linux/arch/powerpc/kernel/smp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * SMP support for ppc.
   4 *
   5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
   6 * deal of code from the sparc and intel versions.
   7 *
   8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
   9 *
  10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
  11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
  12 */
  13
  14#undef DEBUG
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/task_stack.h>
  20#include <linux/sched/topology.h>
  21#include <linux/smp.h>
  22#include <linux/interrupt.h>
  23#include <linux/delay.h>
  24#include <linux/init.h>
  25#include <linux/spinlock.h>
  26#include <linux/cache.h>
  27#include <linux/err.h>
  28#include <linux/device.h>
  29#include <linux/cpu.h>
  30#include <linux/notifier.h>
  31#include <linux/topology.h>
  32#include <linux/profile.h>
  33#include <linux/processor.h>
  34#include <linux/random.h>
  35#include <linux/stackprotector.h>
  36#include <linux/pgtable.h>
  37#include <linux/clockchips.h>
  38
  39#include <asm/ptrace.h>
  40#include <linux/atomic.h>
  41#include <asm/irq.h>
  42#include <asm/hw_irq.h>
  43#include <asm/kvm_ppc.h>
  44#include <asm/dbell.h>
  45#include <asm/page.h>
  46#include <asm/prom.h>
  47#include <asm/smp.h>
  48#include <asm/time.h>
  49#include <asm/machdep.h>
  50#include <asm/cputhreads.h>
  51#include <asm/cputable.h>
  52#include <asm/mpic.h>
  53#include <asm/vdso_datapage.h>
  54#ifdef CONFIG_PPC64
  55#include <asm/paca.h>
  56#endif
  57#include <asm/vdso.h>
  58#include <asm/debug.h>
  59#include <asm/kexec.h>
  60#include <asm/asm-prototypes.h>
  61#include <asm/cpu_has_feature.h>
  62#include <asm/ftrace.h>
  63#include <asm/kup.h>
  64
  65#ifdef DEBUG
  66#include <asm/udbg.h>
  67#define DBG(fmt...) udbg_printf(fmt)
  68#else
  69#define DBG(fmt...)
  70#endif
  71
  72#ifdef CONFIG_HOTPLUG_CPU
  73/* State of each CPU during hotplug phases */
  74static DEFINE_PER_CPU(int, cpu_state) = { 0 };
  75#endif
  76
  77struct task_struct *secondary_current;
  78bool has_big_cores;
  79bool coregroup_enabled;
  80bool thread_group_shares_l2;
  81bool thread_group_shares_l3;
  82
  83DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
  84DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
  85DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
  86DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
  87static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
  88
  89EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  90EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
  91EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  92EXPORT_SYMBOL_GPL(has_big_cores);
  93
  94enum {
  95#ifdef CONFIG_SCHED_SMT
  96        smt_idx,
  97#endif
  98        cache_idx,
  99        mc_idx,
 100        die_idx,
 101};
 102
 103#define MAX_THREAD_LIST_SIZE    8
 104#define THREAD_GROUP_SHARE_L1   1
 105#define THREAD_GROUP_SHARE_L2_L3 2
 106struct thread_groups {
 107        unsigned int property;
 108        unsigned int nr_groups;
 109        unsigned int threads_per_group;
 110        unsigned int thread_list[MAX_THREAD_LIST_SIZE];
 111};
 112
 113/* Maximum number of properties that groups of threads within a core can share */
 114#define MAX_THREAD_GROUP_PROPERTIES 2
 115
 116struct thread_groups_list {
 117        unsigned int nr_properties;
 118        struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
 119};
 120
 121static struct thread_groups_list tgl[NR_CPUS] __initdata;
 122/*
 123 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
 124 * the set its siblings that share the L1-cache.
 125 */
 126DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
 127
 128/*
 129 * On some big-cores system, thread_group_l2_cache_map for each CPU
 130 * corresponds to the set its siblings within the core that share the
 131 * L2-cache.
 132 */
 133DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
 134
 135/*
 136 * On P10, thread_group_l3_cache_map for each CPU is equal to the
 137 * thread_group_l2_cache_map
 138 */
 139DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
 140
 141/* SMP operations for this machine */
 142struct smp_ops_t *smp_ops;
 143
 144/* Can't be static due to PowerMac hackery */
 145volatile unsigned int cpu_callin_map[NR_CPUS];
 146
 147int smt_enabled_at_boot = 1;
 148
 149/*
 150 * Returns 1 if the specified cpu should be brought up during boot.
 151 * Used to inhibit booting threads if they've been disabled or
 152 * limited on the command line
 153 */
 154int smp_generic_cpu_bootable(unsigned int nr)
 155{
 156        /* Special case - we inhibit secondary thread startup
 157         * during boot if the user requests it.
 158         */
 159        if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
 160                if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
 161                        return 0;
 162                if (smt_enabled_at_boot
 163                    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
 164                        return 0;
 165        }
 166
 167        return 1;
 168}
 169
 170
 171#ifdef CONFIG_PPC64
 172int smp_generic_kick_cpu(int nr)
 173{
 174        if (nr < 0 || nr >= nr_cpu_ids)
 175                return -EINVAL;
 176
 177        /*
 178         * The processor is currently spinning, waiting for the
 179         * cpu_start field to become non-zero After we set cpu_start,
 180         * the processor will continue on to secondary_start
 181         */
 182        if (!paca_ptrs[nr]->cpu_start) {
 183                paca_ptrs[nr]->cpu_start = 1;
 184                smp_mb();
 185                return 0;
 186        }
 187
 188#ifdef CONFIG_HOTPLUG_CPU
 189        /*
 190         * Ok it's not there, so it might be soft-unplugged, let's
 191         * try to bring it back
 192         */
 193        generic_set_cpu_up(nr);
 194        smp_wmb();
 195        smp_send_reschedule(nr);
 196#endif /* CONFIG_HOTPLUG_CPU */
 197
 198        return 0;
 199}
 200#endif /* CONFIG_PPC64 */
 201
 202static irqreturn_t call_function_action(int irq, void *data)
 203{
 204        generic_smp_call_function_interrupt();
 205        return IRQ_HANDLED;
 206}
 207
 208static irqreturn_t reschedule_action(int irq, void *data)
 209{
 210        scheduler_ipi();
 211        return IRQ_HANDLED;
 212}
 213
 214#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 215static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
 216{
 217        timer_broadcast_interrupt();
 218        return IRQ_HANDLED;
 219}
 220#endif
 221
 222#ifdef CONFIG_NMI_IPI
 223static irqreturn_t nmi_ipi_action(int irq, void *data)
 224{
 225        smp_handle_nmi_ipi(get_irq_regs());
 226        return IRQ_HANDLED;
 227}
 228#endif
 229
 230static irq_handler_t smp_ipi_action[] = {
 231        [PPC_MSG_CALL_FUNCTION] =  call_function_action,
 232        [PPC_MSG_RESCHEDULE] = reschedule_action,
 233#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 234        [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
 235#endif
 236#ifdef CONFIG_NMI_IPI
 237        [PPC_MSG_NMI_IPI] = nmi_ipi_action,
 238#endif
 239};
 240
 241/*
 242 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
 243 * than going through the call function infrastructure, and strongly
 244 * serialized, so it is more appropriate for debugging.
