linux/arch/powerpc/kexec/core_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * PPC64 code to handle Linux booting another kernel.
   4 *
   5 * Copyright (C) 2004-2005, IBM Corp.
   6 *
   7 * Created by: Milton D Miller II
   8 */
   9
  10
  11#include <linux/kexec.h>
  12#include <linux/smp.h>
  13#include <linux/thread_info.h>
  14#include <linux/init_task.h>
  15#include <linux/errno.h>
  16#include <linux/kernel.h>
  17#include <linux/cpu.h>
  18#include <linux/hardirq.h>
  19
  20#include <asm/page.h>
  21#include <asm/current.h>
  22#include <asm/machdep.h>
  23#include <asm/cacheflush.h>
  24#include <asm/firmware.h>
  25#include <asm/paca.h>
  26#include <asm/mmu.h>
  27#include <asm/sections.h>       /* _end */
  28#include <asm/prom.h>
  29#include <asm/smp.h>
  30#include <asm/hw_breakpoint.h>
  31#include <asm/asm-prototypes.h>
  32#include <asm/svm.h>
  33#include <asm/ultravisor.h>
  34
  35int default_machine_kexec_prepare(struct kimage *image)
  36{
  37        int i;
  38        unsigned long begin, end;       /* limits of segment */
  39        unsigned long low, high;        /* limits of blocked memory range */
  40        struct device_node *node;
  41        const unsigned long *basep;
  42        const unsigned int *sizep;
  43
  44        /*
  45         * Since we use the kernel fault handlers and paging code to
  46         * handle the virtual mode, we must make sure no destination
  47         * overlaps kernel static data or bss.
  48         */
  49        for (i = 0; i < image->nr_segments; i++)
  50                if (image->segment[i].mem < __pa(_end))
  51                        return -ETXTBSY;
  52
  53        /* We also should not overwrite the tce tables */
  54        for_each_node_by_type(node, "pci") {
  55                basep = of_get_property(node, "linux,tce-base", NULL);
  56                sizep = of_get_property(node, "linux,tce-size", NULL);
  57                if (basep == NULL || sizep == NULL)
  58                        continue;
  59
  60                low = *basep;
  61                high = low + (*sizep);
  62
  63                for (i = 0; i < image->nr_segments; i++) {
  64                        begin = image->segment[i].mem;
  65                        end = begin + image->segment[i].memsz;
  66
  67                        if ((begin < high) && (end > low)) {
  68                                of_node_put(node);
  69                                return -ETXTBSY;
  70                        }
  71                }
  72        }
  73
  74        return 0;
  75}
  76
  77/* Called during kexec sequence with MMU off */
  78static notrace void copy_segments(unsigned long ind)
  79{
  80        unsigned long entry;
  81        unsigned long *ptr;
  82        void *dest;
  83        void *addr;
  84
  85        /*
  86         * We rely on kexec_load to create a lists that properly
  87         * initializes these pointers before they are used.
  88         * We will still crash if the list is wrong, but at least
  89         * the compiler will be quiet.
  90         */
  91        ptr = NULL;
  92        dest = NULL;
  93
  94        for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
  95                addr = __va(entry & PAGE_MASK);
  96
  97                switch (entry & IND_FLAGS) {
  98                case IND_DESTINATION:
  99                        dest = addr;
 100                        break;
 101                case IND_INDIRECTION:
 102                        ptr = addr;
 103                        break;
 104                case IND_SOURCE:
 105                        copy_page(dest, addr);
 106                        dest += PAGE_SIZE;
 107                }
 108        }
 109}
 110
 111/* Called during kexec sequence with MMU off */
 112notrace void kexec_copy_flush(struct kimage *image)
 113{
 114        long i, nr_segments = image->nr_segments;
 115        struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];
 116
 117        /* save the ranges on the stack to efficiently flush the icache */
 118        memcpy(ranges, image->segment, sizeof(ranges));
 119
 120        /*
 121         * After this call we may not use anything allocated in dynamic
 122         * memory, including *image.
 123         *
 124         * Only globals and the stack are allowed.
 125         */
 126        copy_segments(image->head);
 127
 128        /*
 129         * we need to clear the icache for all dest pages sometime,
 130         * including ones that were in place on the original copy
 131         */
 132        for (i = 0; i < nr_segments; i++)
 133                flush_icache_range((unsigned long)__va(ranges[i].mem),
 134                        (unsigned long)__va(ranges[i].mem + ranges[i].memsz));
 135}
 136
 137#ifdef CONFIG_SMP
 138
 139static int kexec_all_irq_disabled = 0;
 140
 141static void kexec_smp_down(void *arg)
 142{
 143        local_irq_disable();
 144        hard_irq_disable();
 145
 146        mb(); /* make sure our irqs are disabled before we say they are */
 147        get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
 148        while(kexec_all_irq_disabled == 0)
 149                cpu_relax();
 150        mb(); /* make sure all irqs are disabled before this */
 151        hw_breakpoint_disable();
 152        /*
 153         * Now every CPU has IRQs off, we can clear out any pending
 154         * IPIs and be sure that no more will come in after this.
