linux/arch/powerpc/kvm/book3s_hv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
   5 *
   6 * Authors:
   7 *    Paul Mackerras <paulus@au1.ibm.com>
   8 *    Alexander Graf <agraf@suse.de>
   9 *    Kevin Wolf <mail@kevin-wolf.de>
  10 *
  11 * Description: KVM functions specific to running on Book 3S
  12 * processors in hypervisor mode (specifically POWER7 and later).
  13 *
  14 * This file is derived from arch/powerpc/kvm/book3s.c,
  15 * by Alexander Graf <agraf@suse.de>.
  16 */
  17
  18#include <linux/kvm_host.h>
  19#include <linux/kernel.h>
  20#include <linux/err.h>
  21#include <linux/slab.h>
  22#include <linux/preempt.h>
  23#include <linux/sched/signal.h>
  24#include <linux/sched/stat.h>
  25#include <linux/delay.h>
  26#include <linux/export.h>
  27#include <linux/fs.h>
  28#include <linux/anon_inodes.h>
  29#include <linux/cpu.h>
  30#include <linux/cpumask.h>
  31#include <linux/spinlock.h>
  32#include <linux/page-flags.h>
  33#include <linux/srcu.h>
  34#include <linux/miscdevice.h>
  35#include <linux/debugfs.h>
  36#include <linux/gfp.h>
  37#include <linux/vmalloc.h>
  38#include <linux/highmem.h>
  39#include <linux/hugetlb.h>
  40#include <linux/kvm_irqfd.h>
  41#include <linux/irqbypass.h>
  42#include <linux/module.h>
  43#include <linux/compiler.h>
  44#include <linux/of.h>
  45
  46#include <asm/ftrace.h>
  47#include <asm/reg.h>
  48#include <asm/ppc-opcode.h>
  49#include <asm/asm-prototypes.h>
  50#include <asm/archrandom.h>
  51#include <asm/debug.h>
  52#include <asm/disassemble.h>
  53#include <asm/cputable.h>
  54#include <asm/cacheflush.h>
  55#include <linux/uaccess.h>
  56#include <asm/interrupt.h>
  57#include <asm/io.h>
  58#include <asm/kvm_ppc.h>
  59#include <asm/kvm_book3s.h>
  60#include <asm/mmu_context.h>
  61#include <asm/lppaca.h>
  62#include <asm/pmc.h>
  63#include <asm/processor.h>
  64#include <asm/cputhreads.h>
  65#include <asm/page.h>
  66#include <asm/hvcall.h>
  67#include <asm/switch_to.h>
  68#include <asm/smp.h>
  69#include <asm/dbell.h>
  70#include <asm/hmi.h>
  71#include <asm/pnv-pci.h>
  72#include <asm/mmu.h>
  73#include <asm/opal.h>
  74#include <asm/xics.h>
  75#include <asm/xive.h>
  76#include <asm/hw_breakpoint.h>
  77#include <asm/kvm_book3s_uvmem.h>
  78#include <asm/ultravisor.h>
  79#include <asm/dtl.h>
  80#include <asm/plpar_wrappers.h>
  81
  82#include "book3s.h"
  83
  84#define CREATE_TRACE_POINTS
  85#include "trace_hv.h"
  86
  87/* #define EXIT_DEBUG */
  88/* #define EXIT_DEBUG_SIMPLE */
  89/* #define EXIT_DEBUG_INT */
  90
  91/* Used to indicate that a guest page fault needs to be handled */
  92#define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
  93/* Used to indicate that a guest passthrough interrupt needs to be handled */
  94#define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
  95
  96/* Used as a "null" value for timebase values */
  97#define TB_NIL  (~(u64)0)
  98
  99static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
 100
 101static int dynamic_mt_modes = 6;
 102module_param(dynamic_mt_modes, int, 0644);
 103MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
 104static int target_smt_mode;
 105module_param(target_smt_mode, int, 0644);
 106MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
 107
 108static bool one_vm_per_core;
 109module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
 110MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
 111
 112#ifdef CONFIG_KVM_XICS
 113static const struct kernel_param_ops module_param_ops = {
 114        .set = param_set_int,
 115        .get = param_get_int,
 116};
 117
 118module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
 119MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
 120
 121module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
 122MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
 123#endif
 124
 125/* If set, guests are allowed to create and control nested guests */
 126static bool nested = true;
 127module_param(nested, bool, S_IRUGO | S_IWUSR);
 128MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
 129
 130static inline bool nesting_enabled(struct kvm *kvm)
 131{
 132        return kvm->arch.nested_enable && kvm_is_radix(kvm);
 133}
 134
 135static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
 136
 137/*
 138 * RWMR values for POWER8.  These control the rate at which PURR
 139 * and SPURR count and should be set according to the number of
 140 * online threads in the vcore being run.
 141 */
 142#define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
 143#define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
 144#define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
 145#define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
 146#define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
 147#define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
 148#define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
 149#define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
 150
 151static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
 152        RWMR_RPA_P8_1THREAD,
 153        RWMR_RPA_P8_1THREAD,
 154        RWMR_RPA_P8_2THREAD,
 155        RWMR_RPA_P8_3THREAD,
 156        RWMR_RPA_P8_4THREAD,
 157        RWMR_RPA_P8_5THREAD,
 158        RWMR_RPA_P8_6THREAD,
 159        RWMR_RPA_P8_7THREAD,
 160        RWMR_RPA_P8_8THREAD,
 161};
 162
 163static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
 164                int *ip)
 165{
 166        int i = *ip;
 167        struct kvm_vcpu *vcpu;
 168
 169        while (++i < MAX_SMT_THREADS) {
 170                vcpu = READ_ONCE(vc->runnable_threads[i]);
 171                if (vcpu) {
 172                        *ip = i;
 173                        return vcpu;
 174                }
 175        }
 176        return NULL;
 177}
 178
 179/* Used to traverse the list of runnable threads for a given vcore */
 180#define for_each_runnable_thread(i, vcpu, vc) \
 181        for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
 182
 183static bool kvmppc_ipi_thread(int cpu)
 184{
 185        unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 186
 187        /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
 188        if (kvmhv_on_pseries())
 189                return false;
 190
 191        /* On POWER9 we can use msgsnd to IPI any cpu */
 192        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 193                msg |= get_hard_smp_processor_id(cpu);
 194                smp_mb();
 195                __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 196                return true;
 197        }
 198
 199        /* On POWER8 for IPIs to threads in the same core, use msgsnd */
 200        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 201                preempt_disable();
 202                if (cpu_first_thread_sibling(cpu) ==
 203                    cpu_first_thread_sibling(smp_processor_id())) {
 204                        msg |= cpu_thread_in_core(cpu);
 205                        smp_mb();
 206                        __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 207                        preempt_enable();
 208                        return true;
 209                }
 210                preempt_enable();
 211        }
 212
 213#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
 214        if (cpu >= 0 && cpu < nr_cpu_ids) {
 215                if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
 216                        xics_wake_cpu(cpu);
 217                        return true;
 218                }
 219                opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
 220                return true;
 221        }
 222#endif
 223
 224        return false;
 225}
 226
 227static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
 228{
 229        int cpu;
 230        struct rcuwait *waitp;
 231
 232        waitp = kvm_arch_vcpu_get_wait(vcpu);
 233        if (rcuwait_wake_up(waitp))
 234                ++vcpu->stat.generic.halt_wakeup;
 235
 236        cpu = READ_ONCE(vcpu->arch.thread_cpu);
 237        if (cpu >= 0 && kvmppc_ipi_thread(cpu))
 238                return;
 239
 240        /* CPU points to the first thread of the core */
 241        cpu = vcpu->cpu;
 242        if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
 243                smp_send_reschedule(cpu);
 244}
 245
 246/*
 247 * We use the vcpu_load/put functions to measure stolen time.
 248 * Stolen time is counted as time when either the vcpu is able to
 249 * run as part of a virtual core, but the task running the vcore
 250 * is preempted or sleeping, or when the vcpu needs something done
 251 * in the kernel by the task running the vcpu, but that task is
 252 * preempted or sleeping.  Those two things have to be counted
 253 * separately, since one of the vcpu tasks will take on the job
 254 * of running the core, and the other vcpu tasks in the vcore will
 255 * sleep waiting for it to do that, but that sleep shouldn't count
 256 * as stolen time.
 257 *
 258 * Hence we accumulate stolen time when the vcpu can run as part of
 259 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 260 * needs its task to do other things in the kernel (for example,
 261 * service a page fault) in busy_stolen.  We don't accumulate
 262 * stolen time for a vcore when it is inactive, or for a vcpu
 263 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 264 * a misnomer; it means that the vcpu task is not executing in
 265 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 266 * the kernel.  We don't have any way of dividing up that time
 267 * between time that the vcpu is genuinely stopped, time that
 268 * the task is actively working on behalf of the vcpu, and time
 269 * that the task is preempted, so we don't count any of it as
 270 * stolen.
 271 *
 272 * Updates to busy_stolen are protected by arch.tbacct_lock;
 273 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 274 * lock.  The stolen times are measured in units of timebase ticks.
 275 * (Note that the != TB_NIL checks below are purely defensive;
 276 * they should never fail.)
 277 */
 278
 279static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
 280{
 281        unsigned long flags;
 282
 283        spin_lock_irqsave(&vc->stoltb_lock, flags);
 284        vc->preempt_tb = mftb();
 285        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 286}
 287
 288static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
 289{
 290        unsigned long flags;
 291
 292        spin_lock_irqsave(&vc->stoltb_lock, flags);
 293        if (vc->preempt_tb != TB_NIL) {
 294                vc->stolen_tb += mftb() - vc->preempt_tb;
 295                vc->preempt_tb = TB_NIL;
 296        }
 297        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 298}
 299
 300static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
 301{
 302        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 303        unsigned long flags;
 304
 305        /*
 306         * We can test vc->runner without taking the vcore lock,
 307         * because only this task ever sets vc->runner to this
 308         * vcpu, and once it is set to this vcpu, only this task
 309         * ever sets it to NULL.
 310         */
 311        if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 312                kvmppc_core_end_stolen(vc);
 313
 314        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 315        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
 316            vcpu->arch.busy_preempt != TB_NIL) {
 317                vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
 318                vcpu->arch.busy_preempt = TB_NIL;
 319        }
 320        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 321}
 322
 323static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
 324{
 325        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 326        unsigned long flags;
 327
 328        if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 329                kvmppc_core_start_stolen(vc);
 330
 331        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 332        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
 333                vcpu->arch.busy_preempt = mftb();
 334        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 335}
 336
 337static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
 338{
 339        vcpu->arch.pvr = pvr;
 340}
 341
 342/* Dummy value used in computing PCR value below */
 343#define PCR_ARCH_31    (PCR_ARCH_300 << 1)
 344
 345static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
 346{
 347        unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
 348        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 349
 350        /* We can (emulate) our own architecture version and anything older */
 351        if (cpu_has_feature(CPU_FTR_ARCH_31))
 352                host_pcr_bit = PCR_ARCH_31;
 353        else if (cpu_has_feature(CPU_FTR_ARCH_300))
 354                host_pcr_bit = PCR_ARCH_300;
 355        else if (cpu_has_feature(CPU_FTR_ARCH_207S))
 356                host_pcr_bit = PCR_ARCH_207;
 357        else if (cpu_has_feature(CPU_FTR_ARCH_206))
 358                host_pcr_bit = PCR_ARCH_206;
 359        else
 360                host_pcr_bit = PCR_ARCH_205;
 361
 362        /* Determine lowest PCR bit needed to run guest in given PVR level */
 363        guest_pcr_bit = host_pcr_bit;
 364        if (arch_compat) {
 365                switch (arch_compat) {
 366                case PVR_ARCH_205:
 367                        guest_pcr_bit = PCR_ARCH_205;
 368                        break;
 369                case PVR_ARCH_206:
 370                case PVR_ARCH_206p:
 371                        guest_pcr_bit = PCR_ARCH_206;
 372                        break;
 373                case PVR_ARCH_207:
 374                        guest_pcr_bit = PCR_ARCH_207;
 375                        break;
 376                case PVR_ARCH_300:
 377                        guest_pcr_bit = PCR_ARCH_300;
 378                        break;
 379                case PVR_ARCH_31:
 380                        guest_pcr_bit = PCR_ARCH_31;
 381                        break;
 382                default:
 383                        return -EINVAL;
 384                }
 385        }
 386
 387        /* Check requested PCR bits don't exceed our capabilities */
 388        if (guest_pcr_bit > host_pcr_bit)
 389                return -EINVAL;
 390
 391        spin_lock(&vc->lock);
 392        vc->arch_compat = arch_compat;
 393        /*
 394         * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
 395         * Also set all reserved PCR bits
 396         */
 397        vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
 398        spin_unlock(&vc->lock);
 399
 400        return 0;
 401}
 402
 403static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
 404{
 405        int r;
 406
 407        pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
 408        pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
 409               vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
 410        for (r = 0; r < 16; ++r)
 411                pr_err("r%2d = %.16lx  r%d = %.16lx\n",
 412                       r, kvmppc_get_gpr(vcpu, r),
 413                       r+16, kvmppc_get_gpr(vcpu, r+16));
 414        pr_err("ctr = %.16lx  lr  = %.16lx\n",
 415               vcpu->arch.regs.ctr, vcpu->arch.regs.link);
 416        pr_err("srr0 = %.16llx srr1 = %.16llx\n",
 417               vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
 418        pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
 419               vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 420        pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 421               vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
 422        pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
 423               vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
 424        pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 425        pr_err("fault dar = %.16lx dsisr = %.8x\n",
 426               vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 427        pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
 428        for (r = 0; r < vcpu->arch.slb_max; ++r)
 429                pr_err("  ESID = %.16llx VSID = %.16llx\n",
 430                       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
 431        pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
 432               vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
 433               vcpu->arch.last_inst);
 434}
 435
 436static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
 437{
 438        return kvm_get_vcpu_by_id(kvm, id);
 439}
 440
 441static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
 442{
 443        vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
 444        vpa->yield_count = cpu_to_be32(1);
 445}
 446
 447static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
 448                   unsigned long addr, unsigned long len)
 449{
 450        /* check address is cacheline aligned */
 451        if (addr & (L1_CACHE_BYTES - 1))
 452                return -EINVAL;
 453        spin_lock(&vcpu->arch.vpa_update_lock);
 454        if (v->next_gpa != addr || v->len != len) {
 455                v->next_gpa = addr;
 456                v->len = addr ? len : 0;
 457                v->update_pending = 1;
 458        }
 459        spin_unlock(&vcpu->arch.vpa_update_lock);
 460        return 0;
 461}
 462
 463/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
 464struct reg_vpa {
 465        u32 dummy;
 466        union {
 467                __be16 hword;
 468                __be32 word;
 469        } length;
 470};
 471
 472static int vpa_is_registered(struct kvmppc_vpa *vpap)
 473{
 474        if (vpap->update_pending)
 475                return vpap->next_gpa != 0;
 476        return vpap->pinned_addr != NULL;
 477}
 478
 479static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
 480                                       unsigned long flags,
 481                                       unsigned long vcpuid, unsigned long vpa)
 482{
 483        struct kvm *kvm = vcpu->kvm;
 484        unsigned long len, nb;
 485        void *va;
 486        struct kvm_vcpu *tvcpu;
 487        int err;
 488        int subfunc;
 489        struct kvmppc_vpa *vpap;
 490
 491        tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
 492        if (!tvcpu)
 493                return H_PARAMETER;
 494
 495        subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
 496        if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
 497            subfunc == H_VPA_REG_SLB) {
 498                /* Registering new area - address must be cache-line aligned */
 499                if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
 500                        return H_PARAMETER;
 501
 502                /* convert logical addr to kernel addr and read length */
 503                va = kvmppc_pin_guest_page(kvm, vpa, &nb);
 504                if (va == NULL)
 505                        return H_PARAMETER;
 506                if (subfunc == H_VPA_REG_VPA)
 507                        len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
 508                else
 509                        len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
 510                kvmppc_unpin_guest_page(kvm, va, vpa, false);
 511
 512                /* Check length */
 513                if (len > nb || len < sizeof(struct reg_vpa))
 514                        return H_PARAMETER;
 515        } else {
 516                vpa = 0;
 517                len = 0;
 518        }
 519
 520        err = H_PARAMETER;
 521        vpap = NULL;
 522        spin_lock(&tvcpu->arch.vpa_update_lock);
 523
 524        switch (subfunc) {
 525        case H_VPA_REG_VPA:             /* register VPA */
 526                /*
 527                 * The size of our lppaca is 1kB because of the way we align
 528                 * it for the guest to avoid crossing a 4kB boundary. We only
 529                 * use 640 bytes of the structure though, so we should accept
 530                 * clients that set a size of 640.
 531                 */
 532                BUILD_BUG_ON(sizeof(struct lppaca) != 640);
 533                if (len < sizeof(struct lppaca))
 534                        break;
 535                vpap = &tvcpu->arch.vpa;
 536                err = 0;
 537                break;
 538
 539        case H_VPA_REG_DTL:             /* register DTL */
 540                if (len < sizeof(struct dtl_entry))
 541                        break;
 542                len -= len % sizeof(struct dtl_entry);
 543
 544                /* Check that they have previously registered a VPA */
 545                err = H_RESOURCE;
 546                if (!vpa_is_registered(&tvcpu->arch.vpa))
 547                        break;
 548
 549                vpap = &tvcpu->arch.dtl;
 550                err = 0;
 551                break;
 552
 553        case H_VPA_REG_SLB:             /* register SLB shadow buffer */
 554                /* Check that they have previously registered a VPA */
 555                err = H_RESOURCE;
 556                if (!vpa_is_registered(&tvcpu->arch.vpa))
 557                        break;
 558
 559                vpap = &tvcpu->arch.slb_shadow;
 560                err = 0;
 561                break;
 562
 563        case H_VPA_DEREG_VPA:           /* deregister VPA */
 564                /* Check they don't still have a DTL or SLB buf registered */
 565                err = H_RESOURCE;
 566                if (vpa_is_registered(&tvcpu->arch.dtl) ||
 567                    vpa_is_registered(&tvcpu->arch.slb_shadow))
 568                        break;
 569
 570                vpap = &tvcpu->arch.vpa;
 571                err = 0;
 572                break;
 573
 574        case H_VPA_DEREG_DTL:           /* deregister DTL */
 575                vpap = &tvcpu->arch.dtl;
 576                err = 0;
 577                break;
 578
 579        case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
 580                vpap = &tvcpu->arch.slb_shadow;
 581                err = 0;
 582                break;
 583        }
 584
 585        if (vpap) {
 586                vpap->next_gpa = vpa;
 587                vpap->len = len;
 588                vpap->update_pending = 1;
 589        }
 590
 591        spin_unlock(&tvcpu->arch.vpa_update_lock);
 592
 593        return err;
 594}
 595
 596static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
 597{
 598        struct kvm *kvm = vcpu->kvm;
 599        void *va;
 600        unsigned long nb;
 601        unsigned long gpa;
 602
 603        /*
 604         * We need to pin the page pointed to by vpap->next_gpa,
 605         * but we can't call kvmppc_pin_guest_page under the lock
 606         * as it does get_user_pages() and down_read().  So we
 607         * have to drop the lock, pin the page, then get the lock
 608         * again and check that a new area didn't get registered
 609         * in the meantime.
 610         */
 611        for (;;) {
 612                gpa = vpap->next_gpa;
 613                spin_unlock(&vcpu->arch.vpa_update_lock);
 614                va = NULL;
 615                nb = 0;
 616                if (gpa)
 617                        va = kvmppc_pin_guest_page(kvm, gpa, &nb);
 618                spin_lock(&vcpu->arch.vpa_update_lock);
 619                if (gpa == vpap->next_gpa)
 620                        break;
 621                /* sigh... unpin that one and try again */
 622                if (va)
 623                        kvmppc_unpin_guest_page(kvm, va, gpa, false);
 624        }
 625
 626        vpap->update_pending = 0;
 627        if (va && nb < vpap->len) {
 628                /*
 629                 * If it's now too short, it must be that userspace
 630                 * has changed the mappings underlying guest memory,
 631                 * so unregister the region.