 245 */
 246const char *smp_ipi_name[] = {
 247        [PPC_MSG_CALL_FUNCTION] =  "ipi call function",
 248        [PPC_MSG_RESCHEDULE] = "ipi reschedule",
 249#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 250        [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
 251#endif
 252#ifdef CONFIG_NMI_IPI
 253        [PPC_MSG_NMI_IPI] = "nmi ipi",
 254#endif
 255};
 256
 257/* optional function to request ipi, for controllers with >= 4 ipis */
 258int smp_request_message_ipi(int virq, int msg)
 259{
 260        int err;
 261
 262        if (msg < 0 || msg > PPC_MSG_NMI_IPI)
 263                return -EINVAL;
 264#ifndef CONFIG_NMI_IPI
 265        if (msg == PPC_MSG_NMI_IPI)
 266                return 1;
 267#endif
 268
 269        err = request_irq(virq, smp_ipi_action[msg],
 270                          IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
 271                          smp_ipi_name[msg], NULL);
 272        WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
 273                virq, smp_ipi_name[msg], err);
 274
 275        return err;
 276}
 277
 278#ifdef CONFIG_PPC_SMP_MUXED_IPI
 279struct cpu_messages {
 280        long messages;                  /* current messages */
 281};
 282static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
 283
 284void smp_muxed_ipi_set_message(int cpu, int msg)
 285{
 286        struct cpu_messages *info = &per_cpu(ipi_message, cpu);
 287        char *message = (char *)&info->messages;
 288
 289        /*
 290         * Order previous accesses before accesses in the IPI handler.
 291         */
 292        smp_mb();
 293        message[msg] = 1;
 294}
 295
 296void smp_muxed_ipi_message_pass(int cpu, int msg)
 297{
 298        smp_muxed_ipi_set_message(cpu, msg);
 299
 300        /*
 301         * cause_ipi functions are required to include a full barrier
 302         * before doing whatever causes the IPI.
 303         */
 304        smp_ops->cause_ipi(cpu);
 305}
 306
 307#ifdef __BIG_ENDIAN__
 308#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
 309#else
 310#define IPI_MESSAGE(A) (1uL << (8 * (A)))
 311#endif
 312
 313irqreturn_t smp_ipi_demux(void)
 314{
 315        mb();   /* order any irq clear */
 316
 317        return smp_ipi_demux_relaxed();
 318}
 319
 320/* sync-free variant. Callers should ensure synchronization */
 321irqreturn_t smp_ipi_demux_relaxed(void)
 322{
 323        struct cpu_messages *info;
 324        unsigned long all;
 325
 326        info = this_cpu_ptr(&ipi_message);
 327        do {
 328                all = xchg(&info->messages, 0);
 329#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
 330                /*
 331                 * Must check for PPC_MSG_RM_HOST_ACTION messages
 332                 * before PPC_MSG_CALL_FUNCTION messages because when
 333                 * a VM is destroyed, we call kick_all_cpus_sync()
 334                 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
 335                 * messages have completed before we free any VCPUs.
 336                 */
 337                if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
 338                        kvmppc_xics_ipi_action();
 339#endif
 340                if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
 341                        generic_smp_call_function_interrupt();
 342                if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
 343                        scheduler_ipi();
 344#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 345                if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
 346                        timer_broadcast_interrupt();
 347#endif
 348#ifdef CONFIG_NMI_IPI
 349                if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
 350                        nmi_ipi_action(0, NULL);
 351#endif
 352        } while (info->messages);
 353
 354        return IRQ_HANDLED;
 355}
 356#endif /* CONFIG_PPC_SMP_MUXED_IPI */
 357
 358static inline void do_message_pass(int cpu, int msg)
 359{
 360        if (smp_ops->message_pass)
 361                smp_ops->message_pass(cpu, msg);
 362#ifdef CONFIG_PPC_SMP_MUXED_IPI
 363        else
 364                smp_muxed_ipi_message_pass(cpu, msg);
 365#endif
 366}
 367
 368void smp_send_reschedule(int cpu)
 369{
 370        if (likely(smp_ops))
 371                do_message_pass(cpu, PPC_MSG_RESCHEDULE);
 372}
 373EXPORT_SYMBOL_GPL(smp_send_reschedule);
 374
 375void arch_send_call_function_single_ipi(int cpu)
 376{
 377        do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 378}
 379
 380void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 381{
 382        unsigned int cpu;
 383
 384        for_each_cpu(cpu, mask)
 385                do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 386}
 387
 388#ifdef CONFIG_NMI_IPI
 389
 390/*
 391 * "NMI IPI" system.
 392 *
 393 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
 394 * a running system. They can be used for crash, debug, halt/reboot, etc.
 395 *
 396 * The IPI call waits with interrupts disabled until all targets enter the
 397 * NMI handler, then returns. Subsequent IPIs can be issued before targets
 398 * have returned from their handlers, so there is no guarantee about
 399 * concurrency or re-entrancy.
 400 *
 401 * A new NMI can be issued before all targets exit the handler.
 402 *
 403 * The IPI call may time out without all targets entering the NMI handler.
 404 * In that case, there is some logic to recover (and ignore subsequent
 405 * NMI interrupts that may eventually be raised), but the platform interrupt
 406 * handler may not be able to distinguish this from other exception causes,
 407 * which may cause a crash.
