linux/arch/powerpc/kernel/traps.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   4 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   5 *
   6 *  Modified by Cort Dougan (cort@cs.nmt.edu)
   7 *  and Paul Mackerras (paulus@samba.org)
   8 */
   9
  10/*
  11 * This file handles the architecture-dependent parts of hardware exceptions
  12 */
  13
  14#include <linux/errno.h>
  15#include <linux/sched.h>
  16#include <linux/sched/debug.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/pkeys.h>
  20#include <linux/stddef.h>
  21#include <linux/unistd.h>
  22#include <linux/ptrace.h>
  23#include <linux/user.h>
  24#include <linux/interrupt.h>
  25#include <linux/init.h>
  26#include <linux/extable.h>
  27#include <linux/module.h>       /* print_modules */
  28#include <linux/prctl.h>
  29#include <linux/delay.h>
  30#include <linux/kprobes.h>
  31#include <linux/kexec.h>
  32#include <linux/backlight.h>
  33#include <linux/bug.h>
  34#include <linux/kdebug.h>
  35#include <linux/ratelimit.h>
  36#include <linux/context_tracking.h>
  37#include <linux/smp.h>
  38#include <linux/console.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/debugfs.h>
  41
  42#include <asm/emulated_ops.h>
  43#include <linux/uaccess.h>
  44#include <asm/interrupt.h>
  45#include <asm/io.h>
  46#include <asm/machdep.h>
  47#include <asm/rtas.h>
  48#include <asm/pmc.h>
  49#include <asm/reg.h>
  50#ifdef CONFIG_PMAC_BACKLIGHT
  51#include <asm/backlight.h>
  52#endif
  53#ifdef CONFIG_PPC64
  54#include <asm/firmware.h>
  55#include <asm/processor.h>
  56#endif
  57#include <asm/kexec.h>
  58#include <asm/ppc-opcode.h>
  59#include <asm/rio.h>
  60#include <asm/fadump.h>
  61#include <asm/switch_to.h>
  62#include <asm/tm.h>
  63#include <asm/debug.h>
  64#include <asm/asm-prototypes.h>
  65#include <asm/hmi.h>
  66#include <sysdev/fsl_pci.h>
  67#include <asm/kprobes.h>
  68#include <asm/stacktrace.h>
  69#include <asm/nmi.h>
  70#include <asm/disassemble.h>
  71
  72#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
  73int (*__debugger)(struct pt_regs *regs) __read_mostly;
  74int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  75int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  76int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  77int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  78int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  79int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  80
  81EXPORT_SYMBOL(__debugger);
  82EXPORT_SYMBOL(__debugger_ipi);
  83EXPORT_SYMBOL(__debugger_bpt);
  84EXPORT_SYMBOL(__debugger_sstep);
  85EXPORT_SYMBOL(__debugger_iabr_match);
  86EXPORT_SYMBOL(__debugger_break_match);
  87EXPORT_SYMBOL(__debugger_fault_handler);
  88#endif
  89
  90/* Transactional Memory trap debug */
  91#ifdef TM_DEBUG_SW
  92#define TM_DEBUG(x...) printk(KERN_INFO x)
  93#else
  94#define TM_DEBUG(x...) do { } while(0)
  95#endif
  96
  97static const char *signame(int signr)
  98{
  99        switch (signr) {
 100        case SIGBUS:    return "bus error";
 101        case SIGFPE:    return "floating point exception";
 102        case SIGILL:    return "illegal instruction";
 103        case SIGSEGV:   return "segfault";
 104        case SIGTRAP:   return "unhandled trap";
 105        }
 106
 107        return "unknown signal";
 108}
 109
 110/*
 111 * Trap & Exception support
 112 */
 113
 114#ifdef CONFIG_PMAC_BACKLIGHT
 115static void pmac_backlight_unblank(void)
 116{
 117        mutex_lock(&pmac_backlight_mutex);
 118        if (pmac_backlight) {
 119                struct backlight_properties *props;
 120
 121                props = &pmac_backlight->props;
 122                props->brightness = props->max_brightness;
 123                props->power = FB_BLANK_UNBLANK;
 124                backlight_update_status(pmac_backlight);
 125        }
 126        mutex_unlock(&pmac_backlight_mutex);
 127}
 128#else
 129static inline void pmac_backlight_unblank(void) { }
 130#endif
 131
 132/*
 133 * If oops/die is expected to crash the machine, return true here.
 134 *
 135 * This should not be expected to be 100% accurate, there may be
 136 * notifiers registered or other unexpected conditions that may bring
 137 * down the kernel. Or if the current process in the kernel is holding
 138 * locks or has other critical state, the kernel may become effectively
 139 * unusable anyway.
 140 */
 141bool die_will_crash(void)
 142{
 143        if (should_fadump_crash())
 144                return true;
 145        if (kexec_should_crash(current))
 146                return true;
 147        if (in_interrupt() || panic_on_oops ||
 148                        !current->pid || is_global_init(current))
 149                return true;
 150
 151        return false;
 152}
 153
 154static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 155static int die_owner = -1;
 156static unsigned int die_nest_count;
 157static int die_counter;
 158
 159extern void panic_flush_kmsg_start(void)
 160{
 161        /*
 162         * These are mostly taken from kernel/panic.c, but tries to do
 163         * relatively minimal work. Don't use delay functions (TB may
 164         * be broken), don't crash dump (need to set a firmware log),
 165         * don't run notifiers. We do want to get some information to
 166         * Linux console.
 167         */
 168        console_verbose();
 169        bust_spinlocks(1);
 170}
 171
 172extern void panic_flush_kmsg_end(void)
 173{
 174        kmsg_dump(KMSG_DUMP_PANIC);
 175        bust_spinlocks(0);
 176        debug_locks_off();
 177        console_flush_on_panic(CONSOLE_FLUSH_PENDING);
 178}
 179
 180static unsigned long oops_begin(struct pt_regs *regs)
 181{
 182        int cpu;
 183        unsigned long flags;
 184
 185        oops_enter();
 186
 187        /* racy, but better than risking deadlock. */
 188        raw_local_irq_save(flags);
 189        cpu = smp_processor_id();
 190        if (!arch_spin_trylock(&die_lock)) {
 191                if (cpu == die_owner)
 192                        /* nested oops. should stop eventually */;
 193                else
 194                        arch_spin_lock(&die_lock);
 195        }
 196        die_nest_count++;
 197        die_owner = cpu;
 198        console_verbose();
 199        bust_spinlocks(1);
 200        if (machine_is(powermac))
 201                pmac_backlight_unblank();
 202        return flags;
 203}
 204NOKPROBE_SYMBOL(oops_begin);
 205
 206static void oops_end(unsigned long flags, struct pt_regs *regs,
 207                               int signr)
 208{
 209        bust_spinlocks(0);
 210        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 211        die_nest_count--;
 212        oops_exit();
 213        printk("\n");
 214        if (!die_nest_count) {
 215                /* Nest count reaches zero, release the lock. */
 216                die_owner = -1;
 217                arch_spin_unlock(&die_lock);
 218        }
 219        raw_local_irq_restore(flags);
 220
 221        /*
 222         * system_reset_excption handles debugger, crash dump, panic, for 0x100
 223         */
 224        if (TRAP(regs) == INTERRUPT_SYSTEM_RESET)
 225                return;
 226
 227        crash_fadump(regs, "die oops");
 228
 229        if (kexec_should_crash(current))
 230                crash_kexec(regs);
 231
 232        if (!signr)
 233                return;
 234
 235        /*
 236         * While our oops output is serialised by a spinlock, output
 237         * from panic() called below can race and corrupt it. If we
 238         * know we are going to panic, delay for 1 second so we have a
 239         * chance to get clean backtraces from all CPUs that are oopsing.
