ARCH_PIO_SIZE              1
 875#define PIO_OFFSET                      0x00000000UL
 876#define PIO_MASK                        (FULL_IO_SIZE - 1)
 877#define PIO_RESERVED                    (FULL_IO_SIZE)
 878
 879#define mmio_read16be(addr)             readw_be(addr)
 880#define mmio_read32be(addr)             readl_be(addr)
 881#define mmio_read64be(addr)             readq_be(addr)
 882#define mmio_write16be(val, addr)       writew_be(val, addr)
 883#define mmio_write32be(val, addr)       writel_be(val, addr)
 884#define mmio_write64be(val, addr)       writeq_be(val, addr)
 885#define mmio_insb(addr, dst, count)     readsb(addr, dst, count)
 886#define mmio_insw(addr, dst, count)     readsw(addr, dst, count)
 887#define mmio_insl(addr, dst, count)     readsl(addr, dst, count)
 888#define mmio_outsb(addr, src, count)    writesb(addr, src, count)
 889#define mmio_outsw(addr, src, count)    writesw(addr, src, count)
 890#define mmio_outsl(addr, src, count)    writesl(addr, src, count)
 891
 892/**
 893 *      virt_to_phys    -       map virtual addresses to physical
 894 *      @address: address to remap
 895 *
 896 *      The returned physical address is the physical (CPU) mapping for
 897 *      the memory address given. It is only valid to use this function on
 898 *      addresses directly mapped or allocated via kmalloc.
 899 *
 900 *      This function does not give bus mappings for DMA transfers. In
 901 *      almost all conceivable cases a device driver should not be using
 902 *      this function
 903 */
 904static inline unsigned long virt_to_phys(volatile void * address)
 905{
 906        WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
 907
 908        return __pa((unsigned long)address);
 909}
 910#define virt_to_phys virt_to_phys
 911
 912/**
 913 *      phys_to_virt    -       map physical address to virtual
 914 *      @address: address to remap
 915 *
 916 *      The returned virtual address is a current CPU mapping for
 917 *      the memory address given. It is only valid to use this function on
 918 *      addresses that have a kernel mapping
 919 *
 920 *      This function does not handle bus mappings for DMA transfers. In
 921 *      almost all conceivable cases a device driver should not be using
 922 *      this function
 923 */
 924static inline void * phys_to_virt(unsigned long address)
 925{
 926        return (void *)__va(address);
 927}
 928#define phys_to_virt phys_to_virt
 929
 930/*
 931 * Change "struct page" to physical address.
 932 */
 933static inline phys_addr_t page_to_phys(struct page *page)
 934{
 935        unsigned long pfn = page_to_pfn(page);
 936
 937        WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
 938
 939        return PFN_PHYS(pfn);
 940}
 941
 942/*
 943 * 32 bits still uses virt_to_bus() for it's implementation of DMA
 944 * mappings se we have to keep it defined here. We also have some old
 945 * drivers (shame shame shame) that use bus_to_virt() and haven't been
 946 * fixed yet so I need to define it here.
 947 */
 948#ifdef CONFIG_PPC32
 949
 950static inline unsigned long virt_to_bus(volatile void * address)
 951{
 952        if (address == NULL)
 953                return 0;
 954        return __pa(address) + PCI_DRAM_OFFSET;
 955}
 956#define virt_to_bus virt_to_bus
 957
 958static inline void * bus_to_virt(unsigned long address)
 959{
 960        if (address == 0)
 961                return NULL;
 962        return __va(address - PCI_DRAM_OFFSET);
 963}
 964#define bus_to_virt bus_to_virt
 965
 966#define page_to_bus(page)       (page_to_phys(page) + PCI_DRAM_OFFSET)
 967
 968#endif /* CONFIG_PPC32 */
 969
 970/* access ports */
 971#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
 972#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
 973
 974#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
 975#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
 976
 977#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
 978#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
 979
 980/* Clear and set bits in one shot.  These macros can be used to clear and
 981 * set multiple bits in a register using a single read-modify-write.  These
 982 * macros can also be used to set a multiple-bit bit pattern using a mask,
 983 * by specifying the mask in the 'clear' parameter and the new bit pattern
 984 * in the 'set' parameter.
 985 */
 986
 987#define clrsetbits(type, addr, clear, set) \
 988        out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
 989
 990#ifdef __powerpc64__
 991#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
 992#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
 993#endif
 994
 995#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
 996#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
 997
 998#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
 999#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
1000
1001#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
1002
1003#include <asm-generic/io.h>
1004
1005#endif /* __KERNEL__ */
1006
1007#endif /* _ASM_POWERPC_IO_H */
1008