 408 */
 409
 410static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
 411static struct cpumask nmi_ipi_pending_mask;
 412static bool nmi_ipi_busy = false;
 413static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
 414
 415static void nmi_ipi_lock_start(unsigned long *flags)
 416{
 417        raw_local_irq_save(*flags);
 418        hard_irq_disable();
 419        while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
 420                raw_local_irq_restore(*flags);
 421                spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 422                raw_local_irq_save(*flags);
 423                hard_irq_disable();
 424        }
 425}
 426
 427static void nmi_ipi_lock(void)
 428{
 429        while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
 430                spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 431}
 432
 433static void nmi_ipi_unlock(void)
 434{
 435        smp_mb();
 436        WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
 437        atomic_set(&__nmi_ipi_lock, 0);
 438}
 439
 440static void nmi_ipi_unlock_end(unsigned long *flags)
 441{
 442        nmi_ipi_unlock();
 443        raw_local_irq_restore(*flags);
 444}
 445
 446/*
 447 * Platform NMI handler calls this to ack
 448 */
 449int smp_handle_nmi_ipi(struct pt_regs *regs)
 450{
 451        void (*fn)(struct pt_regs *) = NULL;
 452        unsigned long flags;
 453        int me = raw_smp_processor_id();
 454        int ret = 0;
 455
 456        /*
 457         * Unexpected NMIs are possible here because the interrupt may not
 458         * be able to distinguish NMI IPIs from other types of NMIs, or
 459         * because the caller may have timed out.
 460         */
 461        nmi_ipi_lock_start(&flags);
 462        if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
 463                cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 464                fn = READ_ONCE(nmi_ipi_function);
 465                WARN_ON_ONCE(!fn);
 466                ret = 1;
 467        }
 468        nmi_ipi_unlock_end(&flags);
 469
 470        if (fn)
 471                fn(regs);
 472
 473        return ret;
 474}
 475
 476static void do_smp_send_nmi_ipi(int cpu, bool safe)
 477{
 478        if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
 479                return;
 480
 481        if (cpu >= 0) {
 482                do_message_pass(cpu, PPC_MSG_NMI_IPI);
 483        } else {
 484                int c;
 485
 486                for_each_online_cpu(c) {
 487                        if (c == raw_smp_processor_id())
 488                                continue;
 489                        do_message_pass(c, PPC_MSG_NMI_IPI);
 490                }
 491        }
 492}
 493
 494/*
 495 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
 496 * - fn is the target callback function.
 497 * - delay_us > 0 is the delay before giving up waiting for targets to
 498 *   begin executing the handler, == 0 specifies indefinite delay.
 499 */
 500static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
 501                                u64 delay_us, bool safe)
 502{
 503        unsigned long flags;
 504        int me = raw_smp_processor_id();
 505        int ret = 1;
 506
 507        BUG_ON(cpu == me);
 508        BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
 509
 510        if (unlikely(!smp_ops))
 511                return 0;
 512
 513        nmi_ipi_lock_start(&flags);
 514        while (nmi_ipi_busy) {
 515                nmi_ipi_unlock_end(&flags);
 516                spin_until_cond(!nmi_ipi_busy);
 517                nmi_ipi_lock_start(&flags);
 518        }
 519        nmi_ipi_busy = true;
 520        nmi_ipi_function = fn;
 521
 522        WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
 523
 524        if (cpu < 0) {
 525                /* ALL_OTHERS */
 526                cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
 527                cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 528        } else {
 529                cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
 530        }
 531
 532        nmi_ipi_unlock();
 533
 534        /* Interrupts remain hard disabled */
 535
 536        do_smp_send_nmi_ipi(cpu, safe);
 537
 538        nmi_ipi_lock();
 539        /* nmi_ipi_busy is set here, so unlock/lock is okay */
 540        while (!cpumask_empty(&nmi_ipi_pending_mask)) {
 541                nmi_ipi_unlock();
 542                udelay(1);
 543                nmi_ipi_lock();
 544                if (delay_us) {
 545                        delay_us--;
 546                        if (!delay_us)
 547                                break;
 548                }
 549        }
 550
 551        if (!cpumask_empty(&nmi_ipi_pending_mask)) {
 552                /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
 553                ret = 0;
 554                cpumask_clear(&nmi_ipi_pending_mask);
 555        }
 556
 557        nmi_ipi_function = NULL;
 558        nmi_ipi_busy = false;
 559
 560        nmi_ipi_unlock_end(&flags);
 561
 562        return ret;
 563}
 564
 565int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 566{
 567        return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
 568}
 569
 570int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 571{
 572        return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
 573}
 574#endif /* CONFIG_NMI_IPI */
 575
 576#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 577void tick_broadcast(const struct cpumask *mask)
 578{
 579        unsigned int cpu;
 580
 581        for_each_cpu(cpu, mask)
 582                do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
 583}
 584#endif
 585
 586#ifdef CONFIG_DEBUGGER
 587static void debugger_ipi_callback(struct pt_regs *regs)
 588{
 589        debugger_ipi(regs);
 590}
 591
 592void smp_send_debugger_break(void)
 593{
 594        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
 595}
 596#endif
 597
 598#ifdef CONFIG_KEXEC_CORE
 599void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
 600{
 601        int cpu;
 602
 603        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
 604        if (kdump_in_progress() && crash_wake_offline) {
 605                for_each_present_cpu(cpu) {
 606                        if (cpu_online(cpu))
 607                                continue;
 608                        /*
 609                         * crash_ipi_callback will wait for
 610                         * all cpus, including offline CPUs.
 611                         * We don't care about nmi_ipi_function.
 612                         * Offline cpus will jump straight into
 613                         * crash_ipi_callback, we can skip the
 614                         * entire NMI dance and waiting for
 615                         * cpus to clear pending mask, etc.
 616                         */
 617                        do_smp_send_nmi_ipi(cpu, false);
 618                }
 619        }
 620}
 621#endif
 622
 623#ifdef CONFIG_NMI_IPI
 624static void nmi_stop_this_cpu(struct pt_regs *regs)
 625{
 626        /*
 627         * IRQs are already hard disabled by the smp_handle_nmi_ipi.
 628         */
 629        set_cpu_online(smp_processor_id(), false);
 630
 631        spin_begin();
 632        while (1)
 633                spin_cpu_relax();
 634}
 635
 636void smp_send_stop(void)
 637{
 638        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
 639}
 640
 641#else /* CONFIG_NMI_IPI */
 642
 643static void stop_this_cpu(void *dummy)
 644{
 645        hard_irq_disable();
 646
 647        /*
 648         * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
 649         * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
 650         * to know other CPUs are offline before it breaks locks to flush
 651         * printk buffers, in case we panic()ed while holding the lock.