 155         */
 156        if (ppc_md.kexec_cpu_down)
 157                ppc_md.kexec_cpu_down(0, 1);
 158
 159        reset_sprs();
 160
 161        kexec_smp_wait();
 162        /* NOTREACHED */
 163}
 164
 165static void kexec_prepare_cpus_wait(int wait_state)
 166{
 167        int my_cpu, i, notified=-1;
 168
 169        hw_breakpoint_disable();
 170        my_cpu = get_cpu();
 171        /* Make sure each CPU has at least made it to the state we need.
 172         *
 173         * FIXME: There is a (slim) chance of a problem if not all of the CPUs
 174         * are correctly onlined.  If somehow we start a CPU on boot with RTAS
 175         * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
 176         * time, the boot CPU will timeout.  If it does eventually execute
 177         * stuff, the secondary will start up (paca_ptrs[]->cpu_start was
 178         * written) and get into a peculiar state.
 179         * If the platform supports smp_ops->take_timebase(), the secondary CPU
 180         * will probably be spinning in there.  If not (i.e. pseries), the
 181         * secondary will continue on and try to online itself/idle/etc. If it
 182         * survives that, we need to find these
 183         * possible-but-not-online-but-should-be CPUs and chaperone them into
 184         * kexec_smp_wait().
 185         */
 186        for_each_online_cpu(i) {
 187                if (i == my_cpu)
 188                        continue;
 189
 190                while (paca_ptrs[i]->kexec_state < wait_state) {
 191                        barrier();
 192                        if (i != notified) {
 193                                printk(KERN_INFO "kexec: waiting for cpu %d "
 194                                       "(physical %d) to enter %i state\n",
 195                                       i, paca_ptrs[i]->hw_cpu_id, wait_state);
 196                                notified = i;
 197                        }
 198                }
 199        }
 200        mb();
 201}
 202
 203/*
 204 * We need to make sure each present CPU is online.  The next kernel will scan
 205 * the device tree and assume primary threads are online and query secondary
 206 * threads via RTAS to online them if required.  If we don't online primary
 207 * threads, they will be stuck.  However, we also online secondary threads as we
 208 * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
 209 * threads as offline -- and again, these CPUs will be stuck.
 210 *
 211 * So, we online all CPUs that should be running, including secondary threads.
 212 */
 213static void wake_offline_cpus(void)
 214{
 215        int cpu = 0;
 216
 217        for_each_present_cpu(cpu) {
 218                if (!cpu_online(cpu)) {
 219                        printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
 220                               cpu);
 221                        WARN_ON(add_cpu(cpu));
 222                }
 223        }
 224}
 225
 226static void kexec_prepare_cpus(void)
 227{
 228        wake_offline_cpus();
 229        smp_call_function(kexec_smp_down, NULL, /* wait */0);
 230        local_irq_disable();
 231        hard_irq_disable();
 232
 233        mb(); /* make sure IRQs are disabled before we say they are */
 234        get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
 235
 236        kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
 237        /* we are sure every CPU has IRQs off at this point */
 238        kexec_all_irq_disabled = 1;
 239
 240        /*
 241         * Before removing MMU mappings make sure all CPUs have entered real
 242         * mode:
 243         */
 244        kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
 245
 246        /* after we tell the others to go down */
 247        if (ppc_md.kexec_cpu_down)
 248                ppc_md.kexec_cpu_down(0, 0);
 249
 250        put_cpu();
 251}
 252
 253#else /* ! SMP */
 254
 255static void kexec_prepare_cpus(void)
 256{
 257        /*
 258         * move the secondarys to us so that we can copy
 259         * the new kernel 0-0x100 safely
 260         *
 261         * do this if kexec in setup.c ?
 262         *
 263         * We need to release the cpus if we are ever going from an
 264         * UP to an SMP kernel.
 265         */
 266        smp_release_cpus();
 267        if (ppc_md.kexec_cpu_down)
 268                ppc_md.kexec_cpu_down(0, 0);
 269        local_irq_disable();
 270        hard_irq_disable();
 271}
 272
 273#endif /* SMP */
 274
 275/*
 276 * kexec thread structure and stack.
 277 *
 278 * We need to make sure that this is 16384-byte aligned due to the
 279 * way process stacks are handled.  It also must be statically allocated
 280 * or allocated as part of the kimage, because everything else may be
 281 * overwritten when we copy the kexec image.  We piggyback on the
 282 * "init_task" linker section here to statically allocate a stack.
 283 *
 284 * We could use a smaller stack if we don't care about anything using
 285 * current, but that audit has not been performed.
 286 */
 287static union thread_union kexec_stack __init_task_data =
 288        { };
 289
 290/*
 291 * For similar reasons to the stack above, the kexecing CPU needs to be on a
 292 * static PACA; we switch to kexec_paca.