 240         */
 241        if (in_interrupt() || panic_on_oops || !current->pid ||
 242            is_global_init(current)) {
 243                mdelay(MSEC_PER_SEC);
 244        }
 245
 246        if (panic_on_oops)
 247                panic("Fatal exception");
 248        do_exit(signr);
 249}
 250NOKPROBE_SYMBOL(oops_end);
 251
 252static char *get_mmu_str(void)
 253{
 254        if (early_radix_enabled())
 255                return " MMU=Radix";
 256        if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
 257                return " MMU=Hash";
 258        return "";
 259}
 260
 261static int __die(const char *str, struct pt_regs *regs, long err)
 262{
 263        printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 264
 265        printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
 266               IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
 267               PAGE_SIZE / 1024, get_mmu_str(),
 268               IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
 269               IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
 270               IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
 271               debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
 272               IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
 273               ppc_md.name ? ppc_md.name : "");
 274
 275        if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 276                return 1;
 277
 278        print_modules();
 279        show_regs(regs);
 280
 281        return 0;
 282}
 283NOKPROBE_SYMBOL(__die);
 284
 285void die(const char *str, struct pt_regs *regs, long err)
 286{
 287        unsigned long flags;
 288
 289        /*
 290         * system_reset_excption handles debugger, crash dump, panic, for 0x100
 291         */
 292        if (TRAP(regs) != INTERRUPT_SYSTEM_RESET) {
 293                if (debugger(regs))
 294                        return;
 295        }
 296
 297        flags = oops_begin(regs);
 298        if (__die(str, regs, err))
 299                err = 0;
 300        oops_end(flags, regs, err);
 301}
 302NOKPROBE_SYMBOL(die);
 303
 304void user_single_step_report(struct pt_regs *regs)
 305{
 306        force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
 307}
 308
 309static void show_signal_msg(int signr, struct pt_regs *regs, int code,
 310                            unsigned long addr)
 311{
 312        static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 313                                      DEFAULT_RATELIMIT_BURST);
 314
 315        if (!show_unhandled_signals)
 316                return;
 317
 318        if (!unhandled_signal(current, signr))
 319                return;
 320
 321        if (!__ratelimit(&rs))
 322                return;
 323
 324        pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
 325                current->comm, current->pid, signame(signr), signr,
 326                addr, regs->nip, regs->link, code);
 327
 328        print_vma_addr(KERN_CONT " in ", regs->nip);
 329
 330        pr_cont("\n");
 331
 332        show_user_instructions(regs);
 333}
 334
 335static bool exception_common(int signr, struct pt_regs *regs, int code,
 336                              unsigned long addr)
 337{
 338        if (!user_mode(regs)) {
 339                die("Exception in kernel mode", regs, signr);
 340                return false;
 341        }
 342
 343        /*
 344         * Must not enable interrupts even for user-mode exception, because
 345         * this can be called from machine check, which may be a NMI or IRQ
 346         * which don't like interrupts being enabled. Could check for
 347         * in_hardirq || in_nmi perhaps, but there doesn't seem to be a good
 348         * reason why _exception() should enable irqs for an exception handler,
 349         * the handlers themselves do that directly.
 350         */
 351
 352        show_signal_msg(signr, regs, code, addr);
 353
 354        current->thread.trap_nr = code;
 355
 356        return true;
 357}
 358
 359void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
 360{
 361        if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
 362                return;
 363
 364        force_sig_pkuerr((void __user *) addr, key);
 365}
 366
 367void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 368{
 369        if (!exception_common(signr, regs, code, addr))
 370                return;
 371
 372        force_sig_fault(signr, code, (void __user *)addr);
 373}
 374
 375/*
 376 * The interrupt architecture has a quirk in that the HV interrupts excluding
 377 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
 378 * that an interrupt handler must do is save off a GPR into a scratch register,
 379 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
 380 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
 381 * that it is non-reentrant, which leads to random data corruption.
 382 *
 383 * The solution is for NMI interrupts in HV mode to check if they originated
 384 * from these critical HV interrupt regions. If so, then mark them not
 385 * recoverable.
 386 *
 387 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
 388 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
 389 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
 390 * that would work. However any other guest OS that may have the SPRG live
 391 * and MSR[RI]=1 could encounter silent corruption.
 392 *
 393 * Builds that do not support KVM could take this second option to increase
 394 * the recoverability of NMIs.
 395 */
 396void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
 397{
 398#ifdef CONFIG_PPC_POWERNV
 399        unsigned long kbase = (unsigned long)_stext;
 400        unsigned long nip = regs->nip;
 401
 402        if (!(regs->msr & MSR_RI))
 403                return;
 404        if (!(regs->msr & MSR_HV))
 405                return;
 406        if (regs->msr & MSR_PR)
 407                return;
 408
 409        /*
 410         * Now test if the interrupt has hit a range that may be using
 411         * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
 412         * problem ranges all run un-relocated. Test real and virt modes
 413         * at the same time by dropping the high bit of the nip (virt mode
 414         * entry points still have the +0x4000 offset).
 415         */
 416        nip &= ~0xc000000000000000ULL;
 417        if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
 418                goto nonrecoverable;
 419        if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
 420                goto nonrecoverable;
 421        if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
 422                goto nonrecoverable;
 423        if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
 424                goto nonrecoverable;
 425
 426        /* Trampoline code runs un-relocated so subtract kbase. */
 427        if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
 428                        nip < (unsigned long)(end_real_trampolines - kbase))
 429                goto nonrecoverable;
 430        if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
 431                        nip < (unsigned long)(end_virt_trampolines - kbase))
 432                goto nonrecoverable;
 433        return;
 434
 435nonrecoverable:
 436        regs_set_unrecoverable(regs);
 437#endif
 438}
 439DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception)
 440{
 441        unsigned long hsrr0, hsrr1;
 442        bool saved_hsrrs = false;
 443
 444        /*
 445         * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
 446         * The system reset interrupt itself may clobber HSRRs (e.g., to call
 447         * OPAL), so save them here and restore them before returning.
 448         *
 449         * Machine checks don't need to save HSRRs, as the real mode handler
 450         * is careful to avoid them, and the regular handler is not delivered
 451         * as an NMI.
 452         */
 453        if (cpu_has_feature(CPU_FTR_HVMODE)) {
 454                hsrr0 = mfspr(SPRN_HSRR0);
 455                hsrr1 = mfspr(SPRN_HSRR1);
 456                saved_hsrrs = true;
 457        }
 458
 459        hv_nmi_check_nonrecoverable(regs);
 460
 461        __this_cpu_inc(irq_stat.sreset_irqs);
 462
 463        /* See if any machine dependent calls */
 464        if (ppc_md.system_reset_exception) {
 465                if (ppc_md.system_reset_exception(regs))
 466                        goto out;
 467        }
 468
 469        if (debugger(regs))
 470                goto out;
 471
 472        kmsg_dump(KMSG_DUMP_OOPS);
 473        /*
 474         * A system reset is a request to dump, so we always send
 475         * it through the crashdump code (if fadump or kdump are
 476         * registered).
 477         */
 478        crash_fadump(regs, "System Reset");
 479
 480        crash_kexec(regs);
 481
 482        /*
 483         * We aren't the primary crash CPU. We need to send it
 484         * to a holding pattern to avoid it ending up in the panic
 485         * code.
 486         */
 487        crash_kexec_secondary(regs);
 488
 489        /*
 490         * No debugger or crash dump registered, print logs then
 491         * panic.
 492         */
 493        die("System Reset", regs, SIGABRT);
 494
 495        mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
 496        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 497        nmi_panic(regs, "System Reset");
 498
 499out:
 500#ifdef CONFIG_PPC_BOOK3S_64
 501        BUG_ON(get_paca()->in_nmi == 0);
 502        if (get_paca()->in_nmi > 1)
 503                die("Unrecoverable nested System Reset", regs, SIGABRT);
 504#endif
 505        /* Must die if the interrupt is not recoverable */
 506        if (regs_is_unrecoverable(regs)) {
 507                /* For the reason explained in die_mce, nmi_exit before die */
 508                nmi_exit();
 509                die("Unrecoverable System Reset", regs, SIGABRT);
 510        }
 511
 512        if (saved_hsrrs) {
 513                mtspr(SPRN_HSRR0, hsrr0);
 514                mtspr(SPRN_HSRR1, hsrr1);
 515        }
 516
 517        /* What should we do here? We could issue a shutdown or hard reset. */
 518
 519        return 0;
 520}
 521
 522/*
 523 * I/O accesses can cause machine checks on powermacs.
 524 * Check if the NIP corresponds to the address of a sync
 525 * instruction for which there is an entry in the exception
 526 * table.
 527 *  -- paulus.
 528 */
 529static inline int check_io_access(struct pt_regs *regs)
 530{
 531#ifdef CONFIG_PPC32
 532        unsigned long msr = regs->msr;
 533        const struct exception_table_entry *entry;
 534        unsigned int *nip = (unsigned int *)regs->nip;
 535
 536        if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 537            && (entry = search_exception_tables(regs->nip)) != NULL) {
 538                /*
 539                 * Check that it's a sync instruction, or somewhere
 540                 * in the twi; isync; nop sequence that inb/inw/inl uses.
 541                 * As the address is in the exception table
 542                 * we should be able to read the instr there.
 543                 * For the debug message, we look at the preceding
 544                 * load or store.
