linux/arch/powerpc/include/asm/nohash/32/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
   3#define _ASM_POWERPC_NOHASH_32_PGTABLE_H
   4
   5#include <asm-generic/pgtable-nopmd.h>
   6
   7#ifndef __ASSEMBLY__
   8#include <linux/sched.h>
   9#include <linux/threads.h>
  10#include <asm/mmu.h>                    /* For sub-arch specific PPC_PIN_SIZE */
  11
  12#ifdef CONFIG_44x
  13extern int icache_44x_need_flush;
  14#endif
  15
  16#endif /* __ASSEMBLY__ */
  17
  18#define PTE_INDEX_SIZE  PTE_SHIFT
  19#define PMD_INDEX_SIZE  0
  20#define PUD_INDEX_SIZE  0
  21#define PGD_INDEX_SIZE  (32 - PGDIR_SHIFT)
  22
  23#define PMD_CACHE_INDEX PMD_INDEX_SIZE
  24#define PUD_CACHE_INDEX PUD_INDEX_SIZE
  25
  26#ifndef __ASSEMBLY__
  27#define PTE_TABLE_SIZE  (sizeof(pte_t) << PTE_INDEX_SIZE)
  28#define PMD_TABLE_SIZE  0
  29#define PUD_TABLE_SIZE  0
  30#define PGD_TABLE_SIZE  (sizeof(pgd_t) << PGD_INDEX_SIZE)
  31
  32#define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
  33#endif  /* __ASSEMBLY__ */
  34
  35#define PTRS_PER_PTE    (1 << PTE_INDEX_SIZE)
  36#define PTRS_PER_PGD    (1 << PGD_INDEX_SIZE)
  37
  38/*
  39 * The normal case is that PTEs are 32-bits and we have a 1-page
  40 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
  41 *
  42 * For any >32-bit physical address platform, we can use the following
  43 * two level page table layout where the pgdir is 8KB and the MS 13 bits
  44 * are an index to the second level table.  The combined pgdir/pmd first
  45 * level has 2048 entries and the second level has 512 64-bit PTE entries.
  46 * -Matt
  47 */
  48/* PGDIR_SHIFT determines what a top-level page table entry can map */
  49#define PGDIR_SHIFT     (PAGE_SHIFT + PTE_INDEX_SIZE)
  50#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  51#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  52
  53/* Bits to mask out from a PGD to get to the PUD page */
  54#define PGD_MASKED_BITS         0
  55
  56#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
  57
  58#define pte_ERROR(e) \
  59        pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
  60                (unsigned long long)pte_val(e))
  61#define pgd_ERROR(e) \
  62        pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
  63
  64#ifndef __ASSEMBLY__
  65
  66int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
  67
  68#endif /* !__ASSEMBLY__ */
  69
  70
  71/*
  72 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
  73 * value (for now) on others, from where we can start layout kernel
  74 * virtual space that goes below PKMAP and FIXMAP
  75 */
  76#include <asm/fixmap.h>
  77
  78/*
  79 * ioremap_bot starts at that address. Early ioremaps move down from there,
  80 * until mem_init() at which point this becomes the top of the vmalloc
  81 * and ioremap space
  82 */
  83#ifdef CONFIG_HIGHMEM
  84#define IOREMAP_TOP     PKMAP_BASE
  85#else
  86#define IOREMAP_TOP     FIXADDR_START
  87#endif
  88
  89/* PPC32 shares vmalloc area with ioremap */
  90#define IOREMAP_START   VMALLOC_START
  91#define IOREMAP_END     VMALLOC_END
  92
  93/*
  94 * Just any arbitrary offset to the start of the vmalloc VM area: the
  95 * current 16MB value just means that there will be a 64MB "hole" after the
  96 * physical memory until the kernel virtual memory starts.  That means that
  97 * any out-of-bounds memory accesses will hopefully be caught.
  98 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  99 * area for the same reason. ;)
 100 *
 101 * We no longer map larger than phys RAM with the BATs so we don't have
 102 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
 103 * about clashes between our early calls to ioremap() that start growing down
 104 * from IOREMAP_TOP being run into the VM area allocations (growing upwards
 105 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
 106 * we actually run into our mappings setup in the early boot with the VM
 107 * system.  This really does become a problem for machines with good amounts
 108 * of RAM.  -- Cort
 109 */
 110#define VMALLOC_OFFSET (0x1000000) /* 16M */
 111#ifdef PPC_PIN_SIZE
 112#define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
 113#else
 114#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
 115#endif
 116
 117#ifdef CONFIG_KASAN_VMALLOC
 118#define VMALLOC_END     ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
 119#else
 120#define VMALLOC_END     ioremap_bot
 121#endif
 122
 123/*
 124 * Bits in a linux-style PTE.  These match the bits in the
 125 * (hardware-defined) PowerPC PTE as closely as possible.