 632                 */
 633                kvmppc_unpin_guest_page(kvm, va, gpa, false);
 634                va = NULL;
 635        }
 636        if (vpap->pinned_addr)
 637                kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
 638                                        vpap->dirty);
 639        vpap->gpa = gpa;
 640        vpap->pinned_addr = va;
 641        vpap->dirty = false;
 642        if (va)
 643                vpap->pinned_end = va + vpap->len;
 644}
 645
 646static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
 647{
 648        if (!(vcpu->arch.vpa.update_pending ||
 649              vcpu->arch.slb_shadow.update_pending ||
 650              vcpu->arch.dtl.update_pending))
 651                return;
 652
 653        spin_lock(&vcpu->arch.vpa_update_lock);
 654        if (vcpu->arch.vpa.update_pending) {
 655                kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
 656                if (vcpu->arch.vpa.pinned_addr)
 657                        init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
 658        }
 659        if (vcpu->arch.dtl.update_pending) {
 660                kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
 661                vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
 662                vcpu->arch.dtl_index = 0;
 663        }
 664        if (vcpu->arch.slb_shadow.update_pending)
 665                kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
 666        spin_unlock(&vcpu->arch.vpa_update_lock);
 667}
 668
 669/*
 670 * Return the accumulated stolen time for the vcore up until `now'.
 671 * The caller should hold the vcore lock.
 672 */
 673static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
 674{
 675        u64 p;
 676        unsigned long flags;
 677
 678        spin_lock_irqsave(&vc->stoltb_lock, flags);
 679        p = vc->stolen_tb;
 680        if (vc->vcore_state != VCORE_INACTIVE &&
 681            vc->preempt_tb != TB_NIL)
 682                p += now - vc->preempt_tb;
 683        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 684        return p;
 685}
 686
 687static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
 688                                    struct kvmppc_vcore *vc)
 689{
 690        struct dtl_entry *dt;
 691        struct lppaca *vpa;
 692        unsigned long stolen;
 693        unsigned long core_stolen;
 694        u64 now;
 695        unsigned long flags;
 696
 697        dt = vcpu->arch.dtl_ptr;
 698        vpa = vcpu->arch.vpa.pinned_addr;
 699        now = mftb();
 700        core_stolen = vcore_stolen_time(vc, now);
 701        stolen = core_stolen - vcpu->arch.stolen_logged;
 702        vcpu->arch.stolen_logged = core_stolen;
 703        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 704        stolen += vcpu->arch.busy_stolen;
 705        vcpu->arch.busy_stolen = 0;
 706        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 707        if (!dt || !vpa)
 708                return;
 709        memset(dt, 0, sizeof(struct dtl_entry));
 710        dt->dispatch_reason = 7;
 711        dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
 712        dt->timebase = cpu_to_be64(now + vc->tb_offset);
 713        dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
 714        dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
 715        dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
 716        ++dt;
 717        if (dt == vcpu->arch.dtl.pinned_end)
 718                dt = vcpu->arch.dtl.pinned_addr;
 719        vcpu->arch.dtl_ptr = dt;
 720        /* order writing *dt vs. writing vpa->dtl_idx */
 721        smp_wmb();
 722        vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
 723        vcpu->arch.dtl.dirty = true;
 724}
 725
 726/* See if there is a doorbell interrupt pending for a vcpu */
 727static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
 728{
 729        int thr;
 730        struct kvmppc_vcore *vc;
 731
 732        if (vcpu->arch.doorbell_request)
 733                return true;
 734        /*
 735         * Ensure that the read of vcore->dpdes comes after the read
 736         * of vcpu->doorbell_request.  This barrier matches the
 737         * smp_wmb() in kvmppc_guest_entry_inject().
 738         */
 739        smp_rmb();
 740        vc = vcpu->arch.vcore;
 741        thr = vcpu->vcpu_id - vc->first_vcpuid;
 742        return !!(vc->dpdes & (1 << thr));
 743}
 744
 745static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
 746{
 747        if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
 748                return true;
 749        if ((!vcpu->arch.vcore->arch_compat) &&
 750            cpu_has_feature(CPU_FTR_ARCH_207S))
 751                return true;
 752        return false;
 753}
 754
 755static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
 756                             unsigned long resource, unsigned long value1,
 757                             unsigned long value2)
 758{
 759        switch (resource) {
 760        case H_SET_MODE_RESOURCE_SET_CIABR:
 761                if (!kvmppc_power8_compatible(vcpu))
 762                        return H_P2;
 763                if (value2)
 764                        return H_P4;
 765                if (mflags)
 766                        return H_UNSUPPORTED_FLAG_START;
 767                /* Guests can't breakpoint the hypervisor */
 768                if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
 769                        return H_P3;
 770                vcpu->arch.ciabr  = value1;
 771                return H_SUCCESS;
 772        case H_SET_MODE_RESOURCE_SET_DAWR0:
 773                if (!kvmppc_power8_compatible(vcpu))
 774                        return H_P2;
 775                if (!ppc_breakpoint_available())
 776                        return H_P2;
 777                if (mflags)
 778                        return H_UNSUPPORTED_FLAG_START;
 779                if (value2 & DABRX_HYP)
 780                        return H_P4;
 781                vcpu->arch.dawr0  = value1;
 782                vcpu->arch.dawrx0 = value2;
 783                return H_SUCCESS;
 784        case H_SET_MODE_RESOURCE_SET_DAWR1:
 785                if (!kvmppc_power8_compatible(vcpu))
 786                        return H_P2;
 787                if (!ppc_breakpoint_available())
 788                        return H_P2;
 789                if (!cpu_has_feature(CPU_FTR_DAWR1))
 790                        return H_P2;
 791                if (!vcpu->kvm->arch.dawr1_enabled)
 792                        return H_FUNCTION;
 793                if (mflags)
 794                        return H_UNSUPPORTED_FLAG_START;
 795                if (value2 & DABRX_HYP)
 796                        return H_P4;
 797                vcpu->arch.dawr1  = value1;
 798                vcpu->arch.dawrx1 = value2;
 799                return H_SUCCESS;
 800        case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
 801                /*
 802                 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
 803                 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
 804                 */
 805                if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
 806                                kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
 807                        return H_UNSUPPORTED_FLAG_START;
 808                return H_TOO_HARD;
 809        default:
 810                return H_TOO_HARD;
 811        }
 812}
 813
 814/* Copy guest memory in place - must reside within a single memslot */
 815static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
 816                                  unsigned long len)
 817{
 818        struct kvm_memory_slot *to_memslot = NULL;
 819        struct kvm_memory_slot *from_memslot = NULL;
 820        unsigned long to_addr, from_addr;
 821        int r;
 822
 823        /* Get HPA for from address */
 824        from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
 825        if (!from_memslot)
 826                return -EFAULT;
 827        if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
 828                             << PAGE_SHIFT))
 829                return -EINVAL;
 830        from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
 831        if (kvm_is_error_hva(from_addr))
 832                return -EFAULT;
 833        from_addr |= (from & (PAGE_SIZE - 1));
 834
 835        /* Get HPA for to address */
 836        to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
 837        if (!to_memslot)
 838                return -EFAULT;
 839        if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
 840                           << PAGE_SHIFT))
 841                return -EINVAL;
 842        to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
 843        if (kvm_is_error_hva(to_addr))
 844                return -EFAULT;
 845        to_addr |= (to & (PAGE_SIZE - 1));
 846
 847        /* Perform copy */
 848        r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
 849                             len);
 850        if (r)
 851                return -EFAULT;
 852        mark_page_dirty(kvm, to >> PAGE_SHIFT);
 853        return 0;
 854}
 855
 856static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
 857                               unsigned long dest, unsigned long src)
 858{
 859        u64 pg_sz = SZ_4K;              /* 4K page size */
 860        u64 pg_mask = SZ_4K - 1;
 861        int ret;
 862
 863        /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
 864        if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
 865                      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
 866                return H_PARAMETER;
 867
 868        /* dest (and src if copy_page flag set) must be page aligned */
 869        if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
 870                return H_PARAMETER;
 871
 872        /* zero and/or copy the page as determined by the flags */
 873        if (flags & H_COPY_PAGE) {
 874                ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
 875                if (ret < 0)
 876                        return H_PARAMETER;
 877        } else if (flags & H_ZERO_PAGE) {
 878                ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
 879                if (ret < 0)
 880                        return H_PARAMETER;
 881        }
 882
 883        /* We can ignore the remaining flags */
 884
 885        return H_SUCCESS;
 886}
 887
 888static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
 889{
 890        struct kvmppc_vcore *vcore = target->arch.vcore;
 891
 892        /*
 893         * We expect to have been called by the real mode handler
 894         * (kvmppc_rm_h_confer()) which would have directly returned
 895         * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
 896         * have useful work to do and should not confer) so we don't
 897         * recheck that here.
 898         *
 899         * In the case of the P9 single vcpu per vcore case, the real
 900         * mode handler is not called but no other threads are in the
 901         * source vcore.
 902         */
 903
 904        spin_lock(&vcore->lock);
 905        if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
 906            vcore->vcore_state != VCORE_INACTIVE &&
 907            vcore->runner)
 908                target = vcore->runner;
 909        spin_unlock(&vcore->lock);
 910
 911        return kvm_vcpu_yield_to(target);
 912}
 913
 914static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
 915{
 916        int yield_count = 0;
 917        struct lppaca *lppaca;
 918
 919        spin_lock(&vcpu->arch.vpa_update_lock);
 920        lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
 921        if (lppaca)
 922                yield_count = be32_to_cpu(lppaca->yield_count);
 923        spin_unlock(&vcpu->arch.vpa_update_lock);
 924        return yield_count;
 925}
 926
 927/*
 928 * H_RPT_INVALIDATE hcall handler for nested guests.
 929 *
 930 * Handles only nested process-scoped invalidation requests in L0.
 931 */
 932static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
 933{
 934        unsigned long type = kvmppc_get_gpr(vcpu, 6);
 935        unsigned long pid, pg_sizes, start, end;
 936
 937        /*
 938         * The partition-scoped invalidations aren't handled here in L0.
 939         */
 940        if (type & H_RPTI_TYPE_NESTED)
 941                return RESUME_HOST;
 942
 943        pid = kvmppc_get_gpr(vcpu, 4);
 944        pg_sizes = kvmppc_get_gpr(vcpu, 7);
 945        start = kvmppc_get_gpr(vcpu, 8);
 946        end = kvmppc_get_gpr(vcpu, 9);
 947
 948        do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
 949                                type, pg_sizes, start, end);
 950
 951        kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
 952        return RESUME_GUEST;
 953}
 954
 955static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
 956                                    unsigned long id, unsigned long target,
 957                                    unsigned long type, unsigned long pg_sizes,
 958                                    unsigned long start, unsigned long end)
 959{
 960        if (!kvm_is_radix(vcpu->kvm))
 961                return H_UNSUPPORTED;
 962
 963        if (end < start)
 964                return H_P5;
 965
 966        /*
 967         * Partition-scoped invalidation for nested guests.
 968         */
 969        if (type & H_RPTI_TYPE_NESTED) {
 970                if (!nesting_enabled(vcpu->kvm))
 971                        return H_FUNCTION;
 972
 973                /* Support only cores as target */
 974                if (target != H_RPTI_TARGET_CMMU)
 975                        return H_P2;
 976
 977                return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
 978                                               start, end);
 979        }
 980
 981        /*
 982         * Process-scoped invalidation for L1 guests.
 983         */
 984        do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
 985                                type, pg_sizes, start, end);
 986        return H_SUCCESS;
 987}
 988
 989int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 990{
 991        struct kvm *kvm = vcpu->kvm;
 992        unsigned long req = kvmppc_get_gpr(vcpu, 3);
 993        unsigned long target, ret = H_SUCCESS;
 994        int yield_count;
 995        struct kvm_vcpu *tvcpu;
 996        int idx, rc;
 997
 998        if (req <= MAX_HCALL_OPCODE &&
 999            !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1000                return RESUME_HOST;
1001
1002        switch (req) {
1003        case H_REMOVE:
1004                ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1005                                        kvmppc_get_gpr(vcpu, 5),
1006                                        kvmppc_get_gpr(vcpu, 6));
1007                if (ret == H_TOO_HARD)
1008                        return RESUME_HOST;
1009                break;
1010        case H_ENTER:
1011                ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1012                                        kvmppc_get_gpr(vcpu, 5),
1013                                        kvmppc_get_gpr(vcpu, 6),
1014                                        kvmppc_get_gpr(vcpu, 7));
1015                if (ret == H_TOO_HARD)
1016                        return RESUME_HOST;
1017                break;
1018        case H_READ:
1019                ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1020                                        kvmppc_get_gpr(vcpu, 5));
1021                if (ret == H_TOO_HARD)
1022                        return RESUME_HOST;
1023                break;
1024        case H_CLEAR_MOD:
1025                ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1026                                        kvmppc_get_gpr(vcpu, 5));
1027                if (ret == H_TOO_HARD)
1028                        return RESUME_HOST;
1029                break;
1030        case H_CLEAR_REF:
1031                ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1032                                        kvmppc_get_gpr(vcpu, 5));
1033                if (ret == H_TOO_HARD)
1034                        return RESUME_HOST;
1035                break;
1036        case H_PROTECT:
1037                ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1038                                        kvmppc_get_gpr(vcpu, 5),
1039                                        kvmppc_get_gpr(vcpu, 6));
1040                if (ret == H_TOO_HARD)
1041                        return RESUME_HOST;
1042                break;
1043        case H_BULK_REMOVE:
1044                ret = kvmppc_h_bulk_remove(vcpu);
1045                if (ret == H_TOO_HARD)
1046                        return RESUME_HOST;
1047                break;
1048
1049        case H_CEDE:
1050                break;
1051        case H_PROD:
1052                target = kvmppc_get_gpr(vcpu, 4);
1053                tvcpu = kvmppc_find_vcpu(kvm, target);
1054                if (!tvcpu) {
1055                        ret = H_PARAMETER;
1056                        break;
1057                }
1058                tvcpu->arch.prodded = 1;
1059                smp_mb();
1060                if (tvcpu->arch.ceded)
1061                        kvmppc_fast_vcpu_kick_hv(tvcpu);
1062                break;
1063        case H_CONFER:
1064                target = kvmppc_get_gpr(vcpu, 4);
1065                if (target == -1)
1066                        break;
1067                tvcpu = kvmppc_find_vcpu(kvm, target);
1068                if (!tvcpu) {
1069                        ret = H_PARAMETER;
1070                        break;
1071                }
1072                yield_count = kvmppc_get_gpr(vcpu, 5);
1073                if (kvmppc_get_yield_count(tvcpu) != yield_count)
1074                        break;
1075                kvm_arch_vcpu_yield_to(tvcpu);
1076                break;
1077        case H_REGISTER_VPA:
1078                ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1079                                        kvmppc_get_gpr(vcpu, 5),
1080                                        kvmppc_get_gpr(vcpu, 6));
1081                break;
1082        case H_RTAS:
1083                if (list_empty(&kvm->arch.rtas_tokens))
1084                        return RESUME_HOST;
1085
1086                idx = srcu_read_lock(&kvm->srcu);
1087                rc = kvmppc_rtas_hcall(vcpu);
1088                srcu_read_unlock(&kvm->srcu, idx);
1089
1090                if (rc == -ENOENT)
1091                        return RESUME_HOST;
1092                else if (rc == 0)
1093                        break;
1094
1095                /* Send the error out to userspace via KVM_RUN */
1096                return rc;
1097        case H_LOGICAL_CI_LOAD:
1098                ret = kvmppc_h_logical_ci_load(vcpu);
1099                if (ret == H_TOO_HARD)
1100                        return RESUME_HOST;
1101                break;
1102        case H_LOGICAL_CI_STORE:
1103                ret = kvmppc_h_logical_ci_store(vcpu);
1104                if (ret == H_TOO_HARD)
1105                        return RESUME_HOST;
1106                break;
1107        case H_SET_MODE:
1108                ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1109                                        kvmppc_get_gpr(vcpu, 5),
1110                                        kvmppc_get_gpr(vcpu, 6),
1111                                        kvmppc_get_gpr(vcpu, 7));
1112                if (ret == H_TOO_HARD)
1113                        return RESUME_HOST;
1114                break;
1115        case H_XIRR:
1116        case H_CPPR:
1117        case H_EOI:
1118        case H_IPI:
1119        case H_IPOLL:
1120        case H_XIRR_X:
1121                if (kvmppc_xics_enabled(vcpu)) {
1122                        if (xics_on_xive()) {
1123                                ret = H_NOT_AVAILABLE;
1124                                return RESUME_GUEST;
1125                        }
1126                        ret = kvmppc_xics_hcall(vcpu, req);
1127                        break;
1128                }
1129                return RESUME_HOST;
1130        case H_SET_DABR:
1131                ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1132                break;
1133        case H_SET_XDABR:
1134                ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1135                                                kvmppc_get_gpr(vcpu, 5));
1136                break;
1137#ifdef CONFIG_SPAPR_TCE_IOMMU
1138        case H_GET_TCE:
1139                ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1140                                                kvmppc_get_gpr(vcpu, 5));
1141                if (ret == H_TOO_HARD)
1142                        return RESUME_HOST;
1143                break;
1144        case H_PUT_TCE:
1145                ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1146                                                kvmppc_get_gpr(vcpu, 5),
1147                                                kvmppc_get_gpr(vcpu, 6));
1148                if (ret == H_TOO_HARD)
1149                        return RESUME_HOST;
1150                break;
1151        case H_PUT_TCE_INDIRECT:
1152                ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1153                                                kvmppc_get_gpr(vcpu, 5),
1154                                                kvmppc_get_gpr(vcpu, 6),
1155                                                kvmppc_get_gpr(vcpu, 7));
1156                if (ret == H_TOO_HARD)
1157                        return RESUME_HOST;
1158                break;
1159        case H_STUFF_TCE:
1160                ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1161                                                kvmppc_get_gpr(vcpu, 5),
1162                                                kvmppc_get_gpr(vcpu, 6),
1163                                                kvmppc_get_gpr(vcpu, 7));
1164                if (ret == H_TOO_HARD)
1165                        return RESUME_HOST;
1166                break;
1167#endif
1168        case H_RANDOM:
1169                if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4]))
1170                        ret = H_HARDWARE;
1171                break;
1172        case H_RPT_INVALIDATE:
1173                ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1174                                              kvmppc_get_gpr(vcpu, 5),
1175                                              kvmppc_get_gpr(vcpu, 6),
1176                                              kvmppc_get_gpr(vcpu, 7),
1177                                              kvmppc_get_gpr(vcpu, 8),
1178                                              kvmppc_get_gpr(vcpu, 9));
1179                break;
1180
1181        case H_SET_PARTITION_TABLE:
1182                ret = H_FUNCTION;
1183                if (nesting_enabled(kvm))
1184                        ret = kvmhv_set_partition_table(vcpu);
1185                break;
1186        case H_ENTER_NESTED:
1187                ret = H_FUNCTION;
1188                if (!nesting_enabled(kvm))
1189                        break;
1190                ret = kvmhv_enter_nested_guest(vcpu);
1191                if (ret == H_INTERRUPT) {
1192                        kvmppc_set_gpr(vcpu, 3, 0);
1193                        vcpu->arch.hcall_needed = 0;
1194                        return -EINTR;
1195                } else if (ret == H_TOO_HARD) {
1196                        kvmppc_set_gpr(vcpu, 3, 0);
1197                        vcpu->arch.hcall_needed = 0;
1198                        return RESUME_HOST;
1199                }
1200                break;
1201        case H_TLB_INVALIDATE:
1202                ret = H_FUNCTION;
1203                if (nesting_enabled(kvm))
1204                        ret = kvmhv_do_nested_tlbie(vcpu);
1205                break;
1206        case H_COPY_TOFROM_GUEST:
1207                ret = H_FUNCTION;
1208                if (nesting_enabled(kvm))
1209                        ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1210                break;
1211        case H_PAGE_INIT:
1212                ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1213                                         kvmppc_get_gpr(vcpu, 5),
1214                                         kvmppc_get_gpr(vcpu, 6));
1215                break;
1216        case H_SVM_PAGE_IN:
1217                ret = H_UNSUPPORTED;
1218                if (kvmppc_get_srr1(vcpu) & MSR_S)
1219                        ret = kvmppc_h_svm_page_in(kvm,
1220                                                   kvmppc_get_gpr(vcpu, 4),
1221                                                   kvmppc_get_gpr(vcpu, 5),
1222                                                   kvmppc_get_gpr(vcpu, 6));
1223                break;
1224        case H_SVM_PAGE_OUT:
1225                ret = H_UNSUPPORTED;
1226                if (kvmppc_get_srr1(vcpu) & MSR_S)
1227                        ret = kvmppc_h_svm_page_out(kvm,
1228                                                    kvmppc_get_gpr(vcpu, 4),
1229                                                    kvmppc_get_gpr(vcpu, 5),
1230                                                    kvmppc_get_gpr(vcpu, 6));
1231                break;
1232        case H_SVM_INIT_START:
1233                ret = H_UNSUPPORTED;
1234                if (kvmppc_get_srr1(vcpu) & MSR_S)
1235                        ret = kvmppc_h_svm_init_start(kvm);
1236                break;
1237        case H_SVM_INIT_DONE:
1238                ret = H_UNSUPPORTED;
1239                if (kvmppc_get_srr1(vcpu) & MSR_S)
1240                        ret = kvmppc_h_svm_init_done(kvm);
1241                break;
1242        case H_SVM_INIT_ABORT:
1243                /*
1244                 * Even if that call is made by the Ultravisor, the SSR1 value
1245                 * is the guest context one, with the secure bit clear as it has
1246                 * not yet been secured. So we can't check it here.