 545                 */
 546                if (*nip == PPC_RAW_NOP())
 547                        nip -= 2;
 548                else if (*nip == PPC_RAW_ISYNC())
 549                        --nip;
 550                if (*nip == PPC_RAW_SYNC() || get_op(*nip) == OP_TRAP) {
 551                        unsigned int rb;
 552
 553                        --nip;
 554                        rb = (*nip >> 11) & 0x1f;
 555                        printk(KERN_DEBUG "%s bad port %lx at %p\n",
 556                               (*nip & 0x100)? "OUT to": "IN from",
 557                               regs->gpr[rb] - _IO_BASE, nip);
 558                        regs_set_recoverable(regs);
 559                        regs_set_return_ip(regs, extable_fixup(entry));
 560                        return 1;
 561                }
 562        }
 563#endif /* CONFIG_PPC32 */
 564        return 0;
 565}
 566
 567#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 568/* On 4xx, the reason for the machine check or program exception
 569   is in the ESR. */
 570#define get_reason(regs)        ((regs)->esr)
 571#define REASON_FP               ESR_FP
 572#define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
 573#define REASON_PRIVILEGED       ESR_PPR
 574#define REASON_TRAP             ESR_PTR
 575#define REASON_PREFIXED         0
 576#define REASON_BOUNDARY         0
 577
 578/* single-step stuff */
 579#define single_stepping(regs)   (current->thread.debug.dbcr0 & DBCR0_IC)
 580#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
 581#define clear_br_trace(regs)    do {} while(0)
 582#else
 583/* On non-4xx, the reason for the machine check or program
 584   exception is in the MSR. */
 585#define get_reason(regs)        ((regs)->msr)
 586#define REASON_TM               SRR1_PROGTM
 587#define REASON_FP               SRR1_PROGFPE
 588#define REASON_ILLEGAL          SRR1_PROGILL
 589#define REASON_PRIVILEGED       SRR1_PROGPRIV
 590#define REASON_TRAP             SRR1_PROGTRAP
 591#define REASON_PREFIXED         SRR1_PREFIXED
 592#define REASON_BOUNDARY         SRR1_BOUNDARY
 593
 594#define single_stepping(regs)   ((regs)->msr & MSR_SE)
 595#define clear_single_step(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_SE))
 596#define clear_br_trace(regs)    (regs_set_return_msr((regs), (regs)->msr & ~MSR_BE))
 597#endif
 598
 599#define inst_length(reason)     (((reason) & REASON_PREFIXED) ? 8 : 4)
 600
 601#if defined(CONFIG_E500)
 602int machine_check_e500mc(struct pt_regs *regs)
 603{
 604        unsigned long mcsr = mfspr(SPRN_MCSR);
 605        unsigned long pvr = mfspr(SPRN_PVR);
 606        unsigned long reason = mcsr;
 607        int recoverable = 1;
 608
 609        if (reason & MCSR_LD) {
 610                recoverable = fsl_rio_mcheck_exception(regs);
 611                if (recoverable == 1)
 612                        goto silent_out;
 613        }
 614
 615        printk("Machine check in kernel mode.\n");
 616        printk("Caused by (from MCSR=%lx): ", reason);
 617
 618        if (reason & MCSR_MCP)
 619                pr_cont("Machine Check Signal\n");
 620
 621        if (reason & MCSR_ICPERR) {
 622                pr_cont("Instruction Cache Parity Error\n");
 623
 624                /*
 625                 * This is recoverable by invalidating the i-cache.
 626                 */
 627                mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 628                while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 629                        ;
 630
 631                /*
 632                 * This will generally be accompanied by an instruction
 633                 * fetch error report -- only treat MCSR_IF as fatal
 634                 * if it wasn't due to an L1 parity error.
 635                 */
 636                reason &= ~MCSR_IF;
 637        }
 638
 639        if (reason & MCSR_DCPERR_MC) {
 640                pr_cont("Data Cache Parity Error\n");
 641
 642                /*
 643                 * In write shadow mode we auto-recover from the error, but it
 644                 * may still get logged and cause a machine check.  We should
 645                 * only treat the non-write shadow case as non-recoverable.
 646                 */
 647                /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
 648                 * is not implemented but L1 data cache always runs in write
 649                 * shadow mode. Hence on data cache parity errors HW will
 650                 * automatically invalidate the L1 Data Cache.
 651                 */
 652                if (PVR_VER(pvr) != PVR_VER_E6500) {
 653                        if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 654                                recoverable = 0;
 655                }
 656        }
 657
 658        if (reason & MCSR_L2MMU_MHIT) {
 659                pr_cont("Hit on multiple TLB entries\n");
 660                recoverable = 0;
 661        }
 662
 663        if (reason & MCSR_NMI)
 664                pr_cont("Non-maskable interrupt\n");
 665
 666        if (reason & MCSR_IF) {
 667                pr_cont("Instruction Fetch Error Report\n");
 668                recoverable = 0;
 669        }
 670
 671        if (reason & MCSR_LD) {
 672                pr_cont("Load Error Report\n");
 673                recoverable = 0;
 674        }
 675
 676        if (reason & MCSR_ST) {
 677                pr_cont("Store Error Report\n");
 678                recoverable = 0;
 679        }
 680
 681        if (reason & MCSR_LDG) {
 682                pr_cont("Guarded Load Error Report\n");
 683                recoverable = 0;
 684        }
 685
 686        if (reason & MCSR_TLBSYNC)
 687                pr_cont("Simultaneous tlbsync operations\n");
 688
 689        if (reason & MCSR_BSL2_ERR) {
 690                pr_cont("Level 2 Cache Error\n");
 691                recoverable = 0;
 692        }
 693
 694        if (reason & MCSR_MAV) {
 695                u64 addr;
 696
 697                addr = mfspr(SPRN_MCAR);
 698                addr |= (u64)mfspr(SPRN_MCARU) << 32;
 699
 700                pr_cont("Machine Check %s Address: %#llx\n",
 701                       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 702        }
 703
 704silent_out:
 705        mtspr(SPRN_MCSR, mcsr);
 706        return mfspr(SPRN_MCSR) == 0 && recoverable;
 707}
 708
 709int machine_check_e500(struct pt_regs *regs)
 710{
 711        unsigned long reason = mfspr(SPRN_MCSR);
 712
 713        if (reason & MCSR_BUS_RBERR) {
 714                if (fsl_rio_mcheck_exception(regs))
 715                        return 1;
 716                if (fsl_pci_mcheck_exception(regs))
 717                        return 1;
 718        }
 719
 720        printk("Machine check in kernel mode.\n");
 721        printk("Caused by (from MCSR=%lx): ", reason);
 722
 723        if (reason & MCSR_MCP)
 724                pr_cont("Machine Check Signal\n");
 725        if (reason & MCSR_ICPERR)
 726                pr_cont("Instruction Cache Parity Error\n");
 727        if (reason & MCSR_DCP_PERR)
 728                pr_cont("Data Cache Push Parity Error\n");
 729        if (reason & MCSR_DCPERR)
 730                pr_cont("Data Cache Parity Error\n");
 731        if (reason & MCSR_BUS_IAERR)
 732                pr_cont("Bus - Instruction Address Error\n");
 733        if (reason & MCSR_BUS_RAERR)
 734                pr_cont("Bus - Read Address Error\n");
 735        if (reason & MCSR_BUS_WAERR)
 736                pr_cont("Bus - Write Address Error\n");
 737        if (reason & MCSR_BUS_IBERR)
 738                pr_cont("Bus - Instruction Data Error\n");
 739        if (reason & MCSR_BUS_RBERR)
 740                pr_cont("Bus - Read Data Bus Error\n");
 741        if (reason & MCSR_BUS_WBERR)
 742                pr_cont("Bus - Write Data Bus Error\n");
 743        if (reason & MCSR_BUS_IPERR)
 744                pr_cont("Bus - Instruction Parity Error\n");
 745        if (reason & MCSR_BUS_RPERR)
 746                pr_cont("Bus - Read Parity Error\n");
 747
 748        return 0;
 749}
 750
 751int machine_check_generic(struct pt_regs *regs)
 752{
 753        return 0;
 754}
 755#elif defined(CONFIG_PPC32)
 756int machine_check_generic(struct pt_regs *regs)
 757{
 758        unsigned long reason = regs->msr;
 759
 760        printk("Machine check in kernel mode.\n");
 761        printk("Caused by (from SRR1=%lx): ", reason);
 762        switch (reason & 0x601F0000) {
 763        case 0x80000:
 764                pr_cont("Machine check signal\n");
 765                break;
 766        case 0x40000:
 767        case 0x140000:  /* 7450 MSS error and TEA */
 768                pr_cont("Transfer error ack signal\n");
 769                break;
 770        case 0x20000:
 771                pr_cont("Data parity error signal\n");
 772                break;
 773        case 0x10000:
 774                pr_cont("Address parity error signal\n");
 775                break;
 776        case 0x20000000:
 777                pr_cont("L1 Data Cache error\n");
 778                break;
 779        case 0x40000000:
 780                pr_cont("L1 Instruction Cache error\n");
 781                break;
 782        case 0x00100000:
 783                pr_cont("L2 data cache parity error\n");
 784                break;
 785        default:
 786                pr_cont("Unknown values in msr\n");
 787        }
 788        return 0;
 789}
 790#endif /* everything else */
 791
 792void die_mce(const char *str, struct pt_regs *regs, long err)
 793{
 794        /*
 795         * The machine check wants to kill the interrupted context, but
 796         * do_exit() checks for in_interrupt() and panics in that case, so
 797         * exit the irq/nmi before calling die.
 798         */
 799        if (in_nmi())
 800                nmi_exit();
 801        else
 802                irq_exit();
 803        die(str, regs, err);
 804}
 805
 806/*
 807 * BOOK3S_64 does not usually call this handler as a non-maskable interrupt
 808 * (it uses its own early real-mode handler to handle the MCE proper
 809 * and then raises irq_work to call this handler when interrupts are
 810 * enabled). The only time when this is not true is if the early handler
 811 * is unrecoverable, then it does call this directly to try to get a
 812 * message out.
 813 */
 814static void __machine_check_exception(struct pt_regs *regs)
 815{
 816        int recover = 0;
 817
 818        __this_cpu_inc(irq_stat.mce_exceptions);
 819
 820        add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
 821
 822        /* See if any machine dependent calls. In theory, we would want
 823         * to call the CPU first, and call the ppc_md. one if the CPU
 824         * one returns a positive number. However there is existing code
 825         * that assumes the board gets a first chance, so let's keep it
 826         * that way for now and fix things later. --BenH.