 652         */
 653        set_cpu_online(smp_processor_id(), false);
 654
 655        spin_begin();
 656        while (1)
 657                spin_cpu_relax();
 658}
 659
 660void smp_send_stop(void)
 661{
 662        static bool stopped = false;
 663
 664        /*
 665         * Prevent waiting on csd lock from a previous smp_send_stop.
 666         * This is racy, but in general callers try to do the right
 667         * thing and only fire off one smp_send_stop (e.g., see
 668         * kernel/panic.c)
 669         */
 670        if (stopped)
 671                return;
 672
 673        stopped = true;
 674
 675        smp_call_function(stop_this_cpu, NULL, 0);
 676}
 677#endif /* CONFIG_NMI_IPI */
 678
 679struct task_struct *current_set[NR_CPUS];
 680
 681static void smp_store_cpu_info(int id)
 682{
 683        per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
 684#ifdef CONFIG_PPC_FSL_BOOK3E
 685        per_cpu(next_tlbcam_idx, id)
 686                = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
 687#endif
 688}
 689
 690/*
 691 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
 692 * rather than just passing around the cpumask we pass around a function that
 693 * returns the that cpumask for the given CPU.
 694 */
 695static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
 696{
 697        cpumask_set_cpu(i, get_cpumask(j));
 698        cpumask_set_cpu(j, get_cpumask(i));
 699}
 700
 701#ifdef CONFIG_HOTPLUG_CPU
 702static void set_cpus_unrelated(int i, int j,
 703                struct cpumask *(*get_cpumask)(int))
 704{
 705        cpumask_clear_cpu(i, get_cpumask(j));
 706        cpumask_clear_cpu(j, get_cpumask(i));
 707}
 708#endif
 709
 710/*
 711 * Extends set_cpus_related. Instead of setting one CPU at a time in
 712 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
 713 */
 714static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
 715                                struct cpumask *(*dstmask)(int))
 716{
 717        struct cpumask *mask;
 718        int k;
 719
 720        mask = srcmask(j);
 721        for_each_cpu(k, srcmask(i))
 722                cpumask_or(dstmask(k), dstmask(k), mask);
 723
 724        if (i == j)
 725                return;
 726
 727        mask = srcmask(i);
 728        for_each_cpu(k, srcmask(j))
 729                cpumask_or(dstmask(k), dstmask(k), mask);
 730}
 731
 732/*
 733 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
 734 *                      property for the CPU device node @dn and stores
 735 *                      the parsed output in the thread_groups_list
 736 *                      structure @tglp.
 737 *
 738 * @dn: The device node of the CPU device.
 739 * @tglp: Pointer to a thread group list structure into which the parsed
 740 *      output of "ibm,thread-groups" is stored.
 741 *
 742 * ibm,thread-groups[0..N-1] array defines which group of threads in
 743 * the CPU-device node can be grouped together based on the property.
 744 *
 745 * This array can represent thread groupings for multiple properties.
 746 *
 747 * ibm,thread-groups[i + 0] tells us the property based on which the
 748 * threads are being grouped together. If this value is 1, it implies
 749 * that the threads in the same group share L1, translation cache. If
 750 * the value is 2, it implies that the threads in the same group share
 751 * the same L2 cache.
 752 *
 753 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
 754 * property ibm,thread-groups[i]
 755 *
 756 * ibm,thread-groups[i+2] tells us the number of threads in each such
 757 * group.
 758 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
 759 *
 760 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
 761 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
 762 * the grouping.
 763 *
 764 * Example:
 765 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
 766 * This can be decomposed up into two consecutive arrays:
 767 * a) [1,2,4,8,10,12,14,9,11,13,15]
 768 * b) [2,2,4,8,10,12,14,9,11,13,15]
 769 *
 770 * where in,
 771 *
 772 * a) provides information of Property "1" being shared by "2" groups,
 773 *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
 774 *  the first group is {8,10,12,14} and the
 775 *  "ibm,ppc-interrupt-server#s" of the second group is
 776 *  {9,11,13,15}. Property "1" is indicative of the thread in the
 777 *  group sharing L1 cache, translation cache and Instruction Data
 778 *  flow.
 779 *
 780 * b) provides information of Property "2" being shared by "2" groups,
 781 *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
 782 *  the first group is {8,10,12,14} and the
 783 *  "ibm,ppc-interrupt-server#s" of the second group is
 784 *  {9,11,13,15}. Property "2" indicates that the threads in each
 785 *  group share the L2-cache.
 786 *
 787 * Returns 0 on success, -EINVAL if the property does not exist,
 788 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 789 * property data isn't large enough.
 790 */
 791static int parse_thread_groups(struct device_node *dn,
 792                               struct thread_groups_list *tglp)
 793{
 794        unsigned int property_idx = 0;
 795        u32 *thread_group_array;
 796        size_t total_threads;
 797        int ret = 0, count;
 798        u32 *thread_list;
 799        int i = 0;
 800
 801        count = of_property_count_u32_elems(dn, "ibm,thread-groups");
 802        thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
 803        ret = of_property_read_u32_array(dn, "ibm,thread-groups",
 804                                         thread_group_array, count);
 805        if (ret)
 806                goto out_free;
 807
 808        while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
 809                int j;
 810                struct thread_groups *tg = &tglp->property_tgs[property_idx++];
 811
 812                tg->property = thread_group_array[i];
 813                tg->nr_groups = thread_group_array[i + 1];
 814                tg->threads_per_group = thread_group_array[i + 2];
 815                total_threads = tg->nr_groups * tg->threads_per_group;
 816
 817                thread_list = &thread_group_array[i + 3];
 818
 819                for (j = 0; j < total_threads; j++)
 820                        tg->thread_list[j] = thread_list[j];
 821                i = i + 3 + total_threads;
 822        }
 823
 824        tglp->nr_properties = property_idx;
 825
 826out_free:
 827        kfree(thread_group_array);
 828        return ret;
 829}
 830
 831/*
 832 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
 833 *                              that @cpu belongs to.
 834 *
 835 * @cpu : The logical CPU whose thread group is being searched.
 836 * @tg : The thread-group structure of the CPU node which @cpu belongs
 837 *       to.
 838 *
 839 * Returns the index to tg->thread_list that points to the the start
 840 * of the thread_group that @cpu belongs to.
 841 *
 842 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
 843 * tg->thread_list.