1247                 * Instead the kvm->arch.secure_guest flag is checked inside
1248                 * kvmppc_h_svm_init_abort().
1249                 */
1250                ret = kvmppc_h_svm_init_abort(kvm);
1251                break;
1252
1253        default:
1254                return RESUME_HOST;
1255        }
1256        WARN_ON_ONCE(ret == H_TOO_HARD);
1257        kvmppc_set_gpr(vcpu, 3, ret);
1258        vcpu->arch.hcall_needed = 0;
1259        return RESUME_GUEST;
1260}
1261
1262/*
1263 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1264 * handlers in book3s_hv_rmhandlers.S.
1265 *
1266 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1267 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1268 */
1269static void kvmppc_cede(struct kvm_vcpu *vcpu)
1270{
1271        vcpu->arch.shregs.msr |= MSR_EE;
1272        vcpu->arch.ceded = 1;
1273        smp_mb();
1274        if (vcpu->arch.prodded) {
1275                vcpu->arch.prodded = 0;
1276                smp_mb();
1277                vcpu->arch.ceded = 0;
1278        }
1279}
1280
1281static int kvmppc_hcall_impl_hv(unsigned long cmd)
1282{
1283        switch (cmd) {
1284        case H_CEDE:
1285        case H_PROD:
1286        case H_CONFER:
1287        case H_REGISTER_VPA:
1288        case H_SET_MODE:
1289        case H_LOGICAL_CI_LOAD:
1290        case H_LOGICAL_CI_STORE:
1291#ifdef CONFIG_KVM_XICS
1292        case H_XIRR:
1293        case H_CPPR:
1294        case H_EOI:
1295        case H_IPI:
1296        case H_IPOLL:
1297        case H_XIRR_X:
1298#endif
1299        case H_PAGE_INIT:
1300        case H_RPT_INVALIDATE:
1301                return 1;
1302        }
1303
1304        /* See if it's in the real-mode table */
1305        return kvmppc_hcall_impl_hv_realmode(cmd);
1306}
1307
1308static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1309{
1310        u32 last_inst;
1311
1312        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1313                                        EMULATE_DONE) {
1314                /*
1315                 * Fetch failed, so return to guest and
1316                 * try executing it again.
1317                 */
1318                return RESUME_GUEST;
1319        }
1320
1321        if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1322                vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1323                vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1324                return RESUME_HOST;
1325        } else {
1326                kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1327                return RESUME_GUEST;
1328        }
1329}
1330
1331static void do_nothing(void *x)
1332{
1333}
1334
1335static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1336{
1337        int thr, cpu, pcpu, nthreads;
1338        struct kvm_vcpu *v;
1339        unsigned long dpdes;
1340
1341        nthreads = vcpu->kvm->arch.emul_smt_mode;
1342        dpdes = 0;
1343        cpu = vcpu->vcpu_id & ~(nthreads - 1);
1344        for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1345                v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1346                if (!v)
1347                        continue;
1348                /*
1349                 * If the vcpu is currently running on a physical cpu thread,
1350                 * interrupt it in order to pull it out of the guest briefly,
1351                 * which will update its vcore->dpdes value.
1352                 */
1353                pcpu = READ_ONCE(v->cpu);
1354                if (pcpu >= 0)
1355                        smp_call_function_single(pcpu, do_nothing, NULL, 1);
1356                if (kvmppc_doorbell_pending(v))
1357                        dpdes |= 1 << thr;
1358        }
1359        return dpdes;
1360}
1361
1362/*
1363 * On POWER9, emulate doorbell-related instructions in order to
1364 * give the guest the illusion of running on a multi-threaded core.
1365 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1366 * and mfspr DPDES.
1367 */
1368static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1369{
1370        u32 inst, rb, thr;
1371        unsigned long arg;
1372        struct kvm *kvm = vcpu->kvm;
1373        struct kvm_vcpu *tvcpu;
1374
1375        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1376                return RESUME_GUEST;
1377        if (get_op(inst) != 31)
1378                return EMULATE_FAIL;
1379        rb = get_rb(inst);
1380        thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1381        switch (get_xop(inst)) {
1382        case OP_31_XOP_MSGSNDP:
1383                arg = kvmppc_get_gpr(vcpu, rb);
1384                if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1385                        break;
1386                arg &= 0x7f;
1387                if (arg >= kvm->arch.emul_smt_mode)
1388                        break;
1389                tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1390                if (!tvcpu)
1391                        break;
1392                if (!tvcpu->arch.doorbell_request) {
1393                        tvcpu->arch.doorbell_request = 1;
1394                        kvmppc_fast_vcpu_kick_hv(tvcpu);
1395                }
1396                break;
1397        case OP_31_XOP_MSGCLRP:
1398                arg = kvmppc_get_gpr(vcpu, rb);
1399                if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1400                        break;
1401                vcpu->arch.vcore->dpdes = 0;
1402                vcpu->arch.doorbell_request = 0;
1403                break;
1404        case OP_31_XOP_MFSPR:
1405                switch (get_sprn(inst)) {
1406                case SPRN_TIR:
1407                        arg = thr;
1408                        break;
1409                case SPRN_DPDES:
1410                        arg = kvmppc_read_dpdes(vcpu);
1411                        break;
1412                default:
1413                        return EMULATE_FAIL;
1414                }
1415                kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1416                break;
1417        default:
1418                return EMULATE_FAIL;
1419        }
1420        kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1421        return RESUME_GUEST;
1422}
1423
1424static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1425                                 struct task_struct *tsk)
1426{
1427        struct kvm_run *run = vcpu->run;
1428        int r = RESUME_HOST;
1429
1430        vcpu->stat.sum_exits++;
1431
1432        /*
1433         * This can happen if an interrupt occurs in the last stages
1434         * of guest entry or the first stages of guest exit (i.e. after
1435         * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1436         * and before setting it to KVM_GUEST_MODE_HOST_HV).
1437         * That can happen due to a bug, or due to a machine check
1438         * occurring at just the wrong time.
1439         */
1440        if (vcpu->arch.shregs.msr & MSR_HV) {
1441                printk(KERN_EMERG "KVM trap in HV mode!\n");
1442                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1443                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
1444                        vcpu->arch.shregs.msr);
1445                kvmppc_dump_regs(vcpu);
1446                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1447                run->hw.hardware_exit_reason = vcpu->arch.trap;
1448                return RESUME_HOST;
1449        }
1450        run->exit_reason = KVM_EXIT_UNKNOWN;
1451        run->ready_for_interrupt_injection = 1;
1452        switch (vcpu->arch.trap) {
1453        /* We're good on these - the host merely wanted to get our attention */
1454        case BOOK3S_INTERRUPT_HV_DECREMENTER:
1455                vcpu->stat.dec_exits++;
1456                r = RESUME_GUEST;
1457                break;
1458        case BOOK3S_INTERRUPT_EXTERNAL:
1459        case BOOK3S_INTERRUPT_H_DOORBELL:
1460        case BOOK3S_INTERRUPT_H_VIRT:
1461                vcpu->stat.ext_intr_exits++;
1462                r = RESUME_GUEST;
1463                break;
1464        /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1465        case BOOK3S_INTERRUPT_HMI:
1466        case BOOK3S_INTERRUPT_PERFMON:
1467        case BOOK3S_INTERRUPT_SYSTEM_RESET:
1468                r = RESUME_GUEST;
1469                break;
1470        case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1471                static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1472                                              DEFAULT_RATELIMIT_BURST);
1473                /*
1474                 * Print the MCE event to host console. Ratelimit so the guest
1475                 * can't flood the host log.
1476                 */
1477                if (__ratelimit(&rs))
1478                        machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1479
1480                /*
1481                 * If the guest can do FWNMI, exit to userspace so it can
1482                 * deliver a FWNMI to the guest.
1483                 * Otherwise we synthesize a machine check for the guest
1484                 * so that it knows that the machine check occurred.
1485                 */
1486                if (!vcpu->kvm->arch.fwnmi_enabled) {
1487                        ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1488                        kvmppc_core_queue_machine_check(vcpu, flags);
1489                        r = RESUME_GUEST;
1490                        break;
1491                }
1492
1493                /* Exit to guest with KVM_EXIT_NMI as exit reason */
1494                run->exit_reason = KVM_EXIT_NMI;
1495                run->hw.hardware_exit_reason = vcpu->arch.trap;
1496                /* Clear out the old NMI status from run->flags */
1497                run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1498                /* Now set the NMI status */
1499                if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1500                        run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1501                else
1502                        run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1503
1504                r = RESUME_HOST;
1505                break;
1506        }
1507        case BOOK3S_INTERRUPT_PROGRAM:
1508        {
1509                ulong flags;
1510                /*
1511                 * Normally program interrupts are delivered directly
1512                 * to the guest by the hardware, but we can get here
1513                 * as a result of a hypervisor emulation interrupt
1514                 * (e40) getting turned into a 700 by BML RTAS.
1515                 */
1516                flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1517                kvmppc_core_queue_program(vcpu, flags);
1518                r = RESUME_GUEST;
1519                break;
1520        }
1521        case BOOK3S_INTERRUPT_SYSCALL:
1522        {
1523                int i;
1524
1525                if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1526                        /*
1527                         * Guest userspace executed sc 1. This can only be
1528                         * reached by the P9 path because the old path
1529                         * handles this case in realmode hcall handlers.
1530                         */
1531                        if (!kvmhv_vcpu_is_radix(vcpu)) {
1532                                /*
1533                                 * A guest could be running PR KVM, so this
1534                                 * may be a PR KVM hcall. It must be reflected
1535                                 * to the guest kernel as a sc interrupt.
1536                                 */
1537                                kvmppc_core_queue_syscall(vcpu);
1538                        } else {
1539                                /*
1540                                 * Radix guests can not run PR KVM or nested HV
1541                                 * hash guests which might run PR KVM, so this
1542                                 * is always a privilege fault. Send a program
1543                                 * check to guest kernel.
1544                                 */
1545                                kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1546                        }
1547                        r = RESUME_GUEST;
1548                        break;
1549                }
1550
1551                /*
1552                 * hcall - gather args and set exit_reason. This will next be
1553                 * handled by kvmppc_pseries_do_hcall which may be able to deal
1554                 * with it and resume guest, or may punt to userspace.
1555                 */
1556                run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1557                for (i = 0; i < 9; ++i)
1558                        run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1559                run->exit_reason = KVM_EXIT_PAPR_HCALL;
1560                vcpu->arch.hcall_needed = 1;
1561                r = RESUME_HOST;
1562                break;
1563        }
1564        /*
1565         * We get these next two if the guest accesses a page which it thinks
1566         * it has mapped but which is not actually present, either because
1567         * it is for an emulated I/O device or because the corresonding
1568         * host page has been paged out.
1569         *
1570         * Any other HDSI/HISI interrupts have been handled already for P7/8
1571         * guests. For POWER9 hash guests not using rmhandlers, basic hash
1572         * fault handling is done here.
1573         */
1574        case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1575                unsigned long vsid;
1576                long err;
1577
1578                if (vcpu->arch.fault_dsisr == HDSISR_CANARY) {
1579                        r = RESUME_GUEST; /* Just retry if it's the canary */
1580                        break;
1581                }
1582
1583                if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1584                        /*
1585                         * Radix doesn't require anything, and pre-ISAv3.0 hash
1586                         * already attempted to handle this in rmhandlers. The
1587                         * hash fault handling below is v3 only (it uses ASDR
1588                         * via fault_gpa).
1589                         */
1590                        r = RESUME_PAGE_FAULT;
1591                        break;
1592                }
1593
1594                if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1595                        kvmppc_core_queue_data_storage(vcpu,
1596                                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1597                        r = RESUME_GUEST;
1598                        break;
1599                }
1600
1601                if (!(vcpu->arch.shregs.msr & MSR_DR))
1602                        vsid = vcpu->kvm->arch.vrma_slb_v;
1603                else
1604                        vsid = vcpu->arch.fault_gpa;
1605
1606                err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1607                                vsid, vcpu->arch.fault_dsisr, true);
1608                if (err == 0) {
1609                        r = RESUME_GUEST;
1610                } else if (err == -1 || err == -2) {
1611                        r = RESUME_PAGE_FAULT;
1612                } else {
1613                        kvmppc_core_queue_data_storage(vcpu,
1614                                vcpu->arch.fault_dar, err);
1615                        r = RESUME_GUEST;
1616                }
1617                break;
1618        }
1619        case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1620                unsigned long vsid;
1621                long err;
1622
1623                vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1624                vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1625                        DSISR_SRR1_MATCH_64S;
1626                if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1627                        /*
1628                         * Radix doesn't require anything, and pre-ISAv3.0 hash
1629                         * already attempted to handle this in rmhandlers. The
1630                         * hash fault handling below is v3 only (it uses ASDR
1631                         * via fault_gpa).
1632                         */
1633                        if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1634                                vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1635                        r = RESUME_PAGE_FAULT;
1636                        break;
1637                }
1638
1639                if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1640                        kvmppc_core_queue_inst_storage(vcpu,
1641                                vcpu->arch.fault_dsisr);
1642                        r = RESUME_GUEST;
1643                        break;
1644                }
1645
1646                if (!(vcpu->arch.shregs.msr & MSR_IR))
1647                        vsid = vcpu->kvm->arch.vrma_slb_v;
1648                else
1649                        vsid = vcpu->arch.fault_gpa;
1650
1651                err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1652                                vsid, vcpu->arch.fault_dsisr, false);
1653                if (err == 0) {
1654                        r = RESUME_GUEST;
1655                } else if (err == -1) {
1656                        r = RESUME_PAGE_FAULT;
1657                } else {
1658                        kvmppc_core_queue_inst_storage(vcpu, err);
1659                        r = RESUME_GUEST;
1660                }
1661                break;
1662        }
1663
1664        /*
1665         * This occurs if the guest executes an illegal instruction.
1666         * If the guest debug is disabled, generate a program interrupt
1667         * to the guest. If guest debug is enabled, we need to check
1668         * whether the instruction is a software breakpoint instruction.
1669         * Accordingly return to Guest or Host.
1670         */
1671        case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1672                if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1673                        vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1674                                swab32(vcpu->arch.emul_inst) :
1675                                vcpu->arch.emul_inst;
1676                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1677                        r = kvmppc_emulate_debug_inst(vcpu);
1678                } else {
1679                        kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1680                        r = RESUME_GUEST;
1681                }
1682                break;
1683
1684#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1685        case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1686                /*
1687                 * This occurs for various TM-related instructions that
1688                 * we need to emulate on POWER9 DD2.2.  We have already
1689                 * handled the cases where the guest was in real-suspend
1690                 * mode and was transitioning to transactional state.
1691                 */
1692                r = kvmhv_p9_tm_emulation(vcpu);
1693                if (r != -1)
1694                        break;
1695                fallthrough; /* go to facility unavailable handler */
1696#endif
1697
1698        /*
1699         * This occurs if the guest (kernel or userspace), does something that
1700         * is prohibited by HFSCR.
1701         * On POWER9, this could be a doorbell instruction that we need
1702         * to emulate.
1703         * Otherwise, we just generate a program interrupt to the guest.
1704         */
1705        case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1706                r = EMULATE_FAIL;
1707                if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1708                    cpu_has_feature(CPU_FTR_ARCH_300))
1709                        r = kvmppc_emulate_doorbell_instr(vcpu);
1710                if (r == EMULATE_FAIL) {
1711                        kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1712                        r = RESUME_GUEST;
1713                }
1714                break;
1715
1716        case BOOK3S_INTERRUPT_HV_RM_HARD:
1717                r = RESUME_PASSTHROUGH;
1718                break;
1719        default:
1720                kvmppc_dump_regs(vcpu);
1721                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1722                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
1723                        vcpu->arch.shregs.msr);
1724                run->hw.hardware_exit_reason = vcpu->arch.trap;
1725                r = RESUME_HOST;
1726                break;
1727        }
1728
1729        return r;
1730}
1731
1732static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1733{
1734        struct kvm_nested_guest *nested = vcpu->arch.nested;
1735        int r;
1736        int srcu_idx;
1737
1738        vcpu->stat.sum_exits++;
1739
1740        /*
1741         * This can happen if an interrupt occurs in the last stages
1742         * of guest entry or the first stages of guest exit (i.e. after
1743         * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1744         * and before setting it to KVM_GUEST_MODE_HOST_HV).
1745         * That can happen due to a bug, or due to a machine check
1746         * occurring at just the wrong time.
1747         */
1748        if (vcpu->arch.shregs.msr & MSR_HV) {
1749                pr_emerg("KVM trap in HV mode while nested!\n");
1750                pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1751                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1752                         vcpu->arch.shregs.msr);
1753                kvmppc_dump_regs(vcpu);
1754                return RESUME_HOST;
1755        }
1756        switch (vcpu->arch.trap) {
1757        /* We're good on these - the host merely wanted to get our attention */
1758        case BOOK3S_INTERRUPT_HV_DECREMENTER:
1759                vcpu->stat.dec_exits++;
1760                r = RESUME_GUEST;
1761                break;
1762        case BOOK3S_INTERRUPT_EXTERNAL:
1763                vcpu->stat.ext_intr_exits++;
1764                r = RESUME_HOST;
1765                break;
1766        case BOOK3S_INTERRUPT_H_DOORBELL:
1767        case BOOK3S_INTERRUPT_H_VIRT:
1768                vcpu->stat.ext_intr_exits++;
1769                r = RESUME_GUEST;
1770                break;
1771        /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1772        case BOOK3S_INTERRUPT_HMI:
1773        case BOOK3S_INTERRUPT_PERFMON:
1774        case BOOK3S_INTERRUPT_SYSTEM_RESET:
1775                r = RESUME_GUEST;
1776                break;
1777        case BOOK3S_INTERRUPT_MACHINE_CHECK:
1778        {
1779                static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1780                                              DEFAULT_RATELIMIT_BURST);
1781                /* Pass the machine check to the L1 guest */
1782                r = RESUME_HOST;
1783                /* Print the MCE event to host console. */
1784                if (__ratelimit(&rs))
1785                        machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1786                break;
1787        }
1788        /*
1789         * We get these next two if the guest accesses a page which it thinks
1790         * it has mapped but which is not actually present, either because
1791         * it is for an emulated I/O device or because the corresonding
1792         * host page has been paged out.
1793         */
1794        case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1795                srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1796                r = kvmhv_nested_page_fault(vcpu);
1797                srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1798                break;
1799        case BOOK3S_INTERRUPT_H_INST_STORAGE:
1800                vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1801                vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1802                                         DSISR_SRR1_MATCH_64S;
1803                if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1804                        vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1805                srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1806                r = kvmhv_nested_page_fault(vcpu);
1807                srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1808                break;
1809
1810#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1811        case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1812                /*
1813                 * This occurs for various TM-related instructions that
1814                 * we need to emulate on POWER9 DD2.2.  We have already
1815                 * handled the cases where the guest was in real-suspend
1816                 * mode and was transitioning to transactional state.
1817                 */
1818                r = kvmhv_p9_tm_emulation(vcpu);
1819                if (r != -1)
1820                        break;
1821                fallthrough; /* go to facility unavailable handler */
1822#endif
1823
1824        case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1825                u64 cause = vcpu->arch.hfscr >> 56;
1826
1827                /*
1828                 * Only pass HFU interrupts to the L1 if the facility is
1829                 * permitted but disabled by the L1's HFSCR, otherwise
1830                 * the interrupt does not make sense to the L1 so turn
1831                 * it into a HEAI.
1832                 */
1833                if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1834                                        (nested->hfscr & (1UL << cause))) {
1835                        vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
1836
1837                        /*
1838                         * If the fetch failed, return to guest and
1839                         * try executing it again.