 827         */
 828        if (ppc_md.machine_check_exception)
 829                recover = ppc_md.machine_check_exception(regs);
 830        else if (cur_cpu_spec->machine_check)
 831                recover = cur_cpu_spec->machine_check(regs);
 832
 833        if (recover > 0)
 834                goto bail;
 835
 836        if (debugger_fault_handler(regs))
 837                goto bail;
 838
 839        if (check_io_access(regs))
 840                goto bail;
 841
 842        die_mce("Machine check", regs, SIGBUS);
 843
 844bail:
 845        /* Must die if the interrupt is not recoverable */
 846        if (regs_is_unrecoverable(regs))
 847                die_mce("Unrecoverable Machine check", regs, SIGBUS);
 848}
 849
 850#ifdef CONFIG_PPC_BOOK3S_64
 851DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async)
 852{
 853        __machine_check_exception(regs);
 854}
 855#endif
 856DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception)
 857{
 858        __machine_check_exception(regs);
 859
 860        return 0;
 861}
 862
 863DEFINE_INTERRUPT_HANDLER(SMIException) /* async? */
 864{
 865        die("System Management Interrupt", regs, SIGABRT);
 866}
 867
 868#ifdef CONFIG_VSX
 869static void p9_hmi_special_emu(struct pt_regs *regs)
 870{
 871        unsigned int ra, rb, t, i, sel, instr, rc;
 872        const void __user *addr;
 873        u8 vbuf[16] __aligned(16), *vdst;
 874        unsigned long ea, msr, msr_mask;
 875        bool swap;
 876
 877        if (__get_user(instr, (unsigned int __user *)regs->nip))
 878                return;
 879
 880        /*
 881         * lxvb16x      opcode: 0x7c0006d8
 882         * lxvd2x       opcode: 0x7c000698
 883         * lxvh8x       opcode: 0x7c000658
 884         * lxvw4x       opcode: 0x7c000618
 885         */
 886        if ((instr & 0xfc00073e) != 0x7c000618) {
 887                pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
 888                         " instr=%08x\n",
 889                         smp_processor_id(), current->comm, current->pid,
 890                         regs->nip, instr);
 891                return;
 892        }
 893
 894        /* Grab vector registers into the task struct */
 895        msr = regs->msr; /* Grab msr before we flush the bits */
 896        flush_vsx_to_thread(current);
 897        enable_kernel_altivec();
 898
 899        /*
 900         * Is userspace running with a different endian (this is rare but
 901         * not impossible)
 902         */
 903        swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
 904
 905        /* Decode the instruction */
 906        ra = (instr >> 16) & 0x1f;
 907        rb = (instr >> 11) & 0x1f;
 908        t = (instr >> 21) & 0x1f;
 909        if (instr & 1)
 910                vdst = (u8 *)&current->thread.vr_state.vr[t];
 911        else
 912                vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
 913
 914        /* Grab the vector address */
 915        ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
 916        if (is_32bit_task())
 917                ea &= 0xfffffffful;
 918        addr = (__force const void __user *)ea;
 919
 920        /* Check it */
 921        if (!access_ok(addr, 16)) {
 922                pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
 923                         " instr=%08x addr=%016lx\n",
 924                         smp_processor_id(), current->comm, current->pid,
 925                         regs->nip, instr, (unsigned long)addr);
 926                return;
 927        }
 928
 929        /* Read the vector */
 930        rc = 0;
 931        if ((unsigned long)addr & 0xfUL)
 932                /* unaligned case */
 933                rc = __copy_from_user_inatomic(vbuf, addr, 16);
 934        else
 935                __get_user_atomic_128_aligned(vbuf, addr, rc);
 936        if (rc) {
 937                pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
 938                         " instr=%08x addr=%016lx\n",
 939                         smp_processor_id(), current->comm, current->pid,
 940                         regs->nip, instr, (unsigned long)addr);
 941                return;
 942        }
 943
 944        pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
 945                 " instr=%08x addr=%016lx\n",
 946                 smp_processor_id(), current->comm, current->pid, regs->nip,
 947                 instr, (unsigned long) addr);
 948
 949        /* Grab instruction "selector" */
 950        sel = (instr >> 6) & 3;
 951
 952        /*
 953         * Check to make sure the facility is actually enabled. This
 954         * could happen if we get a false positive hit.
 955         *
 956         * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
 957         * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
 958         */
 959        msr_mask = MSR_VSX;
 960        if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
 961                msr_mask = MSR_VEC;
 962        if (!(msr & msr_mask)) {
 963                pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
 964                         " instr=%08x msr:%016lx\n",
 965                         smp_processor_id(), current->comm, current->pid,
 966                         regs->nip, instr, msr);
 967                return;
 968        }
 969
 970        /* Do logging here before we modify sel based on endian */
 971        switch (sel) {
 972        case 0: /* lxvw4x */
 973                PPC_WARN_EMULATED(lxvw4x, regs);
 974                break;
 975        case 1: /* lxvh8x */
 976                PPC_WARN_EMULATED(lxvh8x, regs);
 977                break;
 978        case 2: /* lxvd2x */
 979                PPC_WARN_EMULATED(lxvd2x, regs);
 980                break;
 981        case 3: /* lxvb16x */
 982                PPC_WARN_EMULATED(lxvb16x, regs);
 983                break;
 984        }
 985
 986#ifdef __LITTLE_ENDIAN__
 987        /*
 988         * An LE kernel stores the vector in the task struct as an LE
 989         * byte array (effectively swapping both the components and
 990         * the content of the components). Those instructions expect
 991         * the components to remain in ascending address order, so we
 992         * swap them back.
 993         *
 994         * If we are running a BE user space, the expectation is that
 995         * of a simple memcpy, so forcing the emulation to look like
 996         * a lxvb16x should do the trick.
 997         */
 998        if (swap)
 999                sel = 3;
1000
1001        switch (sel) {
1002        case 0: /* lxvw4x */
1003                for (i = 0; i < 4; i++)
1004                        ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1005                break;
1006        case 1: /* lxvh8x */
1007                for (i = 0; i < 8; i++)
1008                        ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1009                break;
1010        case 2: /* lxvd2x */
1011                for (i = 0; i < 2; i++)
1012                        ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1013                break;
1014        case 3: /* lxvb16x */
1015                for (i = 0; i < 16; i++)
1016                        vdst[i] = vbuf[15-i];
1017                break;
1018        }
1019#else /* __LITTLE_ENDIAN__ */
1020        /* On a big endian kernel, a BE userspace only needs a memcpy */
1021        if (!swap)
1022                sel = 3;
1023
1024        /* Otherwise, we need to swap the content of the components */
1025        switch (sel) {
1026        case 0: /* lxvw4x */
1027                for (i = 0; i < 4; i++)
1028                        ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1029                break;
1030        case 1: /* lxvh8x */
1031                for (i = 0; i < 8; i++)
1032                        ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1033                break;
1034        case 2: /* lxvd2x */
1035                for (i = 0; i < 2; i++)
1036                        ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1037                break;
1038        case 3: /* lxvb16x */
1039                memcpy(vdst, vbuf, 16);
1040                break;
1041        }
1042#endif /* !__LITTLE_ENDIAN__ */
1043
1044        /* Go to next instruction */
1045        regs_add_return_ip(regs, 4);
1046}
1047#endif /* CONFIG_VSX */
1048
1049DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception)
1050{
1051        struct pt_regs *old_regs;
1052
1053        old_regs = set_irq_regs(regs);
1054
1055#ifdef CONFIG_VSX
1056        /* Real mode flagged P9 special emu is needed */
1057        if (local_paca->hmi_p9_special_emu) {
1058                local_paca->hmi_p9_special_emu = 0;
1059
1060                /*
1061                 * We don't want to take page faults while doing the
1062                 * emulation, we just replay the instruction if necessary.