 844 */
 845static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
 846{
 847        int hw_cpu_id = get_hard_smp_processor_id(cpu);
 848        int i, j;
 849
 850        for (i = 0; i < tg->nr_groups; i++) {
 851                int group_start = i * tg->threads_per_group;
 852
 853                for (j = 0; j < tg->threads_per_group; j++) {
 854                        int idx = group_start + j;
 855
 856                        if (tg->thread_list[idx] == hw_cpu_id)
 857                                return group_start;
 858                }
 859        }
 860
 861        return -1;
 862}
 863
 864static struct thread_groups *__init get_thread_groups(int cpu,
 865                                                      int group_property,
 866                                                      int *err)
 867{
 868        struct device_node *dn = of_get_cpu_node(cpu, NULL);
 869        struct thread_groups_list *cpu_tgl = &tgl[cpu];
 870        struct thread_groups *tg = NULL;
 871        int i;
 872        *err = 0;
 873
 874        if (!dn) {
 875                *err = -ENODATA;
 876                return NULL;
 877        }
 878
 879        if (!cpu_tgl->nr_properties) {
 880                *err = parse_thread_groups(dn, cpu_tgl);
 881                if (*err)
 882                        goto out;
 883        }
 884
 885        for (i = 0; i < cpu_tgl->nr_properties; i++) {
 886                if (cpu_tgl->property_tgs[i].property == group_property) {
 887                        tg = &cpu_tgl->property_tgs[i];
 888                        break;
 889                }
 890        }
 891
 892        if (!tg)
 893                *err = -EINVAL;
 894out:
 895        of_node_put(dn);
 896        return tg;
 897}
 898
 899static int update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, int cpu, int cpu_group_start)
 900{
 901        int first_thread = cpu_first_thread_sibling(cpu);
 902        int i;
 903
 904        zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
 905
 906        for (i = first_thread; i < first_thread + threads_per_core; i++) {
 907                int i_group_start = get_cpu_thread_group_start(i, tg);
 908
 909                if (unlikely(i_group_start == -1)) {
 910                        WARN_ON_ONCE(1);
 911                        return -ENODATA;
 912                }
 913
 914                if (i_group_start == cpu_group_start)
 915                        cpumask_set_cpu(i, *mask);
 916        }
 917
 918        return 0;
 919}
 920
 921static int __init init_thread_group_cache_map(int cpu, int cache_property)
 922
 923{
 924        int cpu_group_start = -1, err = 0;
 925        struct thread_groups *tg = NULL;
 926        cpumask_var_t *mask = NULL;
 927
 928        if (cache_property != THREAD_GROUP_SHARE_L1 &&
 929            cache_property != THREAD_GROUP_SHARE_L2_L3)
 930                return -EINVAL;
 931
 932        tg = get_thread_groups(cpu, cache_property, &err);
 933
 934        if (!tg)
 935                return err;
 936
 937        cpu_group_start = get_cpu_thread_group_start(cpu, tg);
 938
 939        if (unlikely(cpu_group_start == -1)) {
 940                WARN_ON_ONCE(1);
 941                return -ENODATA;
 942        }
 943
 944        if (cache_property == THREAD_GROUP_SHARE_L1) {
 945                mask = &per_cpu(thread_group_l1_cache_map, cpu);
 946                update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
 947        }
 948        else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
 949                mask = &per_cpu(thread_group_l2_cache_map, cpu);
 950                update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
 951                mask = &per_cpu(thread_group_l3_cache_map, cpu);
 952                update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
 953        }
 954
 955
 956        return 0;
 957}
 958
 959static bool shared_caches;
 960
 961#ifdef CONFIG_SCHED_SMT
 962/* cpumask of CPUs with asymmetric SMT dependency */
 963static int powerpc_smt_flags(void)
 964{
 965        int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
 966
 967        if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
 968                printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
 969                flags |= SD_ASYM_PACKING;
 970        }
 971        return flags;
 972}
 973#endif
 974
 975/*
 976 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
 977 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
 978 * since the migrated task remains cache hot. We want to take advantage of this
 979 * at the scheduler level so an extra topology level is required.
 980 */
 981static int powerpc_shared_cache_flags(void)
 982{
 983        return SD_SHARE_PKG_RESOURCES;
 984}
 985
 986/*
 987 * We can't just pass cpu_l2_cache_mask() directly because
 988 * returns a non-const pointer and the compiler barfs on that.
 989 */
 990static const struct cpumask *shared_cache_mask(int cpu)
 991{
 992        return per_cpu(cpu_l2_cache_map, cpu);
 993}
 994
 995#ifdef CONFIG_SCHED_SMT
 996static const struct cpumask *smallcore_smt_mask(int cpu)
 997{
 998        return cpu_smallcore_mask(cpu);
 999}
1000#endif
1001
1002static struct cpumask *cpu_coregroup_mask(int cpu)
1003{
1004        return per_cpu(cpu_coregroup_map, cpu);
1005}
1006
1007static bool has_coregroup_support(void)
1008{
1009        return coregroup_enabled;
1010}
1011
1012static const struct cpumask *cpu_mc_mask(int cpu)
1013{
1014        return cpu_coregroup_mask(cpu);
1015}
1016
1017static struct sched_domain_topology_level powerpc_topology[] = {
1018#ifdef CONFIG_SCHED_SMT
1019        { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1020#endif
1021        { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1022        { cpu_mc_mask, SD_INIT_NAME(MC) },
1023        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1024        { NULL, },
1025};
1026
1027static int __init init_big_cores(void)
1028{
1029        int cpu;
1030
1031        for_each_possible_cpu(cpu) {
1032                int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1033
1034                if (err)
1035                        return err;
1036
1037                zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1038                                        GFP_KERNEL,
1039                                        cpu_to_node(cpu));
1040        }
1041
1042        has_big_cores = true;
1043
1044        for_each_possible_cpu(cpu) {
1045                int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1046
1047                if (err)
1048                        return err;
1049        }
1050
1051        thread_group_shares_l2 = true;
1052        thread_group_shares_l3 = true;
1053        pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1054
1055        return 0;
1056}
1057
1058void __init smp_prepare_cpus(unsigned int max_cpus)
1059{
1060        unsigned int cpu;
1061
1062        DBG("smp_prepare_cpus\n");
1063
1064        /* 
1065         * setup_cpu may need to be called on the boot cpu. We havent
1066         * spun any cpus up but lets be paranoid.