1840                         */
1841                        r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1842                                                 &vcpu->arch.emul_inst);
1843                        if (r != EMULATE_DONE)
1844                                r = RESUME_GUEST;
1845                        else
1846                                r = RESUME_HOST;
1847                } else {
1848                        r = RESUME_HOST;
1849                }
1850
1851                break;
1852        }
1853
1854        case BOOK3S_INTERRUPT_HV_RM_HARD:
1855                vcpu->arch.trap = 0;
1856                r = RESUME_GUEST;
1857                if (!xics_on_xive())
1858                        kvmppc_xics_rm_complete(vcpu, 0);
1859                break;
1860        case BOOK3S_INTERRUPT_SYSCALL:
1861        {
1862                unsigned long req = kvmppc_get_gpr(vcpu, 3);
1863
1864                /*
1865                 * The H_RPT_INVALIDATE hcalls issued by nested
1866                 * guests for process-scoped invalidations when
1867                 * GTSE=0, are handled here in L0.
1868                 */
1869                if (req == H_RPT_INVALIDATE) {
1870                        r = kvmppc_nested_h_rpt_invalidate(vcpu);
1871                        break;
1872                }
1873
1874                r = RESUME_HOST;
1875                break;
1876        }
1877        default:
1878                r = RESUME_HOST;
1879                break;
1880        }
1881
1882        return r;
1883}
1884
1885static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1886                                            struct kvm_sregs *sregs)
1887{
1888        int i;
1889
1890        memset(sregs, 0, sizeof(struct kvm_sregs));
1891        sregs->pvr = vcpu->arch.pvr;
1892        for (i = 0; i < vcpu->arch.slb_max; i++) {
1893                sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1894                sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1895        }
1896
1897        return 0;
1898}
1899
1900static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1901                                            struct kvm_sregs *sregs)
1902{
1903        int i, j;
1904
1905        /* Only accept the same PVR as the host's, since we can't spoof it */
1906        if (sregs->pvr != vcpu->arch.pvr)
1907                return -EINVAL;
1908
1909        j = 0;
1910        for (i = 0; i < vcpu->arch.slb_nr; i++) {
1911                if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1912                        vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1913                        vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1914                        ++j;
1915                }
1916        }
1917        vcpu->arch.slb_max = j;
1918
1919        return 0;
1920}
1921
1922/*
1923 * Enforce limits on guest LPCR values based on hardware availability,
1924 * guest configuration, and possibly hypervisor support and security
1925 * concerns.
1926 */
1927unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
1928{
1929        /* LPCR_TC only applies to HPT guests */
1930        if (kvm_is_radix(kvm))
1931                lpcr &= ~LPCR_TC;
1932
1933        /* On POWER8 and above, userspace can modify AIL */
1934        if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1935                lpcr &= ~LPCR_AIL;
1936        if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
1937                lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
1938        /*
1939         * On some POWER9s we force AIL off for radix guests to prevent
1940         * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
1941         * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
1942         * be cached, which the host TLB management does not expect.
1943         */
1944        if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
1945                lpcr &= ~LPCR_AIL;
1946
1947        /*
1948         * On POWER9, allow userspace to enable large decrementer for the
1949         * guest, whether or not the host has it enabled.
1950         */
1951        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1952                lpcr &= ~LPCR_LD;
1953
1954        return lpcr;
1955}
1956
1957static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
1958{
1959        if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
1960                WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
1961                          lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
1962        }
1963}
1964
1965static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1966                bool preserve_top32)
1967{
1968        struct kvm *kvm = vcpu->kvm;
1969        struct kvmppc_vcore *vc = vcpu->arch.vcore;
1970        u64 mask;
1971
1972        spin_lock(&vc->lock);
1973
1974        /*
1975         * Userspace can only modify
1976         * DPFD (default prefetch depth), ILE (interrupt little-endian),
1977         * TC (translation control), AIL (alternate interrupt location),
1978         * LD (large decrementer).
1979         * These are subject to restrictions from kvmppc_filter_lcpr_hv().
1980         */
1981        mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
1982
1983        /* Broken 32-bit version of LPCR must not clear top bits */
1984        if (preserve_top32)
1985                mask &= 0xFFFFFFFF;
1986
1987        new_lpcr = kvmppc_filter_lpcr_hv(kvm,
1988                        (vc->lpcr & ~mask) | (new_lpcr & mask));
1989
1990        /*
1991         * If ILE (interrupt little-endian) has changed, update the
1992         * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1993         */
1994        if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1995                struct kvm_vcpu *vcpu;
1996                int i;
1997
1998                kvm_for_each_vcpu(i, vcpu, kvm) {
1999                        if (vcpu->arch.vcore != vc)
2000                                continue;
2001                        if (new_lpcr & LPCR_ILE)
2002                                vcpu->arch.intr_msr |= MSR_LE;
2003                        else
2004                                vcpu->arch.intr_msr &= ~MSR_LE;
2005                }
2006        }
2007
2008        vc->lpcr = new_lpcr;
2009
2010        spin_unlock(&vc->lock);
2011}
2012
2013static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2014                                 union kvmppc_one_reg *val)
2015{
2016        int r = 0;
2017        long int i;
2018
2019        switch (id) {
2020        case KVM_REG_PPC_DEBUG_INST:
2021                *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2022                break;
2023        case KVM_REG_PPC_HIOR:
2024                *val = get_reg_val(id, 0);
2025                break;
2026        case KVM_REG_PPC_DABR:
2027                *val = get_reg_val(id, vcpu->arch.dabr);
2028                break;
2029        case KVM_REG_PPC_DABRX:
2030                *val = get_reg_val(id, vcpu->arch.dabrx);
2031                break;
2032        case KVM_REG_PPC_DSCR:
2033                *val = get_reg_val(id, vcpu->arch.dscr);
2034                break;
2035        case KVM_REG_PPC_PURR:
2036                *val = get_reg_val(id, vcpu->arch.purr);
2037                break;
2038        case KVM_REG_PPC_SPURR:
2039                *val = get_reg_val(id, vcpu->arch.spurr);
2040                break;
2041        case KVM_REG_PPC_AMR:
2042                *val = get_reg_val(id, vcpu->arch.amr);
2043                break;
2044        case KVM_REG_PPC_UAMOR:
2045                *val = get_reg_val(id, vcpu->arch.uamor);
2046                break;
2047        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2048                i = id - KVM_REG_PPC_MMCR0;
2049                *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2050                break;
2051        case KVM_REG_PPC_MMCR2:
2052                *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2053                break;
2054        case KVM_REG_PPC_MMCRA:
2055                *val = get_reg_val(id, vcpu->arch.mmcra);
2056                break;
2057        case KVM_REG_PPC_MMCRS:
2058                *val = get_reg_val(id, vcpu->arch.mmcrs);
2059                break;
2060        case KVM_REG_PPC_MMCR3:
2061                *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2062                break;
2063        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2064                i = id - KVM_REG_PPC_PMC1;
2065                *val = get_reg_val(id, vcpu->arch.pmc[i]);
2066                break;
2067        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2068                i = id - KVM_REG_PPC_SPMC1;
2069                *val = get_reg_val(id, vcpu->arch.spmc[i]);
2070                break;
2071        case KVM_REG_PPC_SIAR:
2072                *val = get_reg_val(id, vcpu->arch.siar);
2073                break;
2074        case KVM_REG_PPC_SDAR:
2075                *val = get_reg_val(id, vcpu->arch.sdar);
2076                break;
2077        case KVM_REG_PPC_SIER:
2078                *val = get_reg_val(id, vcpu->arch.sier[0]);
2079                break;
2080        case KVM_REG_PPC_SIER2:
2081                *val = get_reg_val(id, vcpu->arch.sier[1]);
2082                break;
2083        case KVM_REG_PPC_SIER3:
2084                *val = get_reg_val(id, vcpu->arch.sier[2]);
2085                break;
2086        case KVM_REG_PPC_IAMR:
2087                *val = get_reg_val(id, vcpu->arch.iamr);
2088                break;
2089        case KVM_REG_PPC_PSPB:
2090                *val = get_reg_val(id, vcpu->arch.pspb);
2091                break;
2092        case KVM_REG_PPC_DPDES:
2093                /*
2094                 * On POWER9, where we are emulating msgsndp etc.,
2095                 * we return 1 bit for each vcpu, which can come from
2096                 * either vcore->dpdes or doorbell_request.
2097                 * On POWER8, doorbell_request is 0.
2098                 */
2099                *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
2100                                   vcpu->arch.doorbell_request);
2101                break;
2102        case KVM_REG_PPC_VTB:
2103                *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2104                break;
2105        case KVM_REG_PPC_DAWR:
2106                *val = get_reg_val(id, vcpu->arch.dawr0);
2107                break;
2108        case KVM_REG_PPC_DAWRX:
2109                *val = get_reg_val(id, vcpu->arch.dawrx0);
2110                break;
2111        case KVM_REG_PPC_DAWR1:
2112                *val = get_reg_val(id, vcpu->arch.dawr1);
2113                break;
2114        case KVM_REG_PPC_DAWRX1:
2115                *val = get_reg_val(id, vcpu->arch.dawrx1);
2116                break;
2117        case KVM_REG_PPC_CIABR:
2118                *val = get_reg_val(id, vcpu->arch.ciabr);
2119                break;
2120        case KVM_REG_PPC_CSIGR:
2121                *val = get_reg_val(id, vcpu->arch.csigr);
2122                break;
2123        case KVM_REG_PPC_TACR:
2124                *val = get_reg_val(id, vcpu->arch.tacr);
2125                break;
2126        case KVM_REG_PPC_TCSCR:
2127                *val = get_reg_val(id, vcpu->arch.tcscr);
2128                break;
2129        case KVM_REG_PPC_PID:
2130                *val = get_reg_val(id, vcpu->arch.pid);
2131                break;
2132        case KVM_REG_PPC_ACOP:
2133                *val = get_reg_val(id, vcpu->arch.acop);
2134                break;
2135        case KVM_REG_PPC_WORT:
2136                *val = get_reg_val(id, vcpu->arch.wort);
2137                break;
2138        case KVM_REG_PPC_TIDR:
2139                *val = get_reg_val(id, vcpu->arch.tid);
2140                break;
2141        case KVM_REG_PPC_PSSCR:
2142                *val = get_reg_val(id, vcpu->arch.psscr);
2143                break;
2144        case KVM_REG_PPC_VPA_ADDR:
2145                spin_lock(&vcpu->arch.vpa_update_lock);
2146                *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2147                spin_unlock(&vcpu->arch.vpa_update_lock);
2148                break;
2149        case KVM_REG_PPC_VPA_SLB:
2150                spin_lock(&vcpu->arch.vpa_update_lock);
2151                val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2152                val->vpaval.length = vcpu->arch.slb_shadow.len;
2153                spin_unlock(&vcpu->arch.vpa_update_lock);
2154                break;
2155        case KVM_REG_PPC_VPA_DTL:
2156                spin_lock(&vcpu->arch.vpa_update_lock);
2157                val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2158                val->vpaval.length = vcpu->arch.dtl.len;
2159                spin_unlock(&vcpu->arch.vpa_update_lock);
2160                break;
2161        case KVM_REG_PPC_TB_OFFSET:
2162                *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2163                break;
2164        case KVM_REG_PPC_LPCR:
2165        case KVM_REG_PPC_LPCR_64:
2166                *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2167                break;
2168        case KVM_REG_PPC_PPR:
2169                *val = get_reg_val(id, vcpu->arch.ppr);
2170                break;
2171#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2172        case KVM_REG_PPC_TFHAR:
2173                *val = get_reg_val(id, vcpu->arch.tfhar);
2174                break;
2175        case KVM_REG_PPC_TFIAR:
2176                *val = get_reg_val(id, vcpu->arch.tfiar);
2177                break;
2178        case KVM_REG_PPC_TEXASR:
2179                *val = get_reg_val(id, vcpu->arch.texasr);
2180                break;
2181        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2182                i = id - KVM_REG_PPC_TM_GPR0;
2183                *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2184                break;
2185        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2186        {
2187                int j;
2188                i = id - KVM_REG_PPC_TM_VSR0;
2189                if (i < 32)
2190                        for (j = 0; j < TS_FPRWIDTH; j++)
2191                                val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2192                else {
2193                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
2194                                val->vval = vcpu->arch.vr_tm.vr[i-32];
2195                        else
2196                                r = -ENXIO;
2197                }
2198                break;
2199        }
2200        case KVM_REG_PPC_TM_CR:
2201                *val = get_reg_val(id, vcpu->arch.cr_tm);
2202                break;
2203        case KVM_REG_PPC_TM_XER:
2204                *val = get_reg_val(id, vcpu->arch.xer_tm);
2205                break;
2206        case KVM_REG_PPC_TM_LR:
2207                *val = get_reg_val(id, vcpu->arch.lr_tm);
2208                break;
2209        case KVM_REG_PPC_TM_CTR:
2210                *val = get_reg_val(id, vcpu->arch.ctr_tm);
2211                break;
2212        case KVM_REG_PPC_TM_FPSCR:
2213                *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2214                break;
2215        case KVM_REG_PPC_TM_AMR:
2216                *val = get_reg_val(id, vcpu->arch.amr_tm);
2217                break;
2218        case KVM_REG_PPC_TM_PPR:
2219                *val = get_reg_val(id, vcpu->arch.ppr_tm);
2220                break;
2221        case KVM_REG_PPC_TM_VRSAVE:
2222                *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2223                break;
2224        case KVM_REG_PPC_TM_VSCR:
2225                if (cpu_has_feature(CPU_FTR_ALTIVEC))
2226                        *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2227                else
2228                        r = -ENXIO;
2229                break;
2230        case KVM_REG_PPC_TM_DSCR:
2231                *val = get_reg_val(id, vcpu->arch.dscr_tm);
2232                break;
2233        case KVM_REG_PPC_TM_TAR:
2234                *val = get_reg_val(id, vcpu->arch.tar_tm);
2235                break;
2236#endif
2237        case KVM_REG_PPC_ARCH_COMPAT:
2238                *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2239                break;
2240        case KVM_REG_PPC_DEC_EXPIRY:
2241                *val = get_reg_val(id, vcpu->arch.dec_expires +
2242                                   vcpu->arch.vcore->tb_offset);
2243                break;
2244        case KVM_REG_PPC_ONLINE:
2245                *val = get_reg_val(id, vcpu->arch.online);
2246                break;
2247        case KVM_REG_PPC_PTCR:
2248                *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2249                break;
2250        default:
2251                r = -EINVAL;
2252                break;
2253        }
2254
2255        return r;
2256}
2257
2258static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2259                                 union kvmppc_one_reg *val)
2260{
2261        int r = 0;
2262        long int i;
2263        unsigned long addr, len;
2264
2265        switch (id) {
2266        case KVM_REG_PPC_HIOR:
2267                /* Only allow this to be set to zero */
2268                if (set_reg_val(id, *val))
2269                        r = -EINVAL;
2270                break;
2271        case KVM_REG_PPC_DABR:
2272                vcpu->arch.dabr = set_reg_val(id, *val);
2273                break;
2274        case KVM_REG_PPC_DABRX:
2275                vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2276                break;
2277        case KVM_REG_PPC_DSCR:
2278                vcpu->arch.dscr = set_reg_val(id, *val);
2279                break;
2280        case KVM_REG_PPC_PURR:
2281                vcpu->arch.purr = set_reg_val(id, *val);
2282                break;
2283        case KVM_REG_PPC_SPURR:
2284                vcpu->arch.spurr = set_reg_val(id, *val);
2285                break;
2286        case KVM_REG_PPC_AMR:
2287                vcpu->arch.amr = set_reg_val(id, *val);
2288                break;
2289        case KVM_REG_PPC_UAMOR:
2290                vcpu->arch.uamor = set_reg_val(id, *val);
2291                break;
2292        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2293                i = id - KVM_REG_PPC_MMCR0;
2294                vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2295                break;
2296        case KVM_REG_PPC_MMCR2:
2297                vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2298                break;
2299        case KVM_REG_PPC_MMCRA:
2300                vcpu->arch.mmcra = set_reg_val(id, *val);
2301                break;
2302        case KVM_REG_PPC_MMCRS:
2303                vcpu->arch.mmcrs = set_reg_val(id, *val);
2304                break;
2305        case KVM_REG_PPC_MMCR3:
2306                *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2307                break;
2308        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2309                i = id - KVM_REG_PPC_PMC1;
2310                vcpu->arch.pmc[i] = set_reg_val(id, *val);
2311                break;
2312        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2313                i = id - KVM_REG_PPC_SPMC1;
2314                vcpu->arch.spmc[i] = set_reg_val(id, *val);
2315                break;
2316        case KVM_REG_PPC_SIAR:
2317                vcpu->arch.siar = set_reg_val(id, *val);
2318                break;
2319        case KVM_REG_PPC_SDAR:
2320                vcpu->arch.sdar = set_reg_val(id, *val);
2321                break;
2322        case KVM_REG_PPC_SIER:
2323                vcpu->arch.sier[0] = set_reg_val(id, *val);
2324                break;
2325        case KVM_REG_PPC_SIER2:
2326                vcpu->arch.sier[1] = set_reg_val(id, *val);
2327                break;
2328        case KVM_REG_PPC_SIER3:
2329                vcpu->arch.sier[2] = set_reg_val(id, *val);
2330                break;
2331        case KVM_REG_PPC_IAMR:
2332                vcpu->arch.iamr = set_reg_val(id, *val);
2333                break;
2334        case KVM_REG_PPC_PSPB:
2335                vcpu->arch.pspb = set_reg_val(id, *val);
2336                break;
2337        case KVM_REG_PPC_DPDES:
2338                vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2339                break;
2340        case KVM_REG_PPC_VTB:
2341                vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2342                break;
2343        case KVM_REG_PPC_DAWR:
2344                vcpu->arch.dawr0 = set_reg_val(id, *val);
2345                break;
2346        case KVM_REG_PPC_DAWRX:
2347                vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2348                break;
2349        case KVM_REG_PPC_DAWR1:
2350                vcpu->arch.dawr1 = set_reg_val(id, *val);
2351                break;
2352        case KVM_REG_PPC_DAWRX1:
2353                vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2354                break;
2355        case KVM_REG_PPC_CIABR:
2356                vcpu->arch.ciabr = set_reg_val(id, *val);
2357                /* Don't allow setting breakpoints in hypervisor code */
2358                if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2359                        vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
2360                break;
2361        case KVM_REG_PPC_CSIGR:
2362                vcpu->arch.csigr = set_reg_val(id, *val);
2363                break;
2364        case KVM_REG_PPC_TACR:
2365                vcpu->arch.tacr = set_reg_val(id, *val);
2366                break;
2367        case KVM_REG_PPC_TCSCR:
2368                vcpu->arch.tcscr = set_reg_val(id, *val);
2369                break;
2370        case KVM_REG_PPC_PID:
2371                vcpu->arch.pid = set_reg_val(id, *val);
2372                break;
2373        case KVM_REG_PPC_ACOP:
2374                vcpu->arch.acop = set_reg_val(id, *val);
2375                break;
2376        case KVM_REG_PPC_WORT:
2377                vcpu->arch.wort = set_reg_val(id, *val);
2378                break;
2379        case KVM_REG_PPC_TIDR:
2380                vcpu->arch.tid = set_reg_val(id, *val);
2381                break;
2382        case KVM_REG_PPC_PSSCR:
2383                vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2384                break;
2385        case KVM_REG_PPC_VPA_ADDR:
2386                addr = set_reg_val(id, *val);
2387                r = -EINVAL;
2388                if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2389                              vcpu->arch.dtl.next_gpa))
2390                        break;
2391                r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2392                break;
2393        case KVM_REG_PPC_VPA_SLB:
2394                addr = val->vpaval.addr;
2395                len = val->vpaval.length;
2396                r = -EINVAL;
2397                if (addr && !vcpu->arch.vpa.next_gpa)
2398                        break;
2399                r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2400                break;
2401        case KVM_REG_PPC_VPA_DTL:
2402                addr = val->vpaval.addr;
2403                len = val->vpaval.length;
2404                r = -EINVAL;
2405                if (addr && (len < sizeof(struct dtl_entry) ||
2406                             !vcpu->arch.vpa.next_gpa))
2407                        break;
2408                len -= len % sizeof(struct dtl_entry);
2409                r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2410                break;
2411        case KVM_REG_PPC_TB_OFFSET:
2412                /* round up to multiple of 2^24 */
2413                vcpu->arch.vcore->tb_offset =
2414                        ALIGN(set_reg_val(id, *val), 1UL << 24);
2415                break;
2416        case KVM_REG_PPC_LPCR:
2417                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2418                break;
2419        case KVM_REG_PPC_LPCR_64:
2420                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2421                break;
2422        case KVM_REG_PPC_PPR:
2423                vcpu->arch.ppr = set_reg_val(id, *val);
2424                break;
2425#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2426        case KVM_REG_PPC_TFHAR:
2427                vcpu->arch.tfhar = set_reg_val(id, *val);
2428                break;
2429        case KVM_REG_PPC_TFIAR:
2430                vcpu->arch.tfiar = set_reg_val(id, *val);
2431                break;
2432        case KVM_REG_PPC_TEXASR:
2433                vcpu->arch.texasr = set_reg_val(id, *val);
2434                break;
2435        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2436                i = id - KVM_REG_PPC_TM_GPR0;
2437                vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2438                break;
2439        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2440        {
2441                int j;
2442                i = id - KVM_REG_PPC_TM_VSR0;
2443                if (i < 32)
2444                        for (j = 0; j < TS_FPRWIDTH; j++)
2445                                vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2446                else
2447                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
2448                                vcpu->arch.vr_tm.vr[i-32] = val->vval;
2449                        else
2450                                r = -ENXIO;
2451                break;
2452        }
2453        case KVM_REG_PPC_TM_CR:
2454                vcpu->arch.cr_tm = set_reg_val(id, *val);
2455                break;
2456        case KVM_REG_PPC_TM_XER:
2457                vcpu->arch.xer_tm = set_reg_val(id, *val);
2458                break;
2459        case KVM_REG_PPC_TM_LR:
2460                vcpu->arch.lr_tm = set_reg_val(id, *val);
2461                break;
2462        case KVM_REG_PPC_TM_CTR:
2463                vcpu->arch.ctr_tm = set_reg_val(id, *val);
2464                break;
2465        case KVM_REG_PPC_TM_FPSCR:
2466                vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2467                break;
2468        case KVM_REG_PPC_TM_AMR:
2469                vcpu->arch.amr_tm = set_reg_val(id, *val);
2470                break;
2471        case KVM_REG_PPC_TM_PPR:
2472                vcpu->arch.ppr_tm = set_reg_val(id, *val);
2473                break;
2474        case KVM_REG_PPC_TM_VRSAVE:
2475                vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2476                break;
2477        case KVM_REG_PPC_TM_VSCR:
2478                if (cpu_has_feature(CPU_FTR_ALTIVEC))
2479                        vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2480                else
2481                        r = - ENXIO;
2482                break;
2483        case KVM_REG_PPC_TM_DSCR:
2484                vcpu->arch.dscr_tm = set_reg_val(id, *val);
2485                break;
2486        case KVM_REG_PPC_TM_TAR:
2487                vcpu->arch.tar_tm = set_reg_val(id, *val);
2488                break;
2489#endif
2490        case KVM_REG_PPC_ARCH_COMPAT:
2491                r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2492                break;
2493        case KVM_REG_PPC_DEC_EXPIRY:
2494                vcpu->arch.dec_expires = set_reg_val(id, *val) -
2495                        vcpu->arch.vcore->tb_offset;
2496                break;
2497        case KVM_REG_PPC_ONLINE:
2498                i = set_reg_val(id, *val);
2499                if (i && !vcpu->arch.online)
2500                        atomic_inc(&vcpu->arch.vcore->online_count);
2501                else if (!i && vcpu->arch.online)
2502                        atomic_dec(&vcpu->arch.vcore->online_count);
2503                vcpu->arch.online = i;
2504                break;
2505        case KVM_REG_PPC_PTCR:
2506                vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2507                break;
2508        default:
2509                r = -EINVAL;
2510                break;
2511        }
2512
2513        return r;
2514}
2515
2516/*
2517 * On POWER9, threads are independent and can be in different partitions.