 126 */
 127
 128#if defined(CONFIG_40x)
 129#include <asm/nohash/32/pte-40x.h>
 130#elif defined(CONFIG_44x)
 131#include <asm/nohash/32/pte-44x.h>
 132#elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
 133#include <asm/nohash/pte-book3e.h>
 134#elif defined(CONFIG_FSL_BOOKE)
 135#include <asm/nohash/32/pte-fsl-booke.h>
 136#elif defined(CONFIG_PPC_8xx)
 137#include <asm/nohash/32/pte-8xx.h>
 138#endif
 139
 140/*
 141 * Location of the PFN in the PTE. Most 32-bit platforms use the same
 142 * as _PAGE_SHIFT here (ie, naturally aligned).
 143 * Platform who don't just pre-define the value so we don't override it here.
 144 */
 145#ifndef PTE_RPN_SHIFT
 146#define PTE_RPN_SHIFT   (PAGE_SHIFT)
 147#endif
 148
 149/*
 150 * The mask covered by the RPN must be a ULL on 32-bit platforms with
 151 * 64-bit PTEs.
 152 */
 153#if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
 154#define PTE_RPN_MASK    (~((1ULL << PTE_RPN_SHIFT) - 1))
 155#define MAX_POSSIBLE_PHYSMEM_BITS 36
 156#else
 157#define PTE_RPN_MASK    (~((1UL << PTE_RPN_SHIFT) - 1))
 158#define MAX_POSSIBLE_PHYSMEM_BITS 32
 159#endif
 160
 161/*
 162 * _PAGE_CHG_MASK masks of bits that are to be preserved across
 163 * pgprot changes.
 164 */
 165#define _PAGE_CHG_MASK  (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
 166
 167#ifndef __ASSEMBLY__
 168
 169#define pte_clear(mm, addr, ptep) \
 170        do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0)
 171
 172#ifndef pte_mkwrite
 173static inline pte_t pte_mkwrite(pte_t pte)
 174{
 175        return __pte(pte_val(pte) | _PAGE_RW);
 176}
 177#endif
 178
 179static inline pte_t pte_mkdirty(pte_t pte)
 180{
 181        return __pte(pte_val(pte) | _PAGE_DIRTY);
 182}
 183
 184static inline pte_t pte_mkyoung(pte_t pte)
 185{
 186        return __pte(pte_val(pte) | _PAGE_ACCESSED);
 187}
 188
 189#ifndef pte_wrprotect
 190static inline pte_t pte_wrprotect(pte_t pte)
 191{
 192        return __pte(pte_val(pte) & ~_PAGE_RW);
 193}
 194#endif
 195
 196static inline pte_t pte_mkexec(pte_t pte)
 197{
 198        return __pte(pte_val(pte) | _PAGE_EXEC);
 199}
 200
 201#define pmd_none(pmd)           (!pmd_val(pmd))
 202#define pmd_bad(pmd)            (pmd_val(pmd) & _PMD_BAD)
 203#define pmd_present(pmd)        (pmd_val(pmd) & _PMD_PRESENT_MASK)
 204static inline void pmd_clear(pmd_t *pmdp)
 205{
 206        *pmdp = __pmd(0);
 207}
 208
 209/*
 210 * PTE updates. This function is called whenever an existing
 211 * valid PTE is updated. This does -not- include set_pte_at()
 212 * which nowadays only sets a new PTE.
 213 *
 214 * Depending on the type of MMU, we may need to use atomic updates
 215 * and the PTE may be either 32 or 64 bit wide. In the later case,
 216 * when using atomic updates, only the low part of the PTE is
 217 * accessed atomically.
 218 *
 219 * In addition, on 44x, we also maintain a global flag indicating
 220 * that an executable user mapping was modified, which is needed
 221 * to properly flush the virtually tagged instruction cache of
 222 * those implementations.
 223 *
 224 * On the 8xx, the page tables are a bit special. For 16k pages, we have
 225 * 4 identical entries. For 512k pages, we have 128 entries as if it was
 226 * 4k pages, but they are flagged as 512k pages for the hardware.
 227 * For other page sizes, we have a single entry in the table.