1067         */
1068        BUG_ON(boot_cpuid != smp_processor_id());
1069
1070        /* Fixup boot cpu */
1071        smp_store_cpu_info(boot_cpuid);
1072        cpu_callin_map[boot_cpuid] = 1;
1073
1074        for_each_possible_cpu(cpu) {
1075                zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1076                                        GFP_KERNEL, cpu_to_node(cpu));
1077                zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1078                                        GFP_KERNEL, cpu_to_node(cpu));
1079                zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1080                                        GFP_KERNEL, cpu_to_node(cpu));
1081                if (has_coregroup_support())
1082                        zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1083                                                GFP_KERNEL, cpu_to_node(cpu));
1084
1085#ifdef CONFIG_NUMA
1086                /*
1087                 * numa_node_id() works after this.
1088                 */
1089                if (cpu_present(cpu)) {
1090                        set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1091                        set_cpu_numa_mem(cpu,
1092                                local_memory_node(numa_cpu_lookup_table[cpu]));
1093                }
1094#endif
1095        }
1096
1097        /* Init the cpumasks so the boot CPU is related to itself */
1098        cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1099        cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1100        cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1101
1102        if (has_coregroup_support())
1103                cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1104
1105        init_big_cores();
1106        if (has_big_cores) {
1107                cpumask_set_cpu(boot_cpuid,
1108                                cpu_smallcore_mask(boot_cpuid));
1109        }
1110
1111        if (cpu_to_chip_id(boot_cpuid) != -1) {
1112                int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1113
1114                /*
1115                 * All threads of a core will all belong to the same core,
1116                 * chip_id_lookup_table will have one entry per core.
1117                 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1118                 * other CPUs, will also not have chip-id.
1119                 */
1120                chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1121                if (chip_id_lookup_table)
1122                        memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1123        }
1124
1125        if (smp_ops && smp_ops->probe)
1126                smp_ops->probe();
1127}
1128
1129void smp_prepare_boot_cpu(void)
1130{
1131        BUG_ON(smp_processor_id() != boot_cpuid);
1132#ifdef CONFIG_PPC64
1133        paca_ptrs[boot_cpuid]->__current = current;
1134#endif
1135        set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1136        current_set[boot_cpuid] = current;
1137}
1138
1139#ifdef CONFIG_HOTPLUG_CPU
1140
1141int generic_cpu_disable(void)
1142{
1143        unsigned int cpu = smp_processor_id();
1144
1145        if (cpu == boot_cpuid)
1146                return -EBUSY;
1147
1148        set_cpu_online(cpu, false);
1149#ifdef CONFIG_PPC64
1150        vdso_data->processorCount--;
1151#endif
1152        /* Update affinity of all IRQs previously aimed at this CPU */
1153        irq_migrate_all_off_this_cpu();
1154
1155        /*
1156         * Depending on the details of the interrupt controller, it's possible
1157         * that one of the interrupts we just migrated away from this CPU is
1158         * actually already pending on this CPU. If we leave it in that state
1159         * the interrupt will never be EOI'ed, and will never fire again. So
1160         * temporarily enable interrupts here, to allow any pending interrupt to
1161         * be received (and EOI'ed), before we take this CPU offline.
1162         */
1163        local_irq_enable();
1164        mdelay(1);
1165        local_irq_disable();
1166
1167        return 0;
1168}
1169
1170void generic_cpu_die(unsigned int cpu)
1171{
1172        int i;
1173
1174        for (i = 0; i < 100; i++) {
1175                smp_rmb();
1176                if (is_cpu_dead(cpu))
1177                        return;
1178                msleep(100);
1179        }
1180        printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1181}
1182
1183void generic_set_cpu_dead(unsigned int cpu)
1184{
1185        per_cpu(cpu_state, cpu) = CPU_DEAD;
1186}
1187
1188/*
1189 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1190 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1191 * which makes the delay in generic_cpu_die() not happen.
1192 */
1193void generic_set_cpu_up(unsigned int cpu)
1194{
1195        per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1196}
1197
1198int generic_check_cpu_restart(unsigned int cpu)
1199{
1200        return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1201}
1202
1203int is_cpu_dead(unsigned int cpu)
1204{
1205        return per_cpu(cpu_state, cpu) == CPU_DEAD;
1206}
1207
1208static bool secondaries_inhibited(void)
1209{
1210        return kvm_hv_mode_active();
1211}
1212
1213#else /* HOTPLUG_CPU */
1214
1215#define secondaries_inhibited()         0
1216
1217#endif
1218
1219static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1220{
1221#ifdef CONFIG_PPC64
1222        paca_ptrs[cpu]->__current = idle;
1223        paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1224                                 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1225#endif
1226        idle->cpu = cpu;
1227        secondary_current = current_set[cpu] = idle;
1228}
1229
1230int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1231{
1232        int rc, c;
1233
1234        /*
1235         * Don't allow secondary threads to come online if inhibited
1236         */
1237        if (threads_per_core > 1 && secondaries_inhibited() &&
1238            cpu_thread_in_subcore(cpu))
1239                return -EBUSY;
1240
1241        if (smp_ops == NULL ||
1242            (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1243                return -EINVAL;
1244
1245        cpu_idle_thread_init(cpu, tidle);
1246
1247        /*
1248         * The platform might need to allocate resources prior to bringing
1249         * up the CPU
1250         */
1251        if (smp_ops->prepare_cpu) {
1252                rc = smp_ops->prepare_cpu(cpu);
1253                if (rc)
1254                        return rc;
1255        }
1256
1257        /* Make sure callin-map entry is 0 (can be leftover a CPU
1258         * hotplug
1259         */
1260        cpu_callin_map[cpu] = 0;
1261
1262        /* The information for processor bringup must
1263         * be written out to main store before we release
1264         * the processor.
1265         */
1266        smp_mb();
1267
1268        /* wake up cpus */
1269        DBG("smp: kicking cpu %d\n", cpu);
1270        rc = smp_ops->kick_cpu(cpu);
1271        if (rc) {
1272                pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1273                return rc;
1274        }
1275
1276        /*
1277         * wait to see if the cpu made a callin (is actually up).
1278         * use this value that I found through experimentation.
1279         * -- Cort
1280         */
1281        if (system_state < SYSTEM_RUNNING)
1282                for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1283                        udelay(100);
1284#ifdef CONFIG_HOTPLUG_CPU
1285        else
1286                /*
1287                 * CPUs can take much longer to come up in the
1288                 * hotplug case.  Wait five seconds.