2518 * Therefore we consider each thread to be a subcore.
2519 * There is a restriction that all threads have to be in the same
2520 * MMU mode (radix or HPT), unfortunately, but since we only support
2521 * HPT guests on a HPT host so far, that isn't an impediment yet.
2522 */
2523static int threads_per_vcore(struct kvm *kvm)
2524{
2525        if (cpu_has_feature(CPU_FTR_ARCH_300))
2526                return 1;
2527        return threads_per_subcore;
2528}
2529
2530static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2531{
2532        struct kvmppc_vcore *vcore;
2533
2534        vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2535
2536        if (vcore == NULL)
2537                return NULL;
2538
2539        spin_lock_init(&vcore->lock);
2540        spin_lock_init(&vcore->stoltb_lock);
2541        rcuwait_init(&vcore->wait);
2542        vcore->preempt_tb = TB_NIL;
2543        vcore->lpcr = kvm->arch.lpcr;
2544        vcore->first_vcpuid = id;
2545        vcore->kvm = kvm;
2546        INIT_LIST_HEAD(&vcore->preempt_list);
2547
2548        return vcore;
2549}
2550
2551#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2552static struct debugfs_timings_element {
2553        const char *name;
2554        size_t offset;
2555} timings[] = {
2556        {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2557        {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2558        {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2559        {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2560        {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2561};
2562
2563#define N_TIMINGS       (ARRAY_SIZE(timings))
2564
2565struct debugfs_timings_state {
2566        struct kvm_vcpu *vcpu;
2567        unsigned int    buflen;
2568        char            buf[N_TIMINGS * 100];
2569};
2570
2571static int debugfs_timings_open(struct inode *inode, struct file *file)
2572{
2573        struct kvm_vcpu *vcpu = inode->i_private;
2574        struct debugfs_timings_state *p;
2575
2576        p = kzalloc(sizeof(*p), GFP_KERNEL);
2577        if (!p)
2578                return -ENOMEM;
2579
2580        kvm_get_kvm(vcpu->kvm);
2581        p->vcpu = vcpu;
2582        file->private_data = p;
2583
2584        return nonseekable_open(inode, file);
2585}
2586
2587static int debugfs_timings_release(struct inode *inode, struct file *file)
2588{
2589        struct debugfs_timings_state *p = file->private_data;
2590
2591        kvm_put_kvm(p->vcpu->kvm);
2592        kfree(p);
2593        return 0;
2594}
2595
2596static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2597                                    size_t len, loff_t *ppos)
2598{
2599        struct debugfs_timings_state *p = file->private_data;
2600        struct kvm_vcpu *vcpu = p->vcpu;
2601        char *s, *buf_end;
2602        struct kvmhv_tb_accumulator tb;
2603        u64 count;
2604        loff_t pos;
2605        ssize_t n;
2606        int i, loops;
2607        bool ok;
2608
2609        if (!p->buflen) {
2610                s = p->buf;
2611                buf_end = s + sizeof(p->buf);
2612                for (i = 0; i < N_TIMINGS; ++i) {
2613                        struct kvmhv_tb_accumulator *acc;
2614
2615                        acc = (struct kvmhv_tb_accumulator *)
2616                                ((unsigned long)vcpu + timings[i].offset);
2617                        ok = false;
2618                        for (loops = 0; loops < 1000; ++loops) {
2619                                count = acc->seqcount;
2620                                if (!(count & 1)) {
2621                                        smp_rmb();
2622                                        tb = *acc;
2623                                        smp_rmb();
2624                                        if (count == acc->seqcount) {
2625                                                ok = true;
2626                                                break;
2627                                        }
2628                                }
2629                                udelay(1);
2630                        }
2631                        if (!ok)
2632                                snprintf(s, buf_end - s, "%s: stuck\n",
2633                                        timings[i].name);
2634                        else
2635                                snprintf(s, buf_end - s,
2636                                        "%s: %llu %llu %llu %llu\n",
2637                                        timings[i].name, count / 2,
2638                                        tb_to_ns(tb.tb_total),
2639                                        tb_to_ns(tb.tb_min),
2640                                        tb_to_ns(tb.tb_max));
2641                        s += strlen(s);
2642                }
2643                p->buflen = s - p->buf;
2644        }
2645
2646        pos = *ppos;
2647        if (pos >= p->buflen)
2648                return 0;
2649        if (len > p->buflen - pos)
2650                len = p->buflen - pos;
2651        n = copy_to_user(buf, p->buf + pos, len);
2652        if (n) {
2653                if (n == len)
2654                        return -EFAULT;
2655                len -= n;
2656        }
2657        *ppos = pos + len;
2658        return len;
2659}
2660
2661static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2662                                     size_t len, loff_t *ppos)
2663{
2664        return -EACCES;
2665}
2666
2667static const struct file_operations debugfs_timings_ops = {
2668        .owner   = THIS_MODULE,
2669        .open    = debugfs_timings_open,
2670        .release = debugfs_timings_release,
2671        .read    = debugfs_timings_read,
2672        .write   = debugfs_timings_write,
2673        .llseek  = generic_file_llseek,
2674};
2675
2676/* Create a debugfs directory for the vcpu */
2677static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2678{
2679        char buf[16];
2680        struct kvm *kvm = vcpu->kvm;
2681
2682        snprintf(buf, sizeof(buf), "vcpu%u", id);
2683        vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2684        debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2685                            &debugfs_timings_ops);
2686}
2687
2688#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2689static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2690{
2691}
2692#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2693
2694static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2695{
2696        int err;
2697        int core;
2698        struct kvmppc_vcore *vcore;
2699        struct kvm *kvm;
2700        unsigned int id;
2701
2702        kvm = vcpu->kvm;
2703        id = vcpu->vcpu_id;
2704
2705        vcpu->arch.shared = &vcpu->arch.shregs;
2706#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2707        /*
2708         * The shared struct is never shared on HV,
2709         * so we can always use host endianness
2710         */
2711#ifdef __BIG_ENDIAN__
2712        vcpu->arch.shared_big_endian = true;
2713#else
2714        vcpu->arch.shared_big_endian = false;
2715#endif
2716#endif
2717        vcpu->arch.mmcr[0] = MMCR0_FC;
2718        vcpu->arch.ctrl = CTRL_RUNLATCH;
2719        /* default to host PVR, since we can't spoof it */
2720        kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2721        spin_lock_init(&vcpu->arch.vpa_update_lock);
2722        spin_lock_init(&vcpu->arch.tbacct_lock);
2723        vcpu->arch.busy_preempt = TB_NIL;
2724        vcpu->arch.shregs.msr = MSR_ME;
2725        vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2726
2727        /*
2728         * Set the default HFSCR for the guest from the host value.
2729         * This value is only used on POWER9.
2730         * On POWER9, we want to virtualize the doorbell facility, so we
2731         * don't set the HFSCR_MSGP bit, and that causes those instructions
2732         * to trap and then we emulate them.
2733         */
2734        vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2735                HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2736        if (cpu_has_feature(CPU_FTR_HVMODE)) {
2737                vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2738#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2739                if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2740                        vcpu->arch.hfscr |= HFSCR_TM;
2741#endif
2742        }
2743        if (cpu_has_feature(CPU_FTR_TM_COMP))
2744                vcpu->arch.hfscr |= HFSCR_TM;
2745
2746        vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2747
2748        kvmppc_mmu_book3s_hv_init(vcpu);
2749
2750        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2751
2752        init_waitqueue_head(&vcpu->arch.cpu_run);
2753
2754        mutex_lock(&kvm->lock);
2755        vcore = NULL;
2756        err = -EINVAL;
2757        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2758                if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2759                        pr_devel("KVM: VCPU ID too high\n");
2760                        core = KVM_MAX_VCORES;
2761                } else {
2762                        BUG_ON(kvm->arch.smt_mode != 1);
2763                        core = kvmppc_pack_vcpu_id(kvm, id);
2764                }
2765        } else {
2766                core = id / kvm->arch.smt_mode;
2767        }
2768        if (core < KVM_MAX_VCORES) {
2769                vcore = kvm->arch.vcores[core];
2770                if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2771                        pr_devel("KVM: collision on id %u", id);
2772                        vcore = NULL;
2773                } else if (!vcore) {
2774                        /*
2775                         * Take mmu_setup_lock for mutual exclusion
2776                         * with kvmppc_update_lpcr().
2777                         */
2778                        err = -ENOMEM;
2779                        vcore = kvmppc_vcore_create(kvm,
2780                                        id & ~(kvm->arch.smt_mode - 1));
2781                        mutex_lock(&kvm->arch.mmu_setup_lock);
2782                        kvm->arch.vcores[core] = vcore;
2783                        kvm->arch.online_vcores++;
2784                        mutex_unlock(&kvm->arch.mmu_setup_lock);
2785                }
2786        }
2787        mutex_unlock(&kvm->lock);
2788
2789        if (!vcore)
2790                return err;
2791
2792        spin_lock(&vcore->lock);
2793        ++vcore->num_threads;
2794        spin_unlock(&vcore->lock);
2795        vcpu->arch.vcore = vcore;
2796        vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2797        vcpu->arch.thread_cpu = -1;
2798        vcpu->arch.prev_cpu = -1;
2799
2800        vcpu->arch.cpu_type = KVM_CPU_3S_64;
2801        kvmppc_sanity_check(vcpu);
2802
2803        debugfs_vcpu_init(vcpu, id);
2804
2805        return 0;
2806}
2807
2808static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2809                              unsigned long flags)
2810{
2811        int err;
2812        int esmt = 0;
2813
2814        if (flags)
2815                return -EINVAL;
2816        if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2817                return -EINVAL;
2818        if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2819                /*
2820                 * On POWER8 (or POWER7), the threading mode is "strict",
2821                 * so we pack smt_mode vcpus per vcore.
2822                 */
2823                if (smt_mode > threads_per_subcore)
2824                        return -EINVAL;
2825        } else {
2826                /*
2827                 * On POWER9, the threading mode is "loose",
2828                 * so each vcpu gets its own vcore.
2829                 */
2830                esmt = smt_mode;
2831                smt_mode = 1;
2832        }
2833        mutex_lock(&kvm->lock);
2834        err = -EBUSY;
2835        if (!kvm->arch.online_vcores) {
2836                kvm->arch.smt_mode = smt_mode;
2837                kvm->arch.emul_smt_mode = esmt;
2838                err = 0;
2839        }
2840        mutex_unlock(&kvm->lock);
2841
2842        return err;
2843}
2844
2845static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2846{
2847        if (vpa->pinned_addr)
2848                kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2849                                        vpa->dirty);
2850}
2851
2852static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2853{
2854        spin_lock(&vcpu->arch.vpa_update_lock);
2855        unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2856        unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2857        unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2858        spin_unlock(&vcpu->arch.vpa_update_lock);
2859}
2860
2861static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2862{
2863        /* Indicate we want to get back into the guest */
2864        return 1;
2865}
2866
2867static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2868{
2869        unsigned long dec_nsec, now;
2870
2871        now = get_tb();
2872        if (now > vcpu->arch.dec_expires) {
2873                /* decrementer has already gone negative */
2874                kvmppc_core_queue_dec(vcpu);
2875                kvmppc_core_prepare_to_enter(vcpu);
2876                return;
2877        }
2878        dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2879        hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2880        vcpu->arch.timer_running = 1;
2881}
2882
2883extern int __kvmppc_vcore_entry(void);
2884
2885static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2886                                   struct kvm_vcpu *vcpu)
2887{
2888        u64 now;
2889
2890        if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2891                return;
2892        spin_lock_irq(&vcpu->arch.tbacct_lock);
2893        now = mftb();
2894        vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2895                vcpu->arch.stolen_logged;
2896        vcpu->arch.busy_preempt = now;
2897        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2898        spin_unlock_irq(&vcpu->arch.tbacct_lock);
2899        --vc->n_runnable;
2900        WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2901}
2902
2903static int kvmppc_grab_hwthread(int cpu)
2904{
2905        struct paca_struct *tpaca;
2906        long timeout = 10000;
2907
2908        tpaca = paca_ptrs[cpu];
2909
2910        /* Ensure the thread won't go into the kernel if it wakes */
2911        tpaca->kvm_hstate.kvm_vcpu = NULL;
2912        tpaca->kvm_hstate.kvm_vcore = NULL;
2913        tpaca->kvm_hstate.napping = 0;
2914        smp_wmb();
2915        tpaca->kvm_hstate.hwthread_req = 1;
2916
2917        /*
2918         * If the thread is already executing in the kernel (e.g. handling
2919         * a stray interrupt), wait for it to get back to nap mode.
2920         * The smp_mb() is to ensure that our setting of hwthread_req
2921         * is visible before we look at hwthread_state, so if this
2922         * races with the code at system_reset_pSeries and the thread
2923         * misses our setting of hwthread_req, we are sure to see its
2924         * setting of hwthread_state, and vice versa.
2925         */
2926        smp_mb();
2927        while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2928                if (--timeout <= 0) {
2929                        pr_err("KVM: couldn't grab cpu %d\n", cpu);
2930                        return -EBUSY;
2931                }
2932                udelay(1);
2933        }
2934        return 0;
2935}
2936
2937static void kvmppc_release_hwthread(int cpu)
2938{
2939        struct paca_struct *tpaca;
2940
2941        tpaca = paca_ptrs[cpu];
2942        tpaca->kvm_hstate.hwthread_req = 0;
2943        tpaca->kvm_hstate.kvm_vcpu = NULL;
2944        tpaca->kvm_hstate.kvm_vcore = NULL;
2945        tpaca->kvm_hstate.kvm_split_mode = NULL;
2946}
2947
2948static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2949{
2950        struct kvm_nested_guest *nested = vcpu->arch.nested;
2951        cpumask_t *cpu_in_guest;
2952        int i;
2953
2954        cpu = cpu_first_tlb_thread_sibling(cpu);
2955        if (nested) {
2956                cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2957                cpu_in_guest = &nested->cpu_in_guest;
2958        } else {
2959                cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2960                cpu_in_guest = &kvm->arch.cpu_in_guest;
2961        }
2962        /*
2963         * Make sure setting of bit in need_tlb_flush precedes
2964         * testing of cpu_in_guest bits.  The matching barrier on
2965         * the other side is the first smp_mb() in kvmppc_run_core().
2966         */
2967        smp_mb();
2968        for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
2969                                        i += cpu_tlb_thread_sibling_step())
2970                if (cpumask_test_cpu(i, cpu_in_guest))
2971                        smp_call_function_single(i, do_nothing, NULL, 1);
2972}
2973
2974static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2975{
2976        struct kvm_nested_guest *nested = vcpu->arch.nested;
2977        struct kvm *kvm = vcpu->kvm;
2978        int prev_cpu;
2979
2980        if (!cpu_has_feature(CPU_FTR_HVMODE))
2981                return;
2982
2983        if (nested)
2984                prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2985        else
2986                prev_cpu = vcpu->arch.prev_cpu;
2987
2988        /*
2989         * With radix, the guest can do TLB invalidations itself,
2990         * and it could choose to use the local form (tlbiel) if
2991         * it is invalidating a translation that has only ever been
2992         * used on one vcpu.  However, that doesn't mean it has
2993         * only ever been used on one physical cpu, since vcpus
2994         * can move around between pcpus.  To cope with this, when
2995         * a vcpu moves from one pcpu to another, we need to tell
2996         * any vcpus running on the same core as this vcpu previously
2997         * ran to flush the TLB.  The TLB is shared between threads,
2998         * so we use a single bit in .need_tlb_flush for all 4 threads.
2999         */
3000        if (prev_cpu != pcpu) {
3001                if (prev_cpu >= 0 &&
3002                    cpu_first_tlb_thread_sibling(prev_cpu) !=
3003                    cpu_first_tlb_thread_sibling(pcpu))
3004                        radix_flush_cpu(kvm, prev_cpu, vcpu);
3005                if (nested)
3006                        nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3007                else
3008                        vcpu->arch.prev_cpu = pcpu;
3009        }
3010}
3011
3012static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3013{
3014        int cpu;
3015        struct paca_struct *tpaca;
3016        struct kvm *kvm = vc->kvm;
3017
3018        cpu = vc->pcpu;
3019        if (vcpu) {
3020                if (vcpu->arch.timer_running) {
3021                        hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3022                        vcpu->arch.timer_running = 0;
3023                }
3024                cpu += vcpu->arch.ptid;
3025                vcpu->cpu = vc->pcpu;
3026                vcpu->arch.thread_cpu = cpu;
3027                cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
3028        }
3029        tpaca = paca_ptrs[cpu];
3030        tpaca->kvm_hstate.kvm_vcpu = vcpu;
3031        tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3032        tpaca->kvm_hstate.fake_suspend = 0;
3033        /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3034        smp_wmb();
3035        tpaca->kvm_hstate.kvm_vcore = vc;
3036        if (cpu != smp_processor_id())
3037                kvmppc_ipi_thread(cpu);
3038}
3039
3040static void kvmppc_wait_for_nap(int n_threads)
3041{
3042        int cpu = smp_processor_id();
3043        int i, loops;
3044
3045        if (n_threads <= 1)
3046                return;
3047        for (loops = 0; loops < 1000000; ++loops) {
3048                /*
3049                 * Check if all threads are finished.