 293 */
 294struct paca_struct kexec_paca;
 295
 296/* Our assembly helper, in misc_64.S */
 297extern void kexec_sequence(void *newstack, unsigned long start,
 298                           void *image, void *control,
 299                           void (*clear_all)(void),
 300                           bool copy_with_mmu_off) __noreturn;
 301
 302/* too late to fail here */
 303void default_machine_kexec(struct kimage *image)
 304{
 305        bool copy_with_mmu_off;
 306
 307        /* prepare control code if any */
 308
 309        /*
 310        * If the kexec boot is the normal one, need to shutdown other cpus
 311        * into our wait loop and quiesce interrupts.
 312        * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
 313        * stopping other CPUs and collecting their pt_regs is done before
 314        * using debugger IPI.
 315        */
 316
 317        if (!kdump_in_progress())
 318                kexec_prepare_cpus();
 319
 320        printk("kexec: Starting switchover sequence.\n");
 321
 322        /* switch to a staticly allocated stack.  Based on irq stack code.
 323         * We setup preempt_count to avoid using VMX in memcpy.
 324         * XXX: the task struct will likely be invalid once we do the copy!
 325         */
 326        current_thread_info()->flags = 0;
 327        current_thread_info()->preempt_count = HARDIRQ_OFFSET;
 328
 329        /* We need a static PACA, too; copy this CPU's PACA over and switch to
 330         * it. Also poison per_cpu_offset and NULL lppaca to catch anyone using
 331         * non-static data.
 332         */
 333        memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
 334        kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
 335#ifdef CONFIG_PPC_PSERIES
 336        kexec_paca.lppaca_ptr = NULL;
 337#endif
 338
 339        if (is_secure_guest() && !(image->preserve_context ||
 340                                   image->type == KEXEC_TYPE_CRASH)) {
 341                uv_unshare_all_pages();
 342                printk("kexec: Unshared all shared pages.\n");
 343        }
 344
 345        paca_ptrs[kexec_paca.paca_index] = &kexec_paca;
 346
 347        setup_paca(&kexec_paca);
 348
 349        /*
 350         * The lppaca should be unregistered at this point so the HV won't
 351         * touch it. In the case of a crash, none of the lppacas are
 352         * unregistered so there is not much we can do about it here.
 353         */
 354
 355        /*
 356         * On Book3S, the copy must happen with the MMU off if we are either
 357         * using Radix page tables or we are not in an LPAR since we can
 358         * overwrite the page tables while copying.
 359         *
 360         * In an LPAR, we keep the MMU on otherwise we can't access beyond
 361         * the RMA. On BookE there is no real MMU off mode, so we have to
 362         * keep it enabled as well (but then we have bolted TLB entries).
 363         */
 364#ifdef CONFIG_PPC_BOOK3E
 365        copy_with_mmu_off = false;
 366#else
 367        copy_with_mmu_off = radix_enabled() ||
 368                !(firmware_has_feature(FW_FEATURE_LPAR) ||
 369                  firmware_has_feature(FW_FEATURE_PS3_LV1));
 370#endif
 371
 372        /* Some things are best done in assembly.  Finding globals with
 373         * a toc is easier in C, so pass in what we can.
 374         */
 375        kexec_sequence(&kexec_stack, image->start, image,
 376                       page_address(image->control_code_page),
 377                       mmu_cleanup_all, copy_with_mmu_off);
 378        /* NOTREACHED */
 379}
 380
 381#ifdef CONFIG_PPC_BOOK3S_64
 382/* Values we need to export to the second kernel via the device tree. */
 383static unsigned long htab_base;
 384static unsigned long htab_size;
 385
 386static struct property htab_base_prop = {
 387        .name = "linux,htab-base",
 388        .length = sizeof(unsigned long),
 389        .value = &htab_base,
 390};
 391
 392static struct property htab_size_prop = {
 393        .name = "linux,htab-size",
 394        .length = sizeof(unsigned long),
 395        .value = &htab_size,
 396};
 397
 398static int __init export_htab_values(void)
 399{
 400        struct device_node *node;
 401
 402        /* On machines with no htab htab_address is NULL */
 403        if (!htab_address)
 404                return -ENODEV;
 405
 406        node = of_find_node_by_path("/chosen");
 407        if (!node)
 408                return -ENODEV;
 409
 410        /* remove any stale propertys so ours can be found */
 411        of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL));
 412        of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL));
 413
 414        htab_base = cpu_to_be64(__pa(htab_address));
 415        of_add_property(node, &htab_base_prop);
 416        htab_size = cpu_to_be64(htab_size_bytes);
 417        of_add_property(node, &htab_size_prop);
 418
 419        of_node_put(node);
 420        return 0;
 421}
 422late_initcall(export_htab_values);
 423#endif /* CONFIG_PPC_BOOK3S_64 */
 424