1289                 */
1290                for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1291                        msleep(1);
1292#endif
1293
1294        if (!cpu_callin_map[cpu]) {
1295                printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1296                return -ENOENT;
1297        }
1298
1299        DBG("Processor %u found.\n", cpu);
1300
1301        if (smp_ops->give_timebase)
1302                smp_ops->give_timebase();
1303
1304        /* Wait until cpu puts itself in the online & active maps */
1305        spin_until_cond(cpu_online(cpu));
1306
1307        return 0;
1308}
1309
1310/* Return the value of the reg property corresponding to the given
1311 * logical cpu.
1312 */
1313int cpu_to_core_id(int cpu)
1314{
1315        struct device_node *np;
1316        const __be32 *reg;
1317        int id = -1;
1318
1319        np = of_get_cpu_node(cpu, NULL);
1320        if (!np)
1321                goto out;
1322
1323        reg = of_get_property(np, "reg", NULL);
1324        if (!reg)
1325                goto out;
1326
1327        id = be32_to_cpup(reg);
1328out:
1329        of_node_put(np);
1330        return id;
1331}
1332EXPORT_SYMBOL_GPL(cpu_to_core_id);
1333
1334/* Helper routines for cpu to core mapping */
1335int cpu_core_index_of_thread(int cpu)
1336{
1337        return cpu >> threads_shift;
1338}
1339EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1340
1341int cpu_first_thread_of_core(int core)
1342{
1343        return core << threads_shift;
1344}
1345EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1346
1347/* Must be called when no change can occur to cpu_present_mask,
1348 * i.e. during cpu online or offline.
1349 */
1350static struct device_node *cpu_to_l2cache(int cpu)
1351{
1352        struct device_node *np;
1353        struct device_node *cache;
1354
1355        if (!cpu_present(cpu))
1356                return NULL;
1357
1358        np = of_get_cpu_node(cpu, NULL);
1359        if (np == NULL)
1360                return NULL;
1361
1362        cache = of_find_next_cache_node(np);
1363
1364        of_node_put(np);
1365
1366        return cache;
1367}
1368
1369static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1370{
1371        struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1372        struct device_node *l2_cache, *np;
1373        int i;
1374
1375        if (has_big_cores)
1376                submask_fn = cpu_smallcore_mask;
1377
1378        /*
1379         * If the threads in a thread-group share L2 cache, then the
1380         * L2-mask can be obtained from thread_group_l2_cache_map.
1381         */
1382        if (thread_group_shares_l2) {
1383                cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1384
1385                for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1386                        if (cpu_online(i))
1387                                set_cpus_related(i, cpu, cpu_l2_cache_mask);
1388                }
1389
1390                /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1391                if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1392                    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1393                        pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1394                                     cpu);
1395                }
1396
1397                return true;
1398        }
1399
1400        l2_cache = cpu_to_l2cache(cpu);
1401        if (!l2_cache || !*mask) {
1402                /* Assume only core siblings share cache with this CPU */
1403                for_each_cpu(i, cpu_sibling_mask(cpu))
1404                        set_cpus_related(cpu, i, cpu_l2_cache_mask);
1405
1406                return false;
1407        }
1408
1409        cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1410
1411        /* Update l2-cache mask with all the CPUs that are part of submask */
1412        or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1413
1414        /* Skip all CPUs already part of current CPU l2-cache mask */
1415        cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1416
1417        for_each_cpu(i, *mask) {
1418                /*
1419                 * when updating the marks the current CPU has not been marked
1420                 * online, but we need to update the cache masks
1421                 */
1422                np = cpu_to_l2cache(i);
1423
1424                /* Skip all CPUs already part of current CPU l2-cache */
1425                if (np == l2_cache) {
1426                        or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1427                        cpumask_andnot(*mask, *mask, submask_fn(i));
1428                } else {
1429                        cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1430                }
1431
1432                of_node_put(np);
1433        }
1434        of_node_put(l2_cache);
1435
1436        return true;
1437}
1438
1439#ifdef CONFIG_HOTPLUG_CPU
1440static void remove_cpu_from_masks(int cpu)
1441{
1442        struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1443        int i;
1444
1445        unmap_cpu_from_node(cpu);
1446
1447        if (shared_caches)
1448                mask_fn = cpu_l2_cache_mask;
1449
1450        for_each_cpu(i, mask_fn(cpu)) {
1451                set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1452                set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1453                if (has_big_cores)
1454                        set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1455        }
1456
1457        for_each_cpu(i, cpu_core_mask(cpu))
1458                set_cpus_unrelated(cpu, i, cpu_core_mask);
1459
1460        if (has_coregroup_support()) {
1461                for_each_cpu(i, cpu_coregroup_mask(cpu))
1462                        set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1463        }
1464}
1465#endif
1466
1467static inline void add_cpu_to_smallcore_masks(int cpu)
1468{
1469        int i;
1470
1471        if (!has_big_cores)
1472                return;
1473
1474        cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1475
1476        for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1477                if (cpu_online(i))
1478                        set_cpus_related(i, cpu, cpu_smallcore_mask);
1479        }
1480}
1481
1482static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1483{
1484        struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1485        int coregroup_id = cpu_to_coregroup_id(cpu);
1486        int i;
1487
1488        if (shared_caches)
1489                submask_fn = cpu_l2_cache_mask;
1490
1491        if (!*mask) {
1492                /* Assume only siblings are part of this CPU's coregroup */
1493                for_each_cpu(i, submask_fn(cpu))
1494                        set_cpus_related(cpu, i, cpu_coregroup_mask);
1495
1496                return;
1497        }
1498
1499        cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1500
1501        /* Update coregroup mask with all the CPUs that are part of submask */
1502        or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1503
1504        /* Skip all CPUs already part of coregroup mask */
1505        cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1506
1507        for_each_cpu(i, *mask) {
1508                /* Skip all CPUs not part of this coregroup */
1509                if (coregroup_id == cpu_to_coregroup_id(i)) {
1510                        or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1511                        cpumask_andnot(*mask, *mask, submask_fn(i));
1512                } else {
1513                        cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1514                }
1515        }
1516}
1517
1518static void add_cpu_to_masks(int cpu)
1519{
1520        struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1521        int first_thread = cpu_first_thread_sibling(cpu);
1522        cpumask_var_t mask;
1523        int chip_id = -1;
1524        bool ret;
1525        int i;
1526
1527        /*
1528         * This CPU will not be in the online mask yet so we need to manually
1529         * add it to it's own thread sibling mask.