3050                 * We set the vcore pointer when starting a thread
3051                 * and the thread clears it when finished, so we look
3052                 * for any threads that still have a non-NULL vcore ptr.
3053                 */
3054                for (i = 1; i < n_threads; ++i)
3055                        if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3056                                break;
3057                if (i == n_threads) {
3058                        HMT_medium();
3059                        return;
3060                }
3061                HMT_low();
3062        }
3063        HMT_medium();
3064        for (i = 1; i < n_threads; ++i)
3065                if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3066                        pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3067}
3068
3069/*
3070 * Check that we are on thread 0 and that any other threads in
3071 * this core are off-line.  Then grab the threads so they can't
3072 * enter the kernel.
3073 */
3074static int on_primary_thread(void)
3075{
3076        int cpu = smp_processor_id();
3077        int thr;
3078
3079        /* Are we on a primary subcore? */
3080        if (cpu_thread_in_subcore(cpu))
3081                return 0;
3082
3083        thr = 0;
3084        while (++thr < threads_per_subcore)
3085                if (cpu_online(cpu + thr))
3086                        return 0;
3087
3088        /* Grab all hw threads so they can't go into the kernel */
3089        for (thr = 1; thr < threads_per_subcore; ++thr) {
3090                if (kvmppc_grab_hwthread(cpu + thr)) {
3091                        /* Couldn't grab one; let the others go */
3092                        do {
3093                                kvmppc_release_hwthread(cpu + thr);
3094                        } while (--thr > 0);
3095                        return 0;
3096                }
3097        }
3098        return 1;
3099}
3100
3101/*
3102 * A list of virtual cores for each physical CPU.
3103 * These are vcores that could run but their runner VCPU tasks are
3104 * (or may be) preempted.
3105 */
3106struct preempted_vcore_list {
3107        struct list_head        list;
3108        spinlock_t              lock;
3109};
3110
3111static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3112
3113static void init_vcore_lists(void)
3114{
3115        int cpu;
3116
3117        for_each_possible_cpu(cpu) {
3118                struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3119                spin_lock_init(&lp->lock);
3120                INIT_LIST_HEAD(&lp->list);
3121        }
3122}
3123
3124static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3125{
3126        struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3127
3128        vc->vcore_state = VCORE_PREEMPT;
3129        vc->pcpu = smp_processor_id();
3130        if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3131                spin_lock(&lp->lock);
3132                list_add_tail(&vc->preempt_list, &lp->list);
3133                spin_unlock(&lp->lock);
3134        }
3135
3136        /* Start accumulating stolen time */
3137        kvmppc_core_start_stolen(vc);
3138}
3139
3140static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3141{
3142        struct preempted_vcore_list *lp;
3143
3144        kvmppc_core_end_stolen(vc);
3145        if (!list_empty(&vc->preempt_list)) {
3146                lp = &per_cpu(preempted_vcores, vc->pcpu);
3147                spin_lock(&lp->lock);
3148                list_del_init(&vc->preempt_list);
3149                spin_unlock(&lp->lock);
3150        }
3151        vc->vcore_state = VCORE_INACTIVE;
3152}
3153
3154/*
3155 * This stores information about the virtual cores currently
3156 * assigned to a physical core.
3157 */
3158struct core_info {
3159        int             n_subcores;
3160        int             max_subcore_threads;
3161        int             total_threads;
3162        int             subcore_threads[MAX_SUBCORES];
3163        struct kvmppc_vcore *vc[MAX_SUBCORES];
3164};
3165
3166/*
3167 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3168 * respectively in 2-way micro-threading (split-core) mode on POWER8.
3169 */
3170static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3171
3172static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3173{
3174        memset(cip, 0, sizeof(*cip));
3175        cip->n_subcores = 1;
3176        cip->max_subcore_threads = vc->num_threads;
3177        cip->total_threads = vc->num_threads;
3178        cip->subcore_threads[0] = vc->num_threads;
3179        cip->vc[0] = vc;
3180}
3181
3182static bool subcore_config_ok(int n_subcores, int n_threads)
3183{
3184        /*
3185         * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3186         * split-core mode, with one thread per subcore.
3187         */
3188        if (cpu_has_feature(CPU_FTR_ARCH_300))
3189                return n_subcores <= 4 && n_threads == 1;
3190
3191        /* On POWER8, can only dynamically split if unsplit to begin with */
3192        if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3193                return false;
3194        if (n_subcores > MAX_SUBCORES)
3195                return false;
3196        if (n_subcores > 1) {
3197                if (!(dynamic_mt_modes & 2))
3198                        n_subcores = 4;
3199                if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3200                        return false;
3201        }
3202
3203        return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3204}
3205
3206static void init_vcore_to_run(struct kvmppc_vcore *vc)
3207{
3208        vc->entry_exit_map = 0;
3209        vc->in_guest = 0;
3210        vc->napping_threads = 0;
3211        vc->conferring_threads = 0;
3212        vc->tb_offset_applied = 0;
3213}
3214
3215static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3216{
3217        int n_threads = vc->num_threads;
3218        int sub;
3219
3220        if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3221                return false;
3222
3223        /* In one_vm_per_core mode, require all vcores to be from the same vm */
3224        if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3225                return false;
3226
3227        if (n_threads < cip->max_subcore_threads)
3228                n_threads = cip->max_subcore_threads;
3229        if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3230                return false;
3231        cip->max_subcore_threads = n_threads;
3232
3233        sub = cip->n_subcores;
3234        ++cip->n_subcores;
3235        cip->total_threads += vc->num_threads;
3236        cip->subcore_threads[sub] = vc->num_threads;
3237        cip->vc[sub] = vc;
3238        init_vcore_to_run(vc);
3239        list_del_init(&vc->preempt_list);
3240
3241        return true;
3242}
3243
3244/*
3245 * Work out whether it is possible to piggyback the execution of
3246 * vcore *pvc onto the execution of the other vcores described in *cip.
3247 */
3248static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3249                          int target_threads)
3250{
3251        if (cip->total_threads + pvc->num_threads > target_threads)
3252                return false;
3253
3254        return can_dynamic_split(pvc, cip);
3255}
3256
3257static void prepare_threads(struct kvmppc_vcore *vc)
3258{
3259        int i;
3260        struct kvm_vcpu *vcpu;
3261
3262        for_each_runnable_thread(i, vcpu, vc) {
3263                if (signal_pending(vcpu->arch.run_task))
3264                        vcpu->arch.ret = -EINTR;
3265                else if (vcpu->arch.vpa.update_pending ||
3266                         vcpu->arch.slb_shadow.update_pending ||
3267                         vcpu->arch.dtl.update_pending)
3268                        vcpu->arch.ret = RESUME_GUEST;
3269                else
3270                        continue;
3271                kvmppc_remove_runnable(vc, vcpu);
3272                wake_up(&vcpu->arch.cpu_run);
3273        }
3274}
3275
3276static void collect_piggybacks(struct core_info *cip, int target_threads)
3277{
3278        struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3279        struct kvmppc_vcore *pvc, *vcnext;
3280
3281        spin_lock(&lp->lock);
3282        list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3283                if (!spin_trylock(&pvc->lock))
3284                        continue;
3285                prepare_threads(pvc);
3286                if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3287                        list_del_init(&pvc->preempt_list);
3288                        if (pvc->runner == NULL) {
3289                                pvc->vcore_state = VCORE_INACTIVE;
3290                                kvmppc_core_end_stolen(pvc);
3291                        }
3292                        spin_unlock(&pvc->lock);
3293                        continue;
3294                }
3295                if (!can_piggyback(pvc, cip, target_threads)) {
3296                        spin_unlock(&pvc->lock);
3297                        continue;
3298                }
3299                kvmppc_core_end_stolen(pvc);
3300                pvc->vcore_state = VCORE_PIGGYBACK;
3301                if (cip->total_threads >= target_threads)
3302                        break;
3303        }
3304        spin_unlock(&lp->lock);
3305}
3306
3307static bool recheck_signals_and_mmu(struct core_info *cip)
3308{
3309        int sub, i;
3310        struct kvm_vcpu *vcpu;
3311        struct kvmppc_vcore *vc;
3312
3313        for (sub = 0; sub < cip->n_subcores; ++sub) {
3314                vc = cip->vc[sub];
3315                if (!vc->kvm->arch.mmu_ready)
3316                        return true;
3317                for_each_runnable_thread(i, vcpu, vc)
3318                        if (signal_pending(vcpu->arch.run_task))
3319                                return true;
3320        }
3321        return false;
3322}
3323
3324static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3325{
3326        int still_running = 0, i;
3327        u64 now;
3328        long ret;
3329        struct kvm_vcpu *vcpu;
3330
3331        spin_lock(&vc->lock);
3332        now = get_tb();
3333        for_each_runnable_thread(i, vcpu, vc) {
3334                /*
3335                 * It's safe to unlock the vcore in the loop here, because
3336                 * for_each_runnable_thread() is safe against removal of
3337                 * the vcpu, and the vcore state is VCORE_EXITING here,
3338                 * so any vcpus becoming runnable will have their arch.trap
3339                 * set to zero and can't actually run in the guest.
3340                 */
3341                spin_unlock(&vc->lock);
3342                /* cancel pending dec exception if dec is positive */
3343                if (now < vcpu->arch.dec_expires &&
3344                    kvmppc_core_pending_dec(vcpu))
3345                        kvmppc_core_dequeue_dec(vcpu);
3346
3347                trace_kvm_guest_exit(vcpu);
3348
3349                ret = RESUME_GUEST;
3350                if (vcpu->arch.trap)
3351                        ret = kvmppc_handle_exit_hv(vcpu,
3352                                                    vcpu->arch.run_task);
3353
3354                vcpu->arch.ret = ret;
3355                vcpu->arch.trap = 0;
3356
3357                spin_lock(&vc->lock);
3358                if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3359                        if (vcpu->arch.pending_exceptions)
3360                                kvmppc_core_prepare_to_enter(vcpu);
3361                        if (vcpu->arch.ceded)
3362                                kvmppc_set_timer(vcpu);
3363                        else
3364                                ++still_running;
3365                } else {
3366                        kvmppc_remove_runnable(vc, vcpu);
3367                        wake_up(&vcpu->arch.cpu_run);
3368                }
3369        }
3370        if (!is_master) {
3371                if (still_running > 0) {
3372                        kvmppc_vcore_preempt(vc);
3373                } else if (vc->runner) {
3374                        vc->vcore_state = VCORE_PREEMPT;
3375                        kvmppc_core_start_stolen(vc);
3376                } else {
3377                        vc->vcore_state = VCORE_INACTIVE;
3378                }
3379                if (vc->n_runnable > 0 && vc->runner == NULL) {
3380                        /* make sure there's a candidate runner awake */
3381                        i = -1;
3382                        vcpu = next_runnable_thread(vc, &i);
3383                        wake_up(&vcpu->arch.cpu_run);
3384                }
3385        }
3386        spin_unlock(&vc->lock);
3387}
3388
3389/*
3390 * Clear core from the list of active host cores as we are about to
3391 * enter the guest. Only do this if it is the primary thread of the
3392 * core (not if a subcore) that is entering the guest.
3393 */
3394static inline int kvmppc_clear_host_core(unsigned int cpu)
3395{
3396        int core;
3397
3398        if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3399                return 0;
3400        /*
3401         * Memory barrier can be omitted here as we will do a smp_wmb()
3402         * later in kvmppc_start_thread and we need ensure that state is
3403         * visible to other CPUs only after we enter guest.
3404         */
3405        core = cpu >> threads_shift;
3406        kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3407        return 0;
3408}
3409
3410/*
3411 * Advertise this core as an active host core since we exited the guest
3412 * Only need to do this if it is the primary thread of the core that is
3413 * exiting.
3414 */
3415static inline int kvmppc_set_host_core(unsigned int cpu)
3416{
3417        int core;
3418
3419        if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3420                return 0;
3421
3422        /*
3423         * Memory barrier can be omitted here because we do a spin_unlock
3424         * immediately after this which provides the memory barrier.
3425         */
3426        core = cpu >> threads_shift;
3427        kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3428        return 0;
3429}
3430
3431static void set_irq_happened(int trap)
3432{
3433        switch (trap) {
3434        case BOOK3S_INTERRUPT_EXTERNAL:
3435                local_paca->irq_happened |= PACA_IRQ_EE;
3436                break;
3437        case BOOK3S_INTERRUPT_H_DOORBELL:
3438                local_paca->irq_happened |= PACA_IRQ_DBELL;
3439                break;
3440        case BOOK3S_INTERRUPT_HMI:
3441                local_paca->irq_happened |= PACA_IRQ_HMI;
3442                break;
3443        case BOOK3S_INTERRUPT_SYSTEM_RESET:
3444                replay_system_reset();
3445                break;
3446        }
3447}
3448
3449/*
3450 * Run a set of guest threads on a physical core.
3451 * Called with vc->lock held.
3452 */
3453static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3454{
3455        struct kvm_vcpu *vcpu;
3456        int i;
3457        int srcu_idx;
3458        struct core_info core_info;
3459        struct kvmppc_vcore *pvc;
3460        struct kvm_split_mode split_info, *sip;
3461        int split, subcore_size, active;
3462        int sub;
3463        bool thr0_done;
3464        unsigned long cmd_bit, stat_bit;
3465        int pcpu, thr;
3466        int target_threads;
3467        int controlled_threads;
3468        int trap;
3469        bool is_power8;
3470
3471        if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3472                return;
3473
3474        /*
3475         * Remove from the list any threads that have a signal pending
3476         * or need a VPA update done
3477         */
3478        prepare_threads(vc);
3479
3480        /* if the runner is no longer runnable, let the caller pick a new one */
3481        if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3482                return;
3483
3484        /*
3485         * Initialize *vc.
3486         */
3487        init_vcore_to_run(vc);
3488        vc->preempt_tb = TB_NIL;
3489
3490        /*
3491         * Number of threads that we will be controlling: the same as
3492         * the number of threads per subcore, except on POWER9,
3493         * where it's 1 because the threads are (mostly) independent.
3494         */
3495        controlled_threads = threads_per_vcore(vc->kvm);
3496
3497        /*
3498         * Make sure we are running on primary threads, and that secondary
3499         * threads are offline.  Also check if the number of threads in this
3500         * guest are greater than the current system threads per guest.
3501         */
3502        if ((controlled_threads > 1) &&
3503            ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3504                for_each_runnable_thread(i, vcpu, vc) {
3505                        vcpu->arch.ret = -EBUSY;
3506                        kvmppc_remove_runnable(vc, vcpu);
3507                        wake_up(&vcpu->arch.cpu_run);
3508                }
3509                goto out;
3510        }
3511
3512        /*
3513         * See if we could run any other vcores on the physical core
3514         * along with this one.
3515         */
3516        init_core_info(&core_info, vc);
3517        pcpu = smp_processor_id();
3518        target_threads = controlled_threads;
3519        if (target_smt_mode && target_smt_mode < target_threads)
3520                target_threads = target_smt_mode;
3521        if (vc->num_threads < target_threads)
3522                collect_piggybacks(&core_info, target_threads);
3523
3524        /*
3525         * Hard-disable interrupts, and check resched flag and signals.
3526         * If we need to reschedule or deliver a signal, clean up
3527         * and return without going into the guest(s).
3528         * If the mmu_ready flag has been cleared, don't go into the
3529         * guest because that means a HPT resize operation is in progress.
3530         */
3531        local_irq_disable();
3532        hard_irq_disable();
3533        if (lazy_irq_pending() || need_resched() ||
3534            recheck_signals_and_mmu(&core_info)) {
3535                local_irq_enable();
3536                vc->vcore_state = VCORE_INACTIVE;
3537                /* Unlock all except the primary vcore */
3538                for (sub = 1; sub < core_info.n_subcores; ++sub) {
3539                        pvc = core_info.vc[sub];
3540                        /* Put back on to the preempted vcores list */
3541                        kvmppc_vcore_preempt(pvc);
3542                        spin_unlock(&pvc->lock);
3543                }
3544                for (i = 0; i < controlled_threads; ++i)
3545                        kvmppc_release_hwthread(pcpu + i);
3546                return;
3547        }
3548
3549        kvmppc_clear_host_core(pcpu);
3550
3551        /* Decide on micro-threading (split-core) mode */
3552        subcore_size = threads_per_subcore;
3553        cmd_bit = stat_bit = 0;
3554        split = core_info.n_subcores;
3555        sip = NULL;
3556        is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3557
3558        if (split > 1) {
3559                sip = &split_info;
3560                memset(&split_info, 0, sizeof(split_info));
3561                for (sub = 0; sub < core_info.n_subcores; ++sub)
3562                        split_info.vc[sub] = core_info.vc[sub];
3563
3564                if (is_power8) {
3565                        if (split == 2 && (dynamic_mt_modes & 2)) {
3566                                cmd_bit = HID0_POWER8_1TO2LPAR;
3567                                stat_bit = HID0_POWER8_2LPARMODE;
3568                        } else {
3569                                split = 4;
3570                                cmd_bit = HID0_POWER8_1TO4LPAR;
3571                                stat_bit = HID0_POWER8_4LPARMODE;
3572                        }
3573                        subcore_size = MAX_SMT_THREADS / split;
3574                        split_info.rpr = mfspr(SPRN_RPR);
3575                        split_info.pmmar = mfspr(SPRN_PMMAR);
3576                        split_info.ldbar = mfspr(SPRN_LDBAR);
3577                        split_info.subcore_size = subcore_size;
3578                } else {
3579                        split_info.subcore_size = 1;
3580                }
3581
3582                /* order writes to split_info before kvm_split_mode pointer */
3583                smp_wmb();
3584        }
3585
3586        for (thr = 0; thr < controlled_threads; ++thr) {
3587                struct paca_struct *paca = paca_ptrs[pcpu + thr];
3588
3589                paca->kvm_hstate.napping = 0;
3590                paca->kvm_hstate.kvm_split_mode = sip;
3591        }
3592
3593        /* Initiate micro-threading (split-core) on POWER8 if required */
3594        if (cmd_bit) {
3595                unsigned long hid0 = mfspr(SPRN_HID0);
3596
3597                hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3598                mb();
3599                mtspr(SPRN_HID0, hid0);
3600                isync();
3601                for (;;) {
3602                        hid0 = mfspr(SPRN_HID0);
3603                        if (hid0 & stat_bit)
3604                                break;
3605                        cpu_relax();
3606                }
3607        }
3608
3609        /*
3610         * On POWER8, set RWMR register.
3611         * Since it only affects PURR and SPURR, it doesn't affect
3612         * the host, so we don't save/restore the host value.
3613         */
3614        if (is_power8) {
3615                unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3616                int n_online = atomic_read(&vc->online_count);
3617
3618                /*
3619                 * Use the 8-thread value if we're doing split-core
3620                 * or if the vcore's online count looks bogus.
3621                 */
3622                if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3623                    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3624                        rwmr_val = p8_rwmr_values[n_online];
3625                mtspr(SPRN_RWMR, rwmr_val);
3626        }
3627
3628        /* Start all the threads */
3629        active = 0;
3630        for (sub = 0; sub < core_info.n_subcores; ++sub) {
3631                thr = is_power8 ? subcore_thread_map[sub] : sub;
3632                thr0_done = false;
3633                active |= 1 << thr;
3634                pvc = core_info.vc[sub];
3635                pvc->pcpu = pcpu + thr;
3636                for_each_runnable_thread(i, vcpu, pvc) {
3637                        kvmppc_start_thread(vcpu, pvc);
3638                        kvmppc_create_dtl_entry(vcpu, pvc);
3639                        trace_kvm_guest_enter(vcpu);
3640                        if (!vcpu->arch.ptid)
3641                                thr0_done = true;
3642                        active |= 1 << (thr + vcpu->arch.ptid);
3643                }
3644                /*
3645                 * We need to start the first thread of each subcore
3646                 * even if it doesn't have a vcpu.
3647                 */
3648                if (!thr0_done)
3649                        kvmppc_start_thread(NULL, pvc);
3650        }
3651
3652        /*
3653         * Ensure that split_info.do_nap is set after setting
3654         * the vcore pointer in the PACA of the secondaries.
3655         */
3656        smp_mb();
3657
3658        /*
3659         * When doing micro-threading, poke the inactive threads as well.
3660         * This gets them to the nap instruction after kvm_do_nap,
3661         * which reduces the time taken to unsplit later.