 228 */
 229#ifdef CONFIG_PPC_8xx
 230static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
 231static int hugepd_ok(hugepd_t hpd);
 232
 233static int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge)
 234{
 235        if (!huge)
 236                return PAGE_SIZE / SZ_4K;
 237        else if (hugepd_ok(*((hugepd_t *)pmd)))
 238                return 1;
 239        else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE))
 240                return SZ_16K / SZ_4K;
 241        else
 242                return SZ_512K / SZ_4K;
 243}
 244
 245static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
 246                                     unsigned long clr, unsigned long set, int huge)
 247{
 248        pte_basic_t *entry = &p->pte;
 249        pte_basic_t old = pte_val(*p);
 250        pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
 251        int num, i;
 252        pmd_t *pmd = pmd_off(mm, addr);
 253
 254        num = number_of_cells_per_pte(pmd, new, huge);
 255
 256        for (i = 0; i < num; i++, entry++, new += SZ_4K)
 257                *entry = new;
 258
 259        return old;
 260}
 261
 262#ifdef CONFIG_PPC_16K_PAGES
 263#define __HAVE_ARCH_PTEP_GET
 264static inline pte_t ptep_get(pte_t *ptep)
 265{
 266        pte_basic_t val = READ_ONCE(ptep->pte);
 267        pte_t pte = {val, val, val, val};
 268
 269        return pte;
 270}
 271#endif /* CONFIG_PPC_16K_PAGES */
 272
 273#else
 274static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
 275                                     unsigned long clr, unsigned long set, int huge)
 276{
 277        pte_basic_t old = pte_val(*p);
 278        pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
 279
 280        *p = __pte(new);
 281
 282#ifdef CONFIG_44x
 283        if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
 284                icache_44x_need_flush = 1;
 285#endif
 286        return old;
 287}
 288#endif
 289
 290#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 291static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
 292                                              unsigned long addr, pte_t *ptep)
 293{
 294        unsigned long old;
 295        old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
 296        return (old & _PAGE_ACCESSED) != 0;
 297}
 298#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
 299        __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
 300
 301#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 302static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
 303                                       pte_t *ptep)
 304{
 305        return __pte(pte_update(mm, addr, ptep, ~0, 0, 0));
 306}
 307
 308#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 309static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 310                                      pte_t *ptep)
 311{
 312        unsigned long clr = ~pte_val(pte_wrprotect(__pte(~0)));
 313        unsigned long set = pte_val(pte_wrprotect(__pte(0)));
 314
 315        pte_update(mm, addr, ptep, clr, set, 0);
 316}
 317
 318static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
 319                                           pte_t *ptep, pte_t entry,
 320                                           unsigned long address,
 321                                           int psize)
 322{
 323        pte_t pte_set = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(0)))));
 324        pte_t pte_clr = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(~0)))));
 325        unsigned long set = pte_val(entry) & pte_val(pte_set);
 326        unsigned long clr = ~pte_val(entry) & ~pte_val(pte_clr);
 327        int huge = psize > mmu_virtual_psize ? 1 : 0;
 328
 329        pte_update(vma->vm_mm, address, ptep, clr, set, huge);
 330
 331        flush_tlb_page(vma, address);
 332}
 333
 334static inline int pte_young(pte_t pte)
 335{
 336        return pte_val(pte) & _PAGE_ACCESSED;
 337}
 338
 339#define __HAVE_ARCH_PTE_SAME
 340#define pte_same(A,B)   ((pte_val(A) ^ pte_val(B)) == 0)
 341
 342/*
 343 * Note that on Book E processors, the pmd contains the kernel virtual
 344 * (lowmem) address of the pte page.  The physical address is less useful
 345 * because everything runs with translation enabled (even the TLB miss
 346 * handler).  On everything else the pmd contains the physical address
 347 * of the pte page.  -- paulus
 348 */
 349#ifndef CONFIG_BOOKE
 350#define pmd_page(pmd)           \
 351        pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
 352#else
 353#define pmd_page_vaddr(pmd)     \
 354        ((unsigned long)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
 355#define pmd_page(pmd)           \
 356        pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
 357#endif
 358
 359/*
 360 * Encode and decode a swap entry.
 361 * Note that the bits we use in a PTE for representing a swap entry
 362 * must not include the _PAGE_PRESENT bit.
 363 *   -- paulus
 364 */
 365#define __swp_type(entry)               ((entry).val & 0x1f)
 366#define __swp_offset(entry)             ((entry).val >> 5)
 367#define __swp_entry(type, offset)       ((swp_entry_t) { (type) | ((offset) << 5) })
 368#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) >> 3 })
 369#define __swp_entry_to_pte(x)           ((pte_t) { (x).val << 3 })
 370
 371#endif /* !__ASSEMBLY__ */
 372
 373#endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */
 374