1530         */
1531        map_cpu_to_node(cpu, cpu_to_node(cpu));
1532        cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1533        cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1534
1535        for (i = first_thread; i < first_thread + threads_per_core; i++)
1536                if (cpu_online(i))
1537                        set_cpus_related(i, cpu, cpu_sibling_mask);
1538
1539        add_cpu_to_smallcore_masks(cpu);
1540
1541        /* In CPU-hotplug path, hence use GFP_ATOMIC */
1542        ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1543        update_mask_by_l2(cpu, &mask);
1544
1545        if (has_coregroup_support())
1546                update_coregroup_mask(cpu, &mask);
1547
1548        if (chip_id_lookup_table && ret)
1549                chip_id = cpu_to_chip_id(cpu);
1550
1551        if (shared_caches)
1552                submask_fn = cpu_l2_cache_mask;
1553
1554        /* Update core_mask with all the CPUs that are part of submask */
1555        or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1556
1557        /* Skip all CPUs already part of current CPU core mask */
1558        cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1559
1560        /* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1561        if (chip_id == -1)
1562                cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1563
1564        for_each_cpu(i, mask) {
1565                if (chip_id == cpu_to_chip_id(i)) {
1566                        or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1567                        cpumask_andnot(mask, mask, submask_fn(i));
1568                } else {
1569                        cpumask_andnot(mask, mask, cpu_core_mask(i));
1570                }
1571        }
1572
1573        free_cpumask_var(mask);
1574}
1575
1576/* Activate a secondary processor. */
1577void start_secondary(void *unused)
1578{
1579        unsigned int cpu = raw_smp_processor_id();
1580
1581        /* PPC64 calls setup_kup() in early_setup_secondary() */
1582        if (IS_ENABLED(CONFIG_PPC32))
1583                setup_kup();
1584
1585        mmgrab(&init_mm);
1586        current->active_mm = &init_mm;
1587
1588        smp_store_cpu_info(cpu);
1589        set_dec(tb_ticks_per_jiffy);
1590        rcu_cpu_starting(cpu);
1591        cpu_callin_map[cpu] = 1;
1592
1593        if (smp_ops->setup_cpu)
1594                smp_ops->setup_cpu(cpu);
1595        if (smp_ops->take_timebase)
1596                smp_ops->take_timebase();
1597
1598        secondary_cpu_time_init();
1599
1600#ifdef CONFIG_PPC64
1601        if (system_state == SYSTEM_RUNNING)
1602                vdso_data->processorCount++;
1603
1604        vdso_getcpu_init();
1605#endif
1606        set_numa_node(numa_cpu_lookup_table[cpu]);
1607        set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1608
1609        /* Update topology CPU masks */
1610        add_cpu_to_masks(cpu);
1611
1612        /*
1613         * Check for any shared caches. Note that this must be done on a
1614         * per-core basis because one core in the pair might be disabled.
1615         */
1616        if (!shared_caches) {
1617                struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1618                struct cpumask *mask = cpu_l2_cache_mask(cpu);
1619
1620                if (has_big_cores)
1621                        sibling_mask = cpu_smallcore_mask;
1622
1623                if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1624                        shared_caches = true;
1625        }
1626
1627        smp_wmb();
1628        notify_cpu_starting(cpu);
1629        set_cpu_online(cpu, true);
1630
1631        boot_init_stack_canary();
1632
1633        local_irq_enable();
1634
1635        /* We can enable ftrace for secondary cpus now */
1636        this_cpu_enable_ftrace();
1637
1638        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1639
1640        BUG();
1641}
1642
1643int setup_profiling_timer(unsigned int multiplier)
1644{
1645        return 0;
1646}
1647
1648static void fixup_topology(void)
1649{
1650        int i;
1651
1652#ifdef CONFIG_SCHED_SMT
1653        if (has_big_cores) {
1654                pr_info("Big cores detected but using small core scheduling\n");
1655                powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1656        }
1657#endif
1658
1659        if (!has_coregroup_support())
1660                powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1661
1662        /*
1663         * Try to consolidate topology levels here instead of
1664         * allowing scheduler to degenerate.
1665         * - Dont consolidate if masks are different.
1666         * - Dont consolidate if sd_flags exists and are different.
1667         */
1668        for (i = 1; i <= die_idx; i++) {
1669                if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1670                        continue;
1671
1672                if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1673                                powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1674                        continue;
1675
1676                if (!powerpc_topology[i - 1].sd_flags)
1677                        powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1678
1679                powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1680                powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1681#ifdef CONFIG_SCHED_DEBUG
1682                powerpc_topology[i].name = powerpc_topology[i + 1].name;
1683#endif
1684        }
1685}
1686
1687void __init smp_cpus_done(unsigned int max_cpus)
1688{
1689        /*
1690         * We are running pinned to the boot CPU, see rest_init().
1691         */
1692        if (smp_ops && smp_ops->setup_cpu)
1693                smp_ops->setup_cpu(boot_cpuid);
1694
1695        if (smp_ops && smp_ops->bringup_done)
1696                smp_ops->bringup_done();
1697
1698        dump_numa_cpu_topology();
1699
1700        fixup_topology();
1701        set_sched_topology(powerpc_topology);
1702}
1703
1704#ifdef CONFIG_HOTPLUG_CPU
1705int __cpu_disable(void)
1706{
1707        int cpu = smp_processor_id();
1708        int err;
1709
1710        if (!smp_ops->cpu_disable)
1711                return -ENOSYS;
1712
1713        this_cpu_disable_ftrace();
1714
1715        err = smp_ops->cpu_disable();
1716        if (err)
1717                return err;
1718
1719        /* Update sibling maps */
1720        remove_cpu_from_masks(cpu);
1721
1722        return 0;
1723}
1724
1725void __cpu_die(unsigned int cpu)
1726{
1727        if (smp_ops->cpu_die)
1728                smp_ops->cpu_die(cpu);
1729}
1730
1731void arch_cpu_idle_dead(void)
1732{
1733        /*
1734         * Disable on the down path. This will be re-enabled by
1735         * start_secondary() via start_secondary_resume() below
1736         */
1737        this_cpu_disable_ftrace();
1738
1739        if (smp_ops->cpu_offline_self)
1740                smp_ops->cpu_offline_self();
1741
1742        /* If we return, we re-enter start_secondary */
1743        start_secondary_resume();
1744}
1745
1746#endif
1747