3662         */
3663        if (cmd_bit) {
3664                split_info.do_nap = 1;  /* ask secondaries to nap when done */
3665                for (thr = 1; thr < threads_per_subcore; ++thr)
3666                        if (!(active & (1 << thr)))
3667                                kvmppc_ipi_thread(pcpu + thr);
3668        }
3669
3670        vc->vcore_state = VCORE_RUNNING;
3671        preempt_disable();
3672
3673        trace_kvmppc_run_core(vc, 0);
3674
3675        for (sub = 0; sub < core_info.n_subcores; ++sub)
3676                spin_unlock(&core_info.vc[sub]->lock);
3677
3678        guest_enter_irqoff();
3679
3680        srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3681
3682        this_cpu_disable_ftrace();
3683
3684        /*
3685         * Interrupts will be enabled once we get into the guest,
3686         * so tell lockdep that we're about to enable interrupts.
3687         */
3688        trace_hardirqs_on();
3689
3690        trap = __kvmppc_vcore_entry();
3691
3692        trace_hardirqs_off();
3693
3694        this_cpu_enable_ftrace();
3695
3696        srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3697
3698        set_irq_happened(trap);
3699
3700        spin_lock(&vc->lock);
3701        /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3702        vc->vcore_state = VCORE_EXITING;
3703
3704        /* wait for secondary threads to finish writing their state to memory */
3705        kvmppc_wait_for_nap(controlled_threads);
3706
3707        /* Return to whole-core mode if we split the core earlier */
3708        if (cmd_bit) {
3709                unsigned long hid0 = mfspr(SPRN_HID0);
3710                unsigned long loops = 0;
3711
3712                hid0 &= ~HID0_POWER8_DYNLPARDIS;
3713                stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3714                mb();
3715                mtspr(SPRN_HID0, hid0);
3716                isync();
3717                for (;;) {
3718                        hid0 = mfspr(SPRN_HID0);
3719                        if (!(hid0 & stat_bit))
3720                                break;
3721                        cpu_relax();
3722                        ++loops;
3723                }
3724                split_info.do_nap = 0;
3725        }
3726
3727        kvmppc_set_host_core(pcpu);
3728
3729        guest_exit_irqoff();
3730
3731        local_irq_enable();
3732
3733        /* Let secondaries go back to the offline loop */
3734        for (i = 0; i < controlled_threads; ++i) {
3735                kvmppc_release_hwthread(pcpu + i);
3736                if (sip && sip->napped[i])
3737                        kvmppc_ipi_thread(pcpu + i);
3738                cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3739        }
3740
3741        spin_unlock(&vc->lock);
3742
3743        /* make sure updates to secondary vcpu structs are visible now */
3744        smp_mb();
3745
3746        preempt_enable();
3747
3748        for (sub = 0; sub < core_info.n_subcores; ++sub) {
3749                pvc = core_info.vc[sub];
3750                post_guest_process(pvc, pvc == vc);
3751        }
3752
3753        spin_lock(&vc->lock);
3754
3755 out:
3756        vc->vcore_state = VCORE_INACTIVE;
3757        trace_kvmppc_run_core(vc, 1);
3758}
3759
3760static void load_spr_state(struct kvm_vcpu *vcpu)
3761{
3762        mtspr(SPRN_DSCR, vcpu->arch.dscr);
3763        mtspr(SPRN_IAMR, vcpu->arch.iamr);
3764        mtspr(SPRN_PSPB, vcpu->arch.pspb);
3765        mtspr(SPRN_FSCR, vcpu->arch.fscr);
3766        mtspr(SPRN_TAR, vcpu->arch.tar);
3767        mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3768        mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3769        mtspr(SPRN_BESCR, vcpu->arch.bescr);
3770        mtspr(SPRN_TIDR, vcpu->arch.tid);
3771        mtspr(SPRN_AMR, vcpu->arch.amr);
3772        mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3773
3774        /*
3775         * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI]
3776         * clear (or hstate set appropriately to catch those registers
3777         * being clobbered if we take a MCE or SRESET), so those are done
3778         * later.
3779         */
3780
3781        if (!(vcpu->arch.ctrl & 1))
3782                mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3783}
3784
3785static void store_spr_state(struct kvm_vcpu *vcpu)
3786{
3787        vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3788
3789        vcpu->arch.iamr = mfspr(SPRN_IAMR);
3790        vcpu->arch.pspb = mfspr(SPRN_PSPB);
3791        vcpu->arch.fscr = mfspr(SPRN_FSCR);
3792        vcpu->arch.tar = mfspr(SPRN_TAR);
3793        vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3794        vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3795        vcpu->arch.bescr = mfspr(SPRN_BESCR);
3796        vcpu->arch.tid = mfspr(SPRN_TIDR);
3797        vcpu->arch.amr = mfspr(SPRN_AMR);
3798        vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3799        vcpu->arch.dscr = mfspr(SPRN_DSCR);
3800}
3801
3802/*
3803 * Privileged (non-hypervisor) host registers to save.
3804 */
3805struct p9_host_os_sprs {
3806        unsigned long dscr;
3807        unsigned long tidr;
3808        unsigned long iamr;
3809        unsigned long amr;
3810        unsigned long fscr;
3811};
3812
3813static void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs)
3814{
3815        host_os_sprs->dscr = mfspr(SPRN_DSCR);
3816        host_os_sprs->tidr = mfspr(SPRN_TIDR);
3817        host_os_sprs->iamr = mfspr(SPRN_IAMR);
3818        host_os_sprs->amr = mfspr(SPRN_AMR);
3819        host_os_sprs->fscr = mfspr(SPRN_FSCR);
3820}
3821
3822/* vcpu guest regs must already be saved */
3823static void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu,
3824                                    struct p9_host_os_sprs *host_os_sprs)
3825{
3826        mtspr(SPRN_PSPB, 0);
3827        mtspr(SPRN_UAMOR, 0);
3828
3829        mtspr(SPRN_DSCR, host_os_sprs->dscr);
3830        mtspr(SPRN_TIDR, host_os_sprs->tidr);
3831        mtspr(SPRN_IAMR, host_os_sprs->iamr);
3832
3833        if (host_os_sprs->amr != vcpu->arch.amr)
3834                mtspr(SPRN_AMR, host_os_sprs->amr);
3835
3836        if (host_os_sprs->fscr != vcpu->arch.fscr)
3837                mtspr(SPRN_FSCR, host_os_sprs->fscr);
3838
3839        /* Save guest CTRL register, set runlatch to 1 */
3840        if (!(vcpu->arch.ctrl & 1))
3841                mtspr(SPRN_CTRLT, 1);
3842}
3843
3844static inline bool hcall_is_xics(unsigned long req)
3845{
3846        return req == H_EOI || req == H_CPPR || req == H_IPI ||
3847                req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3848}
3849
3850/*
3851 * Guest entry for POWER9 and later CPUs.
3852 */
3853static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3854                         unsigned long lpcr)
3855{
3856        struct kvmppc_vcore *vc = vcpu->arch.vcore;
3857        struct p9_host_os_sprs host_os_sprs;
3858        s64 dec;
3859        u64 tb;
3860        int trap, save_pmu;
3861
3862        WARN_ON_ONCE(vcpu->arch.ceded);
3863
3864        dec = mfspr(SPRN_DEC);
3865        tb = mftb();
3866        if (dec < 0)
3867                return BOOK3S_INTERRUPT_HV_DECREMENTER;
3868        local_paca->kvm_hstate.dec_expires = dec + tb;
3869        if (local_paca->kvm_hstate.dec_expires < time_limit)
3870                time_limit = local_paca->kvm_hstate.dec_expires;
3871
3872        save_p9_host_os_sprs(&host_os_sprs);
3873
3874        kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3875
3876        kvmppc_subcore_enter_guest();
3877
3878        vc->entry_exit_map = 1;
3879        vc->in_guest = 1;
3880
3881        if (vcpu->arch.vpa.pinned_addr) {
3882                struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3883                u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3884                lp->yield_count = cpu_to_be32(yield_count);
3885                vcpu->arch.vpa.dirty = 1;
3886        }
3887
3888        if (cpu_has_feature(CPU_FTR_TM) ||
3889            cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3890                kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3891
3892#ifdef CONFIG_PPC_PSERIES
3893        if (kvmhv_on_pseries()) {
3894                barrier();
3895                if (vcpu->arch.vpa.pinned_addr) {
3896                        struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3897                        get_lppaca()->pmcregs_in_use = lp->pmcregs_in_use;
3898                } else {
3899                        get_lppaca()->pmcregs_in_use = 1;
3900                }
3901                barrier();
3902        }
3903#endif
3904        kvmhv_load_guest_pmu(vcpu);
3905
3906        msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3907        load_fp_state(&vcpu->arch.fp);
3908#ifdef CONFIG_ALTIVEC
3909        load_vr_state(&vcpu->arch.vr);
3910#endif
3911        mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3912
3913        load_spr_state(vcpu);
3914
3915        /*
3916         * When setting DEC, we must always deal with irq_work_raise via NMI vs
3917         * setting DEC. The problem occurs right as we switch into guest mode
3918         * if a NMI hits and sets pending work and sets DEC, then that will
3919         * apply to the guest and not bring us back to the host.
3920         *
3921         * irq_work_raise could check a flag (or possibly LPCR[HDICE] for
3922         * example) and set HDEC to 1? That wouldn't solve the nested hv
3923         * case which needs to abort the hcall or zero the time limit.
3924         *
3925         * XXX: Another day's problem.
3926         */
3927        mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3928
3929        if (kvmhv_on_pseries()) {
3930                /*
3931                 * We need to save and restore the guest visible part of the
3932                 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3933                 * doesn't do this for us. Note only required if pseries since
3934                 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3935                 */
3936                unsigned long host_psscr;
3937                /* call our hypervisor to load up HV regs and go */
3938                struct hv_guest_state hvregs;
3939
3940                host_psscr = mfspr(SPRN_PSSCR_PR);
3941                mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3942                kvmhv_save_hv_regs(vcpu, &hvregs);
3943                hvregs.lpcr = lpcr;
3944                vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3945                hvregs.version = HV_GUEST_STATE_VERSION;
3946                if (vcpu->arch.nested) {
3947                        hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3948                        hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3949                } else {
3950                        hvregs.lpid = vcpu->kvm->arch.lpid;
3951                        hvregs.vcpu_token = vcpu->vcpu_id;
3952                }
3953                hvregs.hdec_expiry = time_limit;
3954                mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3955                mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3956                trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3957                                          __pa(&vcpu->arch.regs));
3958                kvmhv_restore_hv_return_state(vcpu, &hvregs);
3959                vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3960                vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3961                vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3962                vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3963                mtspr(SPRN_PSSCR_PR, host_psscr);
3964
3965                /* H_CEDE has to be handled now, not later */
3966                if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3967                    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3968                        kvmppc_cede(vcpu);
3969                        kvmppc_set_gpr(vcpu, 3, 0);
3970                        trap = 0;
3971                }
3972        } else {
3973                kvmppc_xive_push_vcpu(vcpu);
3974                trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr);
3975                if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3976                    !(vcpu->arch.shregs.msr & MSR_PR)) {
3977                        unsigned long req = kvmppc_get_gpr(vcpu, 3);
3978
3979                        /* H_CEDE has to be handled now, not later */
3980                        if (req == H_CEDE) {
3981                                kvmppc_cede(vcpu);
3982                                kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */
3983                                kvmppc_set_gpr(vcpu, 3, 0);
3984                                trap = 0;
3985
3986                        /* XICS hcalls must be handled before xive is pulled */
3987                        } else if (hcall_is_xics(req)) {
3988                                int ret;
3989
3990                                ret = kvmppc_xive_xics_hcall(vcpu, req);
3991                                if (ret != H_TOO_HARD) {
3992                                        kvmppc_set_gpr(vcpu, 3, ret);
3993                                        trap = 0;
3994                                }
3995                        }
3996                }
3997                kvmppc_xive_pull_vcpu(vcpu);
3998
3999                if (kvm_is_radix(vcpu->kvm))
4000                        vcpu->arch.slb_max = 0;
4001        }
4002
4003        dec = mfspr(SPRN_DEC);
4004        if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4005                dec = (s32) dec;
4006        tb = mftb();
4007        vcpu->arch.dec_expires = dec + tb;
4008        vcpu->cpu = -1;
4009        vcpu->arch.thread_cpu = -1;
4010
4011        store_spr_state(vcpu);
4012
4013        restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4014
4015        msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
4016        store_fp_state(&vcpu->arch.fp);
4017#ifdef CONFIG_ALTIVEC
4018        store_vr_state(&vcpu->arch.vr);
4019#endif
4020        vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
4021
4022        if (cpu_has_feature(CPU_FTR_TM) ||
4023            cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
4024                kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
4025
4026        save_pmu = 1;
4027        if (vcpu->arch.vpa.pinned_addr) {
4028                struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4029                u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4030                lp->yield_count = cpu_to_be32(yield_count);
4031                vcpu->arch.vpa.dirty = 1;
4032                save_pmu = lp->pmcregs_in_use;
4033        }
4034        /* Must save pmu if this guest is capable of running nested guests */
4035        save_pmu |= nesting_enabled(vcpu->kvm);
4036
4037        kvmhv_save_guest_pmu(vcpu, save_pmu);
4038#ifdef CONFIG_PPC_PSERIES
4039        if (kvmhv_on_pseries()) {
4040                barrier();
4041                get_lppaca()->pmcregs_in_use = ppc_get_pmu_inuse();
4042                barrier();
4043        }
4044#endif
4045
4046        vc->entry_exit_map = 0x101;
4047        vc->in_guest = 0;
4048
4049        mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
4050        /* We may have raced with new irq work */
4051        if (test_irq_work_pending())
4052                set_dec(1);
4053        mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
4054
4055        kvmhv_load_host_pmu();
4056
4057        kvmppc_subcore_exit_guest();
4058
4059        return trap;
4060}
4061
4062/*
4063 * Wait for some other vcpu thread to execute us, and
4064 * wake us up when we need to handle something in the host.
4065 */
4066static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4067                                 struct kvm_vcpu *vcpu, int wait_state)
4068{
4069        DEFINE_WAIT(wait);
4070
4071        prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4072        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4073                spin_unlock(&vc->lock);
4074                schedule();
4075                spin_lock(&vc->lock);
4076        }
4077        finish_wait(&vcpu->arch.cpu_run, &wait);
4078}
4079
4080static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4081{
4082        if (!halt_poll_ns_grow)
4083                return;
4084
4085        vc->halt_poll_ns *= halt_poll_ns_grow;
4086        if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4087                vc->halt_poll_ns = halt_poll_ns_grow_start;
4088}
4089
4090static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4091{
4092        if (halt_poll_ns_shrink == 0)
4093                vc->halt_poll_ns = 0;
4094        else
4095                vc->halt_poll_ns /= halt_poll_ns_shrink;
4096}
4097
4098#ifdef CONFIG_KVM_XICS
4099static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4100{
4101        if (!xics_on_xive())
4102                return false;
4103        return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4104                vcpu->arch.xive_saved_state.cppr;
4105}
4106#else
4107static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4108{
4109        return false;
4110}
4111#endif /* CONFIG_KVM_XICS */
4112
4113static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4114{
4115        if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4116            kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4117                return true;
4118
4119        return false;
4120}
4121
4122/*
4123 * Check to see if any of the runnable vcpus on the vcore have pending
4124 * exceptions or are no longer ceded
4125 */
4126static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4127{
4128        struct kvm_vcpu *vcpu;
4129        int i;
4130
4131        for_each_runnable_thread(i, vcpu, vc) {
4132                if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4133                        return 1;
4134        }
4135
4136        return 0;
4137}
4138
4139/*
4140 * All the vcpus in this vcore are idle, so wait for a decrementer
4141 * or external interrupt to one of the vcpus.  vc->lock is held.
4142 */
4143static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4144{
4145        ktime_t cur, start_poll, start_wait;
4146        int do_sleep = 1;
4147        u64 block_ns;
4148
4149        /* Poll for pending exceptions and ceded state */
4150        cur = start_poll = ktime_get();
4151        if (vc->halt_poll_ns) {
4152                ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4153                ++vc->runner->stat.generic.halt_attempted_poll;
4154
4155                vc->vcore_state = VCORE_POLLING;
4156                spin_unlock(&vc->lock);
4157
4158                do {
4159                        if (kvmppc_vcore_check_block(vc)) {
4160                                do_sleep = 0;
4161                                break;
4162                        }
4163                        cur = ktime_get();
4164                } while (kvm_vcpu_can_poll(cur, stop));
4165
4166                spin_lock(&vc->lock);
4167                vc->vcore_state = VCORE_INACTIVE;
4168
4169                if (!do_sleep) {
4170                        ++vc->runner->stat.generic.halt_successful_poll;
4171                        goto out;
4172                }
4173        }
4174
4175        prepare_to_rcuwait(&vc->wait);
4176        set_current_state(TASK_INTERRUPTIBLE);
4177        if (kvmppc_vcore_check_block(vc)) {
4178                finish_rcuwait(&vc->wait);
4179                do_sleep = 0;
4180                /* If we polled, count this as a successful poll */
4181                if (vc->halt_poll_ns)
4182                        ++vc->runner->stat.generic.halt_successful_poll;
4183                goto out;
4184        }
4185
4186        start_wait = ktime_get();
4187
4188        vc->vcore_state = VCORE_SLEEPING;
4189        trace_kvmppc_vcore_blocked(vc, 0);
4190        spin_unlock(&vc->lock);
4191        schedule();
4192        finish_rcuwait(&vc->wait);
4193        spin_lock(&vc->lock);
4194        vc->vcore_state = VCORE_INACTIVE;
4195        trace_kvmppc_vcore_blocked(vc, 1);
4196        ++vc->runner->stat.halt_successful_wait;
4197
4198        cur = ktime_get();
4199
4200out:
4201        block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4202
4203        /* Attribute wait time */
4204        if (do_sleep) {
4205                vc->runner->stat.generic.halt_wait_ns +=
4206                        ktime_to_ns(cur) - ktime_to_ns(start_wait);
4207                KVM_STATS_LOG_HIST_UPDATE(
4208                                vc->runner->stat.generic.halt_wait_hist,
4209                                ktime_to_ns(cur) - ktime_to_ns(start_wait));
4210                /* Attribute failed poll time */
4211                if (vc->halt_poll_ns) {
4212                        vc->runner->stat.generic.halt_poll_fail_ns +=
4213                                ktime_to_ns(start_wait) -
4214                                ktime_to_ns(start_poll);
4215                        KVM_STATS_LOG_HIST_UPDATE(
4216                                vc->runner->stat.generic.halt_poll_fail_hist,
4217                                ktime_to_ns(start_wait) -
4218                                ktime_to_ns(start_poll));
4219                }
4220        } else {
4221                /* Attribute successful poll time */
4222                if (vc->halt_poll_ns) {
4223                        vc->runner->stat.generic.halt_poll_success_ns +=
4224                                ktime_to_ns(cur) -
4225                                ktime_to_ns(start_poll);
4226                        KVM_STATS_LOG_HIST_UPDATE(
4227                                vc->runner->stat.generic.halt_poll_success_hist,
4228                                ktime_to_ns(cur) - ktime_to_ns(start_poll));
4229                }
4230        }
4231
4232        /* Adjust poll time */
4233        if (halt_poll_ns) {
4234                if (block_ns <= vc->halt_poll_ns)
4235                        ;
4236                /* We slept and blocked for longer than the max halt time */
4237                else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4238                        shrink_halt_poll_ns(vc);
4239                /* We slept and our poll time is too small */
4240                else if (vc->halt_poll_ns < halt_poll_ns &&
4241                                block_ns < halt_poll_ns)
4242                        grow_halt_poll_ns(vc);
4243                if (vc->halt_poll_ns > halt_poll_ns)
4244                        vc->halt_poll_ns = halt_poll_ns;
4245        } else
4246                vc->halt_poll_ns = 0;
4247
4248        trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4249}
4250
4251/*
4252 * This never fails for a radix guest, as none of the operations it does
4253 * for a radix guest can fail or have a way to report failure.