1063                 */
1064                pagefault_disable();
1065                p9_hmi_special_emu(regs);
1066                pagefault_enable();
1067        }
1068#endif /* CONFIG_VSX */
1069
1070        if (ppc_md.handle_hmi_exception)
1071                ppc_md.handle_hmi_exception(regs);
1072
1073        set_irq_regs(old_regs);
1074}
1075
1076DEFINE_INTERRUPT_HANDLER(unknown_exception)
1077{
1078        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1079               regs->nip, regs->msr, regs->trap);
1080
1081        _exception(SIGTRAP, regs, TRAP_UNK, 0);
1082}
1083
1084DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception)
1085{
1086        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1087               regs->nip, regs->msr, regs->trap);
1088
1089        _exception(SIGTRAP, regs, TRAP_UNK, 0);
1090}
1091
1092DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception)
1093{
1094        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1095               regs->nip, regs->msr, regs->trap);
1096
1097        _exception(SIGTRAP, regs, TRAP_UNK, 0);
1098
1099        return 0;
1100}
1101
1102DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception)
1103{
1104        if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1105                                        5, SIGTRAP) == NOTIFY_STOP)
1106                return;
1107        if (debugger_iabr_match(regs))
1108                return;
1109        _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1110}
1111
1112DEFINE_INTERRUPT_HANDLER(RunModeException)
1113{
1114        _exception(SIGTRAP, regs, TRAP_UNK, 0);
1115}
1116
1117static void __single_step_exception(struct pt_regs *regs)
1118{
1119        clear_single_step(regs);
1120        clear_br_trace(regs);
1121
1122        if (kprobe_post_handler(regs))
1123                return;
1124
1125        if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1126                                        5, SIGTRAP) == NOTIFY_STOP)
1127                return;
1128        if (debugger_sstep(regs))
1129                return;
1130
1131        _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1132}
1133
1134DEFINE_INTERRUPT_HANDLER(single_step_exception)
1135{
1136        __single_step_exception(regs);
1137}
1138
1139/*
1140 * After we have successfully emulated an instruction, we have to
1141 * check if the instruction was being single-stepped, and if so,
1142 * pretend we got a single-step exception.  This was pointed out
1143 * by Kumar Gala.  -- paulus
1144 */
1145static void emulate_single_step(struct pt_regs *regs)
1146{
1147        if (single_stepping(regs))
1148                __single_step_exception(regs);
1149}
1150
1151static inline int __parse_fpscr(unsigned long fpscr)
1152{
1153        int ret = FPE_FLTUNK;
1154
1155        /* Invalid operation */
1156        if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1157                ret = FPE_FLTINV;
1158
1159        /* Overflow */
1160        else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1161                ret = FPE_FLTOVF;
1162
1163        /* Underflow */
1164        else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1165                ret = FPE_FLTUND;
1166
1167        /* Divide by zero */
1168        else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1169                ret = FPE_FLTDIV;
1170
1171        /* Inexact result */
1172        else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1173                ret = FPE_FLTRES;
1174
1175        return ret;
1176}
1177
1178static void parse_fpe(struct pt_regs *regs)
1179{
1180        int code = 0;
1181
1182        flush_fp_to_thread(current);
1183
1184#ifdef CONFIG_PPC_FPU_REGS
1185        code = __parse_fpscr(current->thread.fp_state.fpscr);
1186#endif
1187
1188        _exception(SIGFPE, regs, code, regs->nip);
1189}
1190
1191/*
1192 * Illegal instruction emulation support.  Originally written to
1193 * provide the PVR to user applications using the mfspr rd, PVR.
1194 * Return non-zero if we can't emulate, or -EFAULT if the associated
1195 * memory access caused an access fault.  Return zero on success.
1196 *
1197 * There are a couple of ways to do this, either "decode" the instruction
1198 * or directly match lots of bits.  In this case, matching lots of
1199 * bits is faster and easier.
1200 *
1201 */
1202static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1203{
1204        u8 rT = (instword >> 21) & 0x1f;
1205        u8 rA = (instword >> 16) & 0x1f;
1206        u8 NB_RB = (instword >> 11) & 0x1f;
1207        u32 num_bytes;
1208        unsigned long EA;
1209        int pos = 0;
1210
1211        /* Early out if we are an invalid form of lswx */
1212        if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1213                if ((rT == rA) || (rT == NB_RB))
1214                        return -EINVAL;
1215
1216        EA = (rA == 0) ? 0 : regs->gpr[rA];
1217
1218        switch (instword & PPC_INST_STRING_MASK) {
1219                case PPC_INST_LSWX:
1220                case PPC_INST_STSWX:
1221                        EA += NB_RB;
1222                        num_bytes = regs->xer & 0x7f;
1223                        break;
1224                case PPC_INST_LSWI:
1225                case PPC_INST_STSWI:
1226                        num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1227                        break;
1228                default:
1229                        return -EINVAL;
1230        }
1231
1232        while (num_bytes != 0)
1233        {
1234                u8 val;
1235                u32 shift = 8 * (3 - (pos & 0x3));
1236
1237                /* if process is 32-bit, clear upper 32 bits of EA */
1238                if ((regs->msr & MSR_64BIT) == 0)
1239                        EA &= 0xFFFFFFFF;
1240
1241                switch ((instword & PPC_INST_STRING_MASK)) {
1242                        case PPC_INST_LSWX:
1243                        case PPC_INST_LSWI:
1244                                if (get_user(val, (u8 __user *)EA))
1245                                        return -EFAULT;
1246                                /* first time updating this reg,
1247                                 * zero it out */
1248                                if (pos == 0)
1249                                        regs->gpr[rT] = 0;
1250                                regs->gpr[rT] |= val << shift;
1251                                break;
1252                        case PPC_INST_STSWI:
1253                        case PPC_INST_STSWX:
1254                                val = regs->gpr[rT] >> shift;
1255                                if (put_user(val, (u8 __user *)EA))
1256                                        return -EFAULT;
1257                                break;
1258                }
1259                /* move EA to next address */
1260                EA += 1;
1261                num_bytes--;
1262
1263                /* manage our position within the register */
1264                if (++pos == 4) {
1265                        pos = 0;
1266                        if (++rT == 32)
1267                                rT = 0;
1268                }
1269        }
1270
1271        return 0;
1272}
1273
1274static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1275{
1276        u32 ra,rs;
1277        unsigned long tmp;
1278
1279        ra = (instword >> 16) & 0x1f;
1280        rs = (instword >> 21) & 0x1f;
1281
1282        tmp = regs->gpr[rs];
1283        tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1284        tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1285        tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1286        regs->gpr[ra] = tmp;
1287
1288        return 0;
1289}
1290
1291static int emulate_isel(struct pt_regs *regs, u32 instword)
1292{
1293        u8 rT = (instword >> 21) & 0x1f;
1294        u8 rA = (instword >> 16) & 0x1f;
1295        u8 rB = (instword >> 11) & 0x1f;
1296        u8 BC = (instword >> 6) & 0x1f;
1297        u8 bit;
1298        unsigned long tmp;
1299
1300        tmp = (rA == 0) ? 0 : regs->gpr[rA];
1301        bit = (regs->ccr >> (31 - BC)) & 0x1;
1302
1303        regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1304
1305        return 0;
1306}
1307
1308#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1309static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1310{
1311        /* If we're emulating a load/store in an active transaction, we cannot
1312         * emulate it as the kernel operates in transaction suspended context.
1313         * We need to abort the transaction.  This creates a persistent TM
1314         * abort so tell the user what caused it with a new code.
1315         */
1316        if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1317                tm_enable();
1318                tm_abort(cause);
1319                return true;
1320        }
1321        return false;
1322}
1323#else
1324static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1325{
1326        return false;
1327}
1328#endif
1329
1330static int emulate_instruction(struct pt_regs *regs)
1331{
1332        u32 instword;
1333        u32 rd;
1334
1335        if (!user_mode(regs))
1336                return -EINVAL;
1337
1338        if (get_user(instword, (u32 __user *)(regs->nip)))
1339                return -EFAULT;
1340
1341        /* Emulate the mfspr rD, PVR. */
1342        if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1343                PPC_WARN_EMULATED(mfpvr, regs);
1344                rd = (instword >> 21) & 0x1f;
1345                regs->gpr[rd] = mfspr(SPRN_PVR);
1346                return 0;
1347        }
1348
1349        /* Emulating the dcba insn is just a no-op.  */
1350        if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1351                PPC_WARN_EMULATED(dcba, regs);
1352                return 0;
1353        }
1354
1355        /* Emulate the mcrxr insn.  */
1356        if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1357                int shift = (instword >> 21) & 0x1c;
1358                unsigned long msk = 0xf0000000UL >> shift;
1359
1360                PPC_WARN_EMULATED(mcrxr, regs);
1361                regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1362                regs->xer &= ~0xf0000000UL;
1363                return 0;
1364        }
1365
1366        /* Emulate load/store string insn. */
1367        if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1368                if (tm_abort_check(regs,
1369                                   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1370                        return -EINVAL;
1371                PPC_WARN_EMULATED(string, regs);
1372                return emulate_string_inst(regs, instword);
1373        }
1374
1375        /* Emulate the popcntb (Population Count Bytes) instruction. */
1376        if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1377                PPC_WARN_EMULATED(popcntb, regs);
1378                return emulate_popcntb_inst(regs, instword);
1379        }
1380
1381        /* Emulate isel (Integer Select) instruction */
1382        if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1383                PPC_WARN_EMULATED(isel, regs);
1384                return emulate_isel(regs, instword);
1385        }
1386
1387        /* Emulate sync instruction variants */
1388        if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1389                PPC_WARN_EMULATED(sync, regs);
1390                asm volatile("sync");
1391                return 0;
1392        }
1393
1394#ifdef CONFIG_PPC64
1395        /* Emulate the mfspr rD, DSCR. */
1396        if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1397                PPC_INST_MFSPR_DSCR_USER) ||
1398             ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1399                PPC_INST_MFSPR_DSCR)) &&
1400                        cpu_has_feature(CPU_FTR_DSCR)) {
1401                PPC_WARN_EMULATED(mfdscr, regs);
1402                rd = (instword >> 21) & 0x1f;
1403                regs->gpr[rd] = mfspr(SPRN_DSCR);
1404                return 0;
1405        }
1406        /* Emulate the mtspr DSCR, rD. */
1407        if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1408                PPC_INST_MTSPR_DSCR_USER) ||
1409             ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1410                PPC_INST_MTSPR_DSCR)) &&
1411                        cpu_has_feature(CPU_FTR_DSCR)) {
1412                PPC_WARN_EMULATED(mtdscr, regs);
1413                rd = (instword >> 21) & 0x1f;
1414                current->thread.dscr = regs->gpr[rd];
1415                current->thread.dscr_inherit = 1;
1416                mtspr(SPRN_DSCR, current->thread.dscr);
1417                return 0;
1418        }
1419#endif
1420
1421        return -EINVAL;
1422}
1423
1424int is_valid_bugaddr(unsigned long addr)
1425{
1426        return is_kernel_addr(addr);
1427}
1428
1429#ifdef CONFIG_MATH_EMULATION
1430static int emulate_math(struct pt_regs *regs)
1431{
1432        int ret;
1433
1434        ret = do_mathemu(regs);
1435        if (ret >= 0)
1436                PPC_WARN_EMULATED(math, regs);
1437
1438        switch (ret) {
1439        case 0:
1440                emulate_single_step(regs);
1441                return 0;
1442        case 1: {
1443                        int code = 0;
1444                        code = __parse_fpscr(current->thread.fp_state.fpscr);
1445                        _exception(SIGFPE, regs, code, regs->nip);
1446                        return 0;
1447                }
1448        case -EFAULT:
1449                _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1450                return 0;
1451        }
1452
1453        return -1;
1454}
1455#else
1456static inline int emulate_math(struct pt_regs *regs) { return -1; }
1457#endif
1458
1459static void do_program_check(struct pt_regs *regs)
1460{
1461        unsigned int reason = get_reason(regs);
1462
1463        /* We can now get here via a FP Unavailable exception if the core
1464         * has no FPU, in that case the reason flags will be 0 */
1465
1466        if (reason & REASON_FP) {
1467                /* IEEE FP exception */
1468                parse_fpe(regs);
1469                return;
1470        }
1471        if (reason & REASON_TRAP) {
1472                unsigned long bugaddr;
1473                /* Debugger is first in line to stop recursive faults in
1474                 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1475                if (debugger_bpt(regs))
1476                        return;
1477
1478                if (kprobe_handler(regs))
1479                        return;
1480
1481                /* trap exception */
1482                if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1483                                == NOTIFY_STOP)
1484                        return;
1485
1486                bugaddr = regs->nip;
1487                /*
1488                 * Fixup bugaddr for BUG_ON() in real mode
1489                 */
1490                if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1491                        bugaddr += PAGE_OFFSET;
1492
1493                if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1494                    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1495                        const struct exception_table_entry *entry;
1496
1497                        entry = search_exception_tables(bugaddr);
1498                        if (entry) {
1499                                regs_set_return_ip(regs, extable_fixup(entry) + regs->nip - bugaddr);
1500                                return;
1501                        }
1502                }
1503                _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1504                return;
1505        }
1506#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1507        if (reason & REASON_TM) {
1508                /* This is a TM "Bad Thing Exception" program check.
1509                 * This occurs when:
1510                 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1511                 *    transition in TM states.
1512                 * -  A trechkpt is attempted when transactional.
1513                 * -  A treclaim is attempted when non transactional.
1514                 * -  A tend is illegally attempted.
1515                 * -  writing a TM SPR when transactional.
1516                 *
1517                 * If usermode caused this, it's done something illegal and
1518                 * gets a SIGILL slap on the wrist.  We call it an illegal
1519                 * operand to distinguish from the instruction just being bad
1520                 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1521                 * illegal /placement/ of a valid instruction.
1522                 */
1523                if (user_mode(regs)) {
1524                        _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1525                        return;
1526                } else {
1527                        printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1528                               "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1529                               regs->nip, regs->msr, get_paca()->tm_scratch);
1530                        die("Unrecoverable exception", regs, SIGABRT);
1531                }
1532        }
1533#endif
1534
1535        /*
1536         * If we took the program check in the kernel skip down to sending a
1537         * SIGILL. The subsequent cases all relate to emulating instructions
1538         * which we should only do for userspace. We also do not want to enable
1539         * interrupts for kernel faults because that might lead to further
1540         * faults, and loose the context of the original exception.
1541         */
1542        if (!user_mode(regs))
1543                goto sigill;
1544
1545        interrupt_cond_local_irq_enable(regs);
1546
1547        /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1548         * but there seems to be a hardware bug on the 405GP (RevD)
1549         * that means ESR is sometimes set incorrectly - either to
1550         * ESR_DST (!?) or 0.  In the process of chasing this with the
1551         * hardware people - not sure if it can happen on any illegal
1552         * instruction or only on FP instructions, whether there is a
1553         * pattern to occurrences etc. -dgibson 31/Mar/2003
1554         */
1555        if (!emulate_math(regs))
1556                return;
1557
1558        /* Try to emulate it if we should. */
1559        if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1560                switch (emulate_instruction(regs)) {
1561                case 0:
1562                        regs_add_return_ip(regs, 4);
1563                        emulate_single_step(regs);
1564                        return;
1565                case -EFAULT:
1566                        _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1567                        return;
1568                }
1569        }
1570
1571sigill:
1572        if (reason & REASON_PRIVILEGED)
1573                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1574        else
1575                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1576
1577}
1578
1579DEFINE_INTERRUPT_HANDLER(program_check_exception)
1580{
1581        do_program_check(regs);
1582}
1583
1584/*
1585 * This occurs when running in hypervisor mode on POWER6 or later
1586 * and an illegal instruction is encountered.
1587 */
1588DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt)
1589{
1590        regs_set_return_msr(regs, regs->msr | REASON_ILLEGAL);
1591        do_program_check(regs);
1592}
1593
1594DEFINE_INTERRUPT_HANDLER(alignment_exception)
1595{
1596        int sig, code, fixed = 0;
1597        unsigned long  reason;
1598
1599        interrupt_cond_local_irq_enable(regs);
1600
1601        reason = get_reason(regs);
1602        if (reason & REASON_BOUNDARY) {
1603                sig = SIGBUS;
1604                code = BUS_ADRALN;
1605                goto bad;
1606        }
1607
1608        if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1609                return;
1610
1611        /* we don't implement logging of alignment exceptions */
1612        if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1613                fixed = fix_alignment(regs);
1614
1615        if (fixed == 1) {
1616                /* skip over emulated instruction */
1617                regs_add_return_ip(regs, inst_length(reason));
1618                emulate_single_step(regs);
1619                return;
1620        }
1621
1622        /* Operand address was bad */
1623        if (fixed == -EFAULT) {
1624                sig = SIGSEGV;
1625                code = SEGV_ACCERR;
1626        } else {
1627                sig = SIGBUS;
1628                code = BUS_ADRALN;
1629        }
1630bad:
1631        if (user_mode(regs))
1632                _exception(sig, regs, code, regs->dar);
1633        else
1634                bad_page_fault(regs, sig);
1635}
1636
1637DEFINE_INTERRUPT_HANDLER(stack_overflow_exception)
1638{
1639        die("Kernel stack overflow", regs, SIGSEGV);
1640}
1641
1642DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception)
1643{
1644        printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1645                          "%lx at %lx\n", regs->trap, regs->nip);
1646        die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1647}
1648
1649DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception)
1650{
1651        if (user_mode(regs)) {
1652                /* A user program has executed an altivec instruction,
1653                   but this kernel doesn't support altivec. */
1654                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1655                return;
1656        }
1657
1658        printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1659                        "%lx at %lx\n", regs->trap, regs->nip);
1660        die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1661}
1662
1663DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception)
1664{
1665        if (user_mode(regs)) {
1666                /* A user program has executed an vsx instruction,
1667                   but this kernel doesn't support vsx. */
1668                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1669                return;
1670        }
1671
1672        printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1673                        "%lx at %lx\n", regs->trap, regs->nip);
1674        die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1675}
1676
1677#ifdef CONFIG_PPC64
1678static void tm_unavailable(struct pt_regs *regs)
1679{
1680#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1681        if (user_mode(regs)) {
1682                current->thread.load_tm++;
1683                regs_set_return_msr(regs, regs->msr | MSR_TM);
1684                tm_enable();
1685                tm_restore_sprs(&current->thread);
1686                return;
1687        }
1688#endif
1689        pr_emerg("Unrecoverable TM Unavailable Exception "
1690                        "%lx at %lx\n", regs->trap, regs->nip);
1691        die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1692}
1693
1694DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception)
1695{
1696        static char *facility_strings[] = {
1697                [FSCR_FP_LG] = "FPU",
1698                [FSCR_VECVSX_LG] = "VMX/VSX",
1699                [FSCR_DSCR_LG] = "DSCR",
1700                [FSCR_PM_LG] = "PMU SPRs",
1701                [FSCR_BHRB_LG] = "BHRB",
1702                [FSCR_TM_LG] = "TM",
1703                [FSCR_EBB_LG] = "EBB",
1704                [FSCR_TAR_LG] = "TAR",
1705                [FSCR_MSGP_LG] = "MSGP",
1706                [FSCR_SCV_LG] = "SCV",
1707                [FSCR_PREFIX_LG] = "PREFIX",
1708        };
1709        char *facility = "unknown";
1710        u64 value;
1711        u32 instword, rd;
1712        u8 status;
1713        bool hv;
1714
1715        hv = (TRAP(regs) == INTERRUPT_H_FAC_UNAVAIL);
1716        if (hv)
1717                value = mfspr(SPRN_HFSCR);
1718        else
1719                value = mfspr(SPRN_FSCR);
1720
1721        status = value >> 56;
1722        if ((hv || status >= 2) &&
1723            (status < ARRAY_SIZE(facility_strings)) &&
1724            facility_strings[status])
1725                facility = facility_strings[status];
1726
1727        /* We should not have taken this interrupt in kernel */
1728        if (!user_mode(regs)) {
1729                pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1730                         facility, status, regs->nip);
1731                die("Unexpected facility unavailable exception", regs, SIGABRT);
1732        }
1733
1734        interrupt_cond_local_irq_enable(regs);
1735
1736        if (status == FSCR_DSCR_LG) {
1737                /*
1738                 * User is accessing the DSCR register using the problem
1739                 * state only SPR number (0x03) either through a mfspr or
1740                 * a mtspr instruction. If it is a write attempt through
1741                 * a mtspr, then we set the inherit bit. This also allows
1742                 * the user to write or read the register directly in the
1743                 * future by setting via the FSCR DSCR bit. But in case it
1744                 * is a read DSCR attempt through a mfspr instruction, we
1745                 * just emulate the instruction instead. This code path will
1746                 * always emulate all the mfspr instructions till the user
1747                 * has attempted at least one mtspr instruction. This way it
1748                 * preserves the same behaviour when the user is accessing
1749                 * the DSCR through privilege level only SPR number (0x11)
1750                 * which is emulated through illegal instruction exception.
1751                 * We always leave HFSCR DSCR set.
1752                 */
1753                if (get_user(instword, (u32 __user *)(regs->nip))) {
1754                        pr_err("Failed to fetch the user instruction\n");
1755                        return;
1756                }
1757
1758                /* Write into DSCR (mtspr 0x03, RS) */
1759                if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1760                                == PPC_INST_MTSPR_DSCR_USER) {
1761                        rd = (instword >> 21) & 0x1f;
1762                        current->thread.dscr = regs->gpr[rd];
1763                        current->thread.dscr_inherit = 1;
1764                        current->thread.fscr |= FSCR_DSCR;
1765                        mtspr(SPRN_FSCR, current->thread.fscr);
1766                }
1767
1768                /* Read from DSCR (mfspr RT, 0x03) */
1769                if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1770                                == PPC_INST_MFSPR_DSCR_USER) {
1771                        if (emulate_instruction(regs)) {
1772                                pr_err("DSCR based mfspr emulation failed\n");
1773                                return;
1774                        }
1775                        regs_add_return_ip(regs, 4);
1776                        emulate_single_step(regs);
1777                }
1778                return;
1779        }
1780
1781        if (status == FSCR_TM_LG) {
1782                /*
1783                 * If we're here then the hardware is TM aware because it
1784                 * generated an exception with FSRM_TM set.
1785                 *
1786                 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1787                 * told us not to do TM, or the kernel is not built with TM
1788                 * support.
1789                 *
1790                 * If both of those things are true, then userspace can spam the
1791                 * console by triggering the printk() below just by continually
1792                 * doing tbegin (or any TM instruction). So in that case just
1793                 * send the process a SIGILL immediately.
1794                 */
1795                if (!cpu_has_feature(CPU_FTR_TM))
1796                        goto out;
1797
1798                tm_unavailable(regs);
1799                return;
1800        }
1801
1802        pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1803                hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1804
1805out:
1806        _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1807}
1808#endif
1809
1810#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1811
1812DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm)
1813{
1814        /* Note:  This does not handle any kind of FP laziness. */
1815
1816        TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1817                 regs->nip, regs->msr);
1818
1819        /* We can only have got here if the task started using FP after
1820         * beginning the transaction.  So, the transactional regs are just a
1821         * copy of the checkpointed ones.  But, we still need to recheckpoint
1822         * as we're enabling FP for the process; it will return, abort the
1823         * transaction, and probably retry but now with FP enabled.  So the
1824         * checkpointed FP registers need to be loaded.
1825         */
1826        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1827
1828        /*
1829         * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1830         * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1831         *
1832         * At this point, ck{fp,vr}_state contains the exact values we want to
1833         * recheckpoint.
1834         */
1835
1836        /* Enable FP for the task: */
1837        current->thread.load_fp = 1;
1838
1839        /*
1840         * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1841         */
1842        tm_recheckpoint(&current->thread);
1843}
1844
1845DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm)
1846{
1847        /* See the comments in fp_unavailable_tm().  This function operates
1848         * the same way.
1849         */
1850
1851        TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1852                 "MSR=%lx\n",
1853                 regs->nip, regs->msr);
1854        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1855        current->thread.load_vec = 1;
1856        tm_recheckpoint(&current->thread);
1857        current->thread.used_vr = 1;
1858}
1859
1860DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm)
1861{
1862        /* See the comments in fp_unavailable_tm().  This works similarly,
1863         * though we're loading both FP and VEC registers in here.
1864         *
1865         * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1866         * regs.  Either way, set MSR_VSX.
1867         */
1868
1869        TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1870                 "MSR=%lx\n",
1871                 regs->nip, regs->msr);
1872
1873        current->thread.used_vsr = 1;
1874
1875        /* This reclaims FP and/or VR regs if they're already enabled */
1876        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1877
1878        current->thread.load_vec = 1;
1879        current->thread.load_fp = 1;
1880
1881        tm_recheckpoint(&current->thread);
1882}
1883#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1884
1885#ifdef CONFIG_PPC64
1886DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi);
1887DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi)
1888{
1889        __this_cpu_inc(irq_stat.pmu_irqs);
1890
1891        perf_irq(regs);
1892
1893        return 0;
1894}
1895#endif
1896
1897DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async);
1898DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async)
1899{
1900        __this_cpu_inc(irq_stat.pmu_irqs);
1901
1902        perf_irq(regs);
1903}
1904
1905DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception)
1906{
1907        /*
1908         * On 64-bit, if perf interrupts hit in a local_irq_disable
1909         * (soft-masked) region, we consider them as NMIs. This is required to
1910         * prevent hash faults on user addresses when reading callchains (and
1911         * looks better from an irq tracing perspective).
1912         */
1913        if (IS_ENABLED(CONFIG_PPC64) && unlikely(arch_irq_disabled_regs(regs)))
1914                performance_monitor_exception_nmi(regs);
1915        else
1916                performance_monitor_exception_async(regs);
1917
1918        return 0;
1919}
1920
1921#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1922static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1923{
1924        int changed = 0;
1925        /*
1926         * Determine the cause of the debug event, clear the
1927         * event flags and send a trap to the handler. Torez
1928         */
1929        if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1930                dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1931#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1932                current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1933#endif
1934                do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1935                             5);
1936                changed |= 0x01;
1937        }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1938                dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1939                do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1940                             6);
1941                changed |= 0x01;
1942        }  else if (debug_status & DBSR_IAC1) {
1943                current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1944                dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1945                do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1946                             1);
1947                changed |= 0x01;
1948        }  else if (debug_status & DBSR_IAC2) {
1949                current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1950                do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1951                             2);
1952                changed |= 0x01;
1953        }  else if (debug_status & DBSR_IAC3) {
1954                current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1955                dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1956                do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1957                             3);
1958                changed |= 0x01;
1959        }  else if (debug_status & DBSR_IAC4) {
1960                current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1961                do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1962                             4);
1963                changed |= 0x01;
1964        }
1965        /*
1966         * At the point this routine was called, the MSR(DE) was turned off.
1967         * Check all other debug flags and see if that bit needs to be turned
1968         * back on or not.
1969         */
1970        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1971                               current->thread.debug.dbcr1))
1972                regs_set_return_msr(regs, regs->msr | MSR_DE);
1973        else
1974                /* Make sure the IDM flag is off */
1975                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1976
1977        if (changed & 0x01)
1978                mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1979}
1980
1981DEFINE_INTERRUPT_HANDLER(DebugException)
1982{
1983        unsigned long debug_status = regs->dsisr;
1984
1985        current->thread.debug.dbsr = debug_status;
1986
1987        /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1988         * on server, it stops on the target of the branch. In order to simulate
1989         * the server behaviour, we thus restart right away with a single step
1990         * instead of stopping here when hitting a BT
1991         */
1992        if (debug_status & DBSR_BT) {
1993                regs_set_return_msr(regs, regs->msr & ~MSR_DE);
1994
1995                /* Disable BT */
1996                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1997                /* Clear the BT event */
1998                mtspr(SPRN_DBSR, DBSR_BT);
1999
2000                /* Do the single step trick only when coming from userspace */
2001                if (user_mode(regs)) {
2002                        current->thread.debug.dbcr0 &= ~DBCR0_BT;
2003                        current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2004                        regs_set_return_msr(regs, regs->msr | MSR_DE);
2005                        return;
2006                }
2007
2008                if (kprobe_post_handler(regs))
2009                        return;
2010
2011                if (notify_die(DIE_SSTEP, "block_step", regs, 5,
2012                               5, SIGTRAP) == NOTIFY_STOP) {
2013                        return;
2014                }
2015                if (debugger_sstep(regs))
2016                        return;
2017        } else if (debug_status & DBSR_IC) {    /* Instruction complete */
2018                regs_set_return_msr(regs, regs->msr & ~MSR_DE);
2019
2020                /* Disable instruction completion */
2021                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
2022                /* Clear the instruction completion event */
2023                mtspr(SPRN_DBSR, DBSR_IC);
2024
2025                if (kprobe_post_handler(regs))
2026                        return;
2027
2028                if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2029                               5, SIGTRAP) == NOTIFY_STOP) {
2030                        return;
2031                }
2032
2033                if (debugger_sstep(regs))
2034                        return;
2035
2036                if (user_mode(regs)) {
2037                        current->thread.debug.dbcr0 &= ~DBCR0_IC;
2038                        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2039                                               current->thread.debug.dbcr1))
2040                                regs_set_return_msr(regs, regs->msr | MSR_DE);
2041                        else
2042                                /* Make sure the IDM bit is off */
2043                                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2044                }
2045
2046                _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2047        } else
2048                handle_debug(regs, debug_status);
2049}
2050#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2051
2052#ifdef CONFIG_ALTIVEC
2053DEFINE_INTERRUPT_HANDLER(altivec_assist_exception)
2054{
2055        int err;
2056
2057        if (!user_mode(regs)) {
2058                printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2059                       " at %lx\n", regs->nip);
2060                die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2061        }
2062
2063        flush_altivec_to_thread(current);
2064
2065        PPC_WARN_EMULATED(altivec, regs);
2066        err = emulate_altivec(regs);
2067        if (err == 0) {
2068                regs_add_return_ip(regs, 4); /* skip emulated instruction */
2069                emulate_single_step(regs);
2070                return;
2071        }
2072
2073        if (err == -EFAULT) {
2074                /* got an error reading the instruction */
2075                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2076        } else {
2077                /* didn't recognize the instruction */
2078                /* XXX quick hack for now: set the non-Java bit in the VSCR */
2079                printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2080                                   "in %s at %lx\n", current->comm, regs->nip);
2081                current->thread.vr_state.vscr.u[3] |= 0x10000;
2082        }
2083}
2084#endif /* CONFIG_ALTIVEC */
2085
2086#ifdef CONFIG_FSL_BOOKE
2087DEFINE_INTERRUPT_HANDLER(CacheLockingException)
2088{
2089        unsigned long error_code = regs->dsisr;
2090
2091        /* We treat cache locking instructions from the user
2092         * as priv ops, in the future we could try to do
2093         * something smarter
2094         */
2095        if (error_code & (ESR_DLK|ESR_ILK))
2096                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2097        return;
2098}
2099#endif /* CONFIG_FSL_BOOKE */
2100
2101#ifdef CONFIG_SPE
2102DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException)
2103{
2104        extern int do_spe_mathemu(struct pt_regs *regs);
2105        unsigned long spefscr;
2106        int fpexc_mode;
2107        int code = FPE_FLTUNK;
2108        int err;
2109
2110        interrupt_cond_local_irq_enable(regs);
2111
2112        flush_spe_to_thread(current);
2113
2114        spefscr = current->thread.spefscr;
2115        fpexc_mode = current->thread.fpexc_mode;
2116
2117        if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2118                code = FPE_FLTOVF;
2119        }
2120        else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2121                code = FPE_FLTUND;
2122        }
2123        else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2124                code = FPE_FLTDIV;
2125        else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2126                code = FPE_FLTINV;
2127        }
2128        else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2129                code = FPE_FLTRES;
2130
2131        err = do_spe_mathemu(regs);
2132        if (err == 0) {
2133                regs_add_return_ip(regs, 4); /* skip emulated instruction */
2134                emulate_single_step(regs);
2135                return;
2136        }
2137
2138        if (err == -EFAULT) {
2139                /* got an error reading the instruction */
2140                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2141        } else if (err == -EINVAL) {
2142                /* didn't recognize the instruction */
2143                printk(KERN_ERR "unrecognized spe instruction "
2144                       "in %s at %lx\n", current->comm, regs->nip);
2145        } else {
2146                _exception(SIGFPE, regs, code, regs->nip);
2147        }
2148
2149        return;
2150}
2151
2152DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException)
2153{
2154        extern int speround_handler(struct pt_regs *regs);
2155        int err;
2156
2157        interrupt_cond_local_irq_enable(regs);
2158
2159        preempt_disable();
2160        if (regs->msr & MSR_SPE)
2161                giveup_spe(current);
2162        preempt_enable();
2163
2164        regs_add_return_ip(regs, -4);
2165        err = speround_handler(regs);
2166        if (err == 0) {
2167                regs_add_return_ip(regs, 4); /* skip emulated instruction */
2168                emulate_single_step(regs);
2169                return;
2170        }
2171
2172        if (err == -EFAULT) {
2173                /* got an error reading the instruction */
2174                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2175        } else if (err == -EINVAL) {
2176                /* didn't recognize the instruction */
2177                printk(KERN_ERR "unrecognized spe instruction "
2178                       "in %s at %lx\n", current->comm, regs->nip);
2179        } else {
2180                _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2181                return;
2182        }
2183}
2184#endif
2185
2186/*
2187 * We enter here if we get an unrecoverable exception, that is, one
2188 * that happened at a point where the RI (recoverable interrupt) bit
2189 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2190 * we therefore lost state by taking this exception.
2191 */
2192void __noreturn unrecoverable_exception(struct pt_regs *regs)
2193{
2194        pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2195                 regs->trap, regs->nip, regs->msr);
2196        die("Unrecoverable exception", regs, SIGABRT);
2197        /* die() should not return */
2198        for (;;)
2199                ;
2200}
2201
2202#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2203/*
2204 * Default handler for a Watchdog exception,
2205 * spins until a reboot occurs
2206 */
2207void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2208{
2209        /* Generic WatchdogHandler, implement your own */
2210        mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2211        return;
2212}
2213
2214DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException)
2215{
2216        printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2217        WatchdogHandler(regs);
2218        return 0;
2219}
2220#endif
2221
2222/*
2223 * We enter here if we discover during exception entry that we are
2224 * running in supervisor mode with a userspace value in the stack pointer.
2225 */
2226DEFINE_INTERRUPT_HANDLER(kernel_bad_stack)
2227{
2228        printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2229               regs->gpr[1], regs->nip);
2230        die("Bad kernel stack pointer", regs, SIGABRT);
2231}
2232
2233#ifdef CONFIG_PPC_EMULATED_STATS
2234
2235#define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
2236
2237struct ppc_emulated ppc_emulated = {
2238#ifdef CONFIG_ALTIVEC
2239        WARN_EMULATED_SETUP(altivec),
2240#endif
2241        WARN_EMULATED_SETUP(dcba),
2242        WARN_EMULATED_SETUP(dcbz),
2243        WARN_EMULATED_SETUP(fp_pair),
2244        WARN_EMULATED_SETUP(isel),
2245        WARN_EMULATED_SETUP(mcrxr),
2246        WARN_EMULATED_SETUP(mfpvr),
2247        WARN_EMULATED_SETUP(multiple),
2248        WARN_EMULATED_SETUP(popcntb),
2249        WARN_EMULATED_SETUP(spe),
2250        WARN_EMULATED_SETUP(string),
2251        WARN_EMULATED_SETUP(sync),
2252        WARN_EMULATED_SETUP(unaligned),
2253#ifdef CONFIG_MATH_EMULATION
2254        WARN_EMULATED_SETUP(math),
2255#endif
2256#ifdef CONFIG_VSX
2257        WARN_EMULATED_SETUP(vsx),
2258#endif
2259#ifdef CONFIG_PPC64
2260        WARN_EMULATED_SETUP(mfdscr),
2261        WARN_EMULATED_SETUP(mtdscr),
2262        WARN_EMULATED_SETUP(lq_stq),
2263        WARN_EMULATED_SETUP(lxvw4x),
2264        WARN_EMULATED_SETUP(lxvh8x),
2265        WARN_EMULATED_SETUP(lxvd2x),
2266        WARN_EMULATED_SETUP(lxvb16x),
2267#endif
2268};
2269
2270u32 ppc_warn_emulated;
2271
2272void ppc_warn_emulated_print(const char *type)
2273{
2274        pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2275                            type);
2276}
2277
2278static int __init ppc_warn_emulated_init(void)
2279{
2280        struct dentry *dir;
2281        unsigned int i;
2282        struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2283
2284        dir = debugfs_create_dir("emulated_instructions",
2285                                 arch_debugfs_dir);
2286
2287        debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
2288
2289        for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
2290                debugfs_create_u32(entries[i].name, 0644, dir,
2291                                   (u32 *)&entries[i].val.counter);
2292
2293        return 0;
2294}
2295
2296device_initcall(ppc_warn_emulated_init);
2297
2298#endif /* CONFIG_PPC_EMULATED_STATS */
2299