4254 */
4255static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4256{
4257        int r = 0;
4258        struct kvm *kvm = vcpu->kvm;
4259
4260        mutex_lock(&kvm->arch.mmu_setup_lock);
4261        if (!kvm->arch.mmu_ready) {
4262                if (!kvm_is_radix(kvm))
4263                        r = kvmppc_hv_setup_htab_rma(vcpu);
4264                if (!r) {
4265                        if (cpu_has_feature(CPU_FTR_ARCH_300))
4266                                kvmppc_setup_partition_table(kvm);
4267                        kvm->arch.mmu_ready = 1;
4268                }
4269        }
4270        mutex_unlock(&kvm->arch.mmu_setup_lock);
4271        return r;
4272}
4273
4274static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4275{
4276        struct kvm_run *run = vcpu->run;
4277        int n_ceded, i, r;
4278        struct kvmppc_vcore *vc;
4279        struct kvm_vcpu *v;
4280
4281        trace_kvmppc_run_vcpu_enter(vcpu);
4282
4283        run->exit_reason = 0;
4284        vcpu->arch.ret = RESUME_GUEST;
4285        vcpu->arch.trap = 0;
4286        kvmppc_update_vpas(vcpu);
4287
4288        /*
4289         * Synchronize with other threads in this virtual core
4290         */
4291        vc = vcpu->arch.vcore;
4292        spin_lock(&vc->lock);
4293        vcpu->arch.ceded = 0;
4294        vcpu->arch.run_task = current;
4295        vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4296        vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4297        vcpu->arch.busy_preempt = TB_NIL;
4298        WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4299        ++vc->n_runnable;
4300
4301        /*
4302         * This happens the first time this is called for a vcpu.
4303         * If the vcore is already running, we may be able to start
4304         * this thread straight away and have it join in.
4305         */
4306        if (!signal_pending(current)) {
4307                if ((vc->vcore_state == VCORE_PIGGYBACK ||
4308                     vc->vcore_state == VCORE_RUNNING) &&
4309                           !VCORE_IS_EXITING(vc)) {
4310                        kvmppc_create_dtl_entry(vcpu, vc);
4311                        kvmppc_start_thread(vcpu, vc);
4312                        trace_kvm_guest_enter(vcpu);
4313                } else if (vc->vcore_state == VCORE_SLEEPING) {
4314                        rcuwait_wake_up(&vc->wait);
4315                }
4316
4317        }
4318
4319        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4320               !signal_pending(current)) {
4321                /* See if the MMU is ready to go */
4322                if (!vcpu->kvm->arch.mmu_ready) {
4323                        spin_unlock(&vc->lock);
4324                        r = kvmhv_setup_mmu(vcpu);
4325                        spin_lock(&vc->lock);
4326                        if (r) {
4327                                run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4328                                run->fail_entry.
4329                                        hardware_entry_failure_reason = 0;
4330                                vcpu->arch.ret = r;
4331                                break;
4332                        }
4333                }
4334
4335                if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4336                        kvmppc_vcore_end_preempt(vc);
4337
4338                if (vc->vcore_state != VCORE_INACTIVE) {
4339                        kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4340                        continue;
4341                }
4342                for_each_runnable_thread(i, v, vc) {
4343                        kvmppc_core_prepare_to_enter(v);
4344                        if (signal_pending(v->arch.run_task)) {
4345                                kvmppc_remove_runnable(vc, v);
4346                                v->stat.signal_exits++;
4347                                v->run->exit_reason = KVM_EXIT_INTR;
4348                                v->arch.ret = -EINTR;
4349                                wake_up(&v->arch.cpu_run);
4350                        }
4351                }
4352                if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4353                        break;
4354                n_ceded = 0;
4355                for_each_runnable_thread(i, v, vc) {
4356                        if (!kvmppc_vcpu_woken(v))
4357                                n_ceded += v->arch.ceded;
4358                        else
4359                                v->arch.ceded = 0;
4360                }
4361                vc->runner = vcpu;
4362                if (n_ceded == vc->n_runnable) {
4363                        kvmppc_vcore_blocked(vc);
4364                } else if (need_resched()) {
4365                        kvmppc_vcore_preempt(vc);
4366                        /* Let something else run */
4367                        cond_resched_lock(&vc->lock);
4368                        if (vc->vcore_state == VCORE_PREEMPT)
4369                                kvmppc_vcore_end_preempt(vc);
4370                } else {
4371                        kvmppc_run_core(vc);
4372                }
4373                vc->runner = NULL;
4374        }
4375
4376        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4377               (vc->vcore_state == VCORE_RUNNING ||
4378                vc->vcore_state == VCORE_EXITING ||
4379                vc->vcore_state == VCORE_PIGGYBACK))
4380                kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4381
4382        if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4383                kvmppc_vcore_end_preempt(vc);
4384
4385        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4386                kvmppc_remove_runnable(vc, vcpu);
4387                vcpu->stat.signal_exits++;
4388                run->exit_reason = KVM_EXIT_INTR;
4389                vcpu->arch.ret = -EINTR;
4390        }
4391
4392        if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4393                /* Wake up some vcpu to run the core */
4394                i = -1;
4395                v = next_runnable_thread(vc, &i);
4396                wake_up(&v->arch.cpu_run);
4397        }
4398
4399        trace_kvmppc_run_vcpu_exit(vcpu);
4400        spin_unlock(&vc->lock);
4401        return vcpu->arch.ret;
4402}
4403
4404int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4405                          unsigned long lpcr)
4406{
4407        struct kvm_run *run = vcpu->run;
4408        int trap, r, pcpu;
4409        int srcu_idx;
4410        struct kvmppc_vcore *vc;
4411        struct kvm *kvm = vcpu->kvm;
4412        struct kvm_nested_guest *nested = vcpu->arch.nested;
4413
4414        trace_kvmppc_run_vcpu_enter(vcpu);
4415
4416        run->exit_reason = 0;
4417        vcpu->arch.ret = RESUME_GUEST;
4418        vcpu->arch.trap = 0;
4419
4420        vc = vcpu->arch.vcore;
4421        vcpu->arch.ceded = 0;
4422        vcpu->arch.run_task = current;
4423        vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4424        vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4425        vcpu->arch.busy_preempt = TB_NIL;
4426        vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4427        vc->runnable_threads[0] = vcpu;
4428        vc->n_runnable = 1;
4429        vc->runner = vcpu;
4430
4431        /* See if the MMU is ready to go */
4432        if (!kvm->arch.mmu_ready) {
4433                r = kvmhv_setup_mmu(vcpu);
4434                if (r) {
4435                        run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4436                        run->fail_entry.hardware_entry_failure_reason = 0;
4437                        vcpu->arch.ret = r;
4438                        return r;
4439                }
4440        }
4441
4442        if (need_resched())
4443                cond_resched();
4444
4445        kvmppc_update_vpas(vcpu);
4446
4447        init_vcore_to_run(vc);
4448        vc->preempt_tb = TB_NIL;
4449
4450        preempt_disable();
4451        pcpu = smp_processor_id();
4452        vc->pcpu = pcpu;
4453        if (kvm_is_radix(kvm))
4454                kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4455
4456        local_irq_disable();
4457        hard_irq_disable();
4458        if (signal_pending(current))
4459                goto sigpend;
4460        if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4461                goto out;
4462
4463        if (!nested) {
4464                kvmppc_core_prepare_to_enter(vcpu);
4465                if (vcpu->arch.doorbell_request) {
4466                        vc->dpdes = 1;
4467                        smp_wmb();
4468                        vcpu->arch.doorbell_request = 0;
4469                }
4470                if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4471                             &vcpu->arch.pending_exceptions))
4472                        lpcr |= LPCR_MER;
4473        } else if (vcpu->arch.pending_exceptions ||
4474                   vcpu->arch.doorbell_request ||
4475                   xive_interrupt_pending(vcpu)) {
4476                vcpu->arch.ret = RESUME_HOST;
4477                goto out;
4478        }
4479
4480        kvmppc_clear_host_core(pcpu);
4481
4482        local_paca->kvm_hstate.napping = 0;
4483        local_paca->kvm_hstate.kvm_split_mode = NULL;
4484        kvmppc_start_thread(vcpu, vc);
4485        kvmppc_create_dtl_entry(vcpu, vc);
4486        trace_kvm_guest_enter(vcpu);
4487
4488        vc->vcore_state = VCORE_RUNNING;
4489        trace_kvmppc_run_core(vc, 0);
4490
4491        guest_enter_irqoff();
4492
4493        srcu_idx = srcu_read_lock(&kvm->srcu);
4494
4495        this_cpu_disable_ftrace();
4496
4497        /* Tell lockdep that we're about to enable interrupts */
4498        trace_hardirqs_on();
4499
4500        trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4501        vcpu->arch.trap = trap;
4502
4503        trace_hardirqs_off();
4504
4505        this_cpu_enable_ftrace();
4506
4507        srcu_read_unlock(&kvm->srcu, srcu_idx);
4508
4509        set_irq_happened(trap);
4510
4511        kvmppc_set_host_core(pcpu);
4512
4513        guest_exit_irqoff();
4514
4515        local_irq_enable();
4516
4517        cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4518
4519        preempt_enable();
4520
4521        /*
4522         * cancel pending decrementer exception if DEC is now positive, or if
4523         * entering a nested guest in which case the decrementer is now owned
4524         * by L2 and the L1 decrementer is provided in hdec_expires
4525         */
4526        if (kvmppc_core_pending_dec(vcpu) &&
4527                        ((get_tb() < vcpu->arch.dec_expires) ||
4528                         (trap == BOOK3S_INTERRUPT_SYSCALL &&
4529                          kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4530                kvmppc_core_dequeue_dec(vcpu);
4531
4532        trace_kvm_guest_exit(vcpu);
4533        r = RESUME_GUEST;
4534        if (trap) {
4535                if (!nested)
4536                        r = kvmppc_handle_exit_hv(vcpu, current);
4537                else
4538                        r = kvmppc_handle_nested_exit(vcpu);
4539        }
4540        vcpu->arch.ret = r;
4541
4542        if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4543            !kvmppc_vcpu_woken(vcpu)) {
4544                kvmppc_set_timer(vcpu);
4545                while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4546                        if (signal_pending(current)) {
4547                                vcpu->stat.signal_exits++;
4548                                run->exit_reason = KVM_EXIT_INTR;
4549                                vcpu->arch.ret = -EINTR;
4550                                break;
4551                        }
4552                        spin_lock(&vc->lock);
4553                        kvmppc_vcore_blocked(vc);
4554                        spin_unlock(&vc->lock);
4555                }
4556        }
4557        vcpu->arch.ceded = 0;
4558
4559        vc->vcore_state = VCORE_INACTIVE;
4560        trace_kvmppc_run_core(vc, 1);
4561
4562 done:
4563        kvmppc_remove_runnable(vc, vcpu);
4564        trace_kvmppc_run_vcpu_exit(vcpu);
4565
4566        return vcpu->arch.ret;
4567
4568 sigpend:
4569        vcpu->stat.signal_exits++;
4570        run->exit_reason = KVM_EXIT_INTR;
4571        vcpu->arch.ret = -EINTR;
4572 out:
4573        local_irq_enable();
4574        preempt_enable();
4575        goto done;
4576}
4577
4578static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4579{
4580        struct kvm_run *run = vcpu->run;
4581        int r;
4582        int srcu_idx;
4583        unsigned long ebb_regs[3] = {}; /* shut up GCC */
4584        unsigned long user_tar = 0;
4585        unsigned int user_vrsave;
4586        struct kvm *kvm;
4587
4588        if (!vcpu->arch.sane) {
4589                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4590                return -EINVAL;
4591        }
4592
4593        /*
4594         * Don't allow entry with a suspended transaction, because
4595         * the guest entry/exit code will lose it.
4596         * If the guest has TM enabled, save away their TM-related SPRs
4597         * (they will get restored by the TM unavailable interrupt).
4598         */
4599#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4600        if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4601            (current->thread.regs->msr & MSR_TM)) {
4602                if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4603                        run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4604                        run->fail_entry.hardware_entry_failure_reason = 0;
4605                        return -EINVAL;
4606                }
4607                /* Enable TM so we can read the TM SPRs */
4608                mtmsr(mfmsr() | MSR_TM);
4609                current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4610                current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4611                current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4612                current->thread.regs->msr &= ~MSR_TM;
4613        }
4614#endif
4615
4616        /*
4617         * Force online to 1 for the sake of old userspace which doesn't
4618         * set it.
4619         */
4620        if (!vcpu->arch.online) {
4621                atomic_inc(&vcpu->arch.vcore->online_count);
4622                vcpu->arch.online = 1;
4623        }
4624
4625        kvmppc_core_prepare_to_enter(vcpu);
4626
4627        /* No need to go into the guest when all we'll do is come back out */
4628        if (signal_pending(current)) {
4629                run->exit_reason = KVM_EXIT_INTR;
4630                return -EINTR;
4631        }
4632
4633        kvm = vcpu->kvm;
4634        atomic_inc(&kvm->arch.vcpus_running);
4635        /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4636        smp_mb();
4637
4638        flush_all_to_thread(current);
4639
4640        /* Save userspace EBB and other register values */
4641        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4642                ebb_regs[0] = mfspr(SPRN_EBBHR);
4643                ebb_regs[1] = mfspr(SPRN_EBBRR);
4644                ebb_regs[2] = mfspr(SPRN_BESCR);
4645                user_tar = mfspr(SPRN_TAR);
4646        }
4647        user_vrsave = mfspr(SPRN_VRSAVE);
4648
4649        vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4650        vcpu->arch.pgdir = kvm->mm->pgd;
4651        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4652
4653        do {
4654                if (cpu_has_feature(CPU_FTR_ARCH_300))
4655                        r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4656                                                  vcpu->arch.vcore->lpcr);
4657                else
4658                        r = kvmppc_run_vcpu(vcpu);
4659
4660                if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4661                        if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4662                                /*
4663                                 * These should have been caught reflected
4664                                 * into the guest by now. Final sanity check:
4665                                 * don't allow userspace to execute hcalls in
4666                                 * the hypervisor.
4667                                 */
4668                                r = RESUME_GUEST;
4669                                continue;
4670                        }
4671                        trace_kvm_hcall_enter(vcpu);
4672                        r = kvmppc_pseries_do_hcall(vcpu);
4673                        trace_kvm_hcall_exit(vcpu, r);
4674                        kvmppc_core_prepare_to_enter(vcpu);
4675                } else if (r == RESUME_PAGE_FAULT) {
4676                        srcu_idx = srcu_read_lock(&kvm->srcu);
4677                        r = kvmppc_book3s_hv_page_fault(vcpu,
4678                                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4679                        srcu_read_unlock(&kvm->srcu, srcu_idx);
4680                } else if (r == RESUME_PASSTHROUGH) {
4681                        if (WARN_ON(xics_on_xive()))
4682                                r = H_SUCCESS;
4683                        else
4684                                r = kvmppc_xics_rm_complete(vcpu, 0);
4685                }
4686        } while (is_kvmppc_resume_guest(r));
4687
4688        /* Restore userspace EBB and other register values */
4689        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4690                mtspr(SPRN_EBBHR, ebb_regs[0]);
4691                mtspr(SPRN_EBBRR, ebb_regs[1]);
4692                mtspr(SPRN_BESCR, ebb_regs[2]);
4693                mtspr(SPRN_TAR, user_tar);
4694        }
4695        mtspr(SPRN_VRSAVE, user_vrsave);
4696
4697        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4698        atomic_dec(&kvm->arch.vcpus_running);
4699
4700        srr_regs_clobbered();
4701
4702        return r;
4703}
4704
4705static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4706                                     int shift, int sllp)
4707{
4708        (*sps)->page_shift = shift;
4709        (*sps)->slb_enc = sllp;
4710        (*sps)->enc[0].page_shift = shift;
4711        (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4712        /*
4713         * Add 16MB MPSS support (may get filtered out by userspace)
4714         */
4715        if (shift != 24) {
4716                int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4717                if (penc != -1) {
4718                        (*sps)->enc[1].page_shift = 24;
4719                        (*sps)->enc[1].pte_enc = penc;
4720                }
4721        }
4722        (*sps)++;
4723}
4724
4725static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4726                                         struct kvm_ppc_smmu_info *info)
4727{
4728        struct kvm_ppc_one_seg_page_size *sps;
4729
4730        /*
4731         * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4732         * POWER7 doesn't support keys for instruction accesses,
4733         * POWER8 and POWER9 do.
4734         */
4735        info->data_keys = 32;
4736        info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4737
4738        /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4739        info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4740        info->slb_size = 32;
4741
4742        /* We only support these sizes for now, and no muti-size segments */
4743        sps = &info->sps[0];
4744        kvmppc_add_seg_page_size(&sps, 12, 0);
4745        kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4746        kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4747
4748        /* If running as a nested hypervisor, we don't support HPT guests */
4749        if (kvmhv_on_pseries())
4750                info->flags |= KVM_PPC_NO_HASH;
4751
4752        return 0;
4753}
4754
4755/*
4756 * Get (and clear) the dirty memory log for a memory slot.
4757 */
4758static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4759                                         struct kvm_dirty_log *log)
4760{
4761        struct kvm_memslots *slots;
4762        struct kvm_memory_slot *memslot;
4763        int i, r;
4764        unsigned long n;
4765        unsigned long *buf, *p;
4766        struct kvm_vcpu *vcpu;
4767
4768        mutex_lock(&kvm->slots_lock);
4769
4770        r = -EINVAL;
4771        if (log->slot >= KVM_USER_MEM_SLOTS)
4772                goto out;
4773
4774        slots = kvm_memslots(kvm);
4775        memslot = id_to_memslot(slots, log->slot);
4776        r = -ENOENT;
4777        if (!memslot || !memslot->dirty_bitmap)
4778                goto out;
4779
4780        /*
4781         * Use second half of bitmap area because both HPT and radix
4782         * accumulate bits in the first half.
4783         */
4784        n = kvm_dirty_bitmap_bytes(memslot);
4785        buf = memslot->dirty_bitmap + n / sizeof(long);
4786        memset(buf, 0, n);
4787
4788        if (kvm_is_radix(kvm))
4789                r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4790        else
4791                r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4792        if (r)
4793                goto out;
4794
4795        /*
4796         * We accumulate dirty bits in the first half of the
4797         * memslot's dirty_bitmap area, for when pages are paged
4798         * out or modified by the host directly.  Pick up these
4799         * bits and add them to the map.
4800         */
4801        p = memslot->dirty_bitmap;
4802        for (i = 0; i < n / sizeof(long); ++i)
4803                buf[i] |= xchg(&p[i], 0);
4804
4805        /* Harvest dirty bits from VPA and DTL updates */
4806        /* Note: we never modify the SLB shadow buffer areas */
4807        kvm_for_each_vcpu(i, vcpu, kvm) {
4808                spin_lock(&vcpu->arch.vpa_update_lock);
4809                kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4810                kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4811                spin_unlock(&vcpu->arch.vpa_update_lock);
4812        }
4813
4814        r = -EFAULT;
4815        if (copy_to_user(log->dirty_bitmap, buf, n))
4816                goto out;
4817
4818        r = 0;
4819out:
4820        mutex_unlock(&kvm->slots_lock);
4821        return r;
4822}
4823
4824static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4825{
4826        vfree(slot->arch.rmap);
4827        slot->arch.rmap = NULL;
4828}
4829
4830static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4831                                        struct kvm_memory_slot *slot,
4832                                        const struct kvm_userspace_memory_region *mem,
4833                                        enum kvm_mr_change change)
4834{
4835        unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4836
4837        if (change == KVM_MR_CREATE) {
4838                slot->arch.rmap = vzalloc(array_size(npages,
4839                                          sizeof(*slot->arch.rmap)));
4840                if (!slot->arch.rmap)
4841                        return -ENOMEM;
4842        }
4843
4844        return 0;
4845}
4846
4847static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4848                                const struct kvm_userspace_memory_region *mem,
4849                                const struct kvm_memory_slot *old,
4850                                const struct kvm_memory_slot *new,
4851                                enum kvm_mr_change change)
4852{
4853        unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4854
4855        /*
4856         * If we are making a new memslot, it might make
4857         * some address that was previously cached as emulated
4858         * MMIO be no longer emulated MMIO, so invalidate
4859         * all the caches of emulated MMIO translations.
4860         */
4861        if (npages)
4862                atomic64_inc(&kvm->arch.mmio_update);
4863
4864        /*
4865         * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4866         * have already called kvm_arch_flush_shadow_memslot() to
4867         * flush shadow mappings.  For KVM_MR_CREATE we have no
4868         * previous mappings.  So the only case to handle is
4869         * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4870         * has been changed.
4871         * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4872         * to get rid of any THP PTEs in the partition-scoped page tables
4873         * so we can track dirtiness at the page level; we flush when
4874         * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4875         * using THP PTEs.
4876         */
4877        if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4878            ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4879                kvmppc_radix_flush_memslot(kvm, old);
4880        /*
4881         * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4882         */
4883        if (!kvm->arch.secure_guest)
4884                return;
4885
4886        switch (change) {
4887        case KVM_MR_CREATE:
4888                /*
4889                 * @TODO kvmppc_uvmem_memslot_create() can fail and
4890                 * return error. Fix this.
4891                 */
4892                kvmppc_uvmem_memslot_create(kvm, new);
4893                break;
4894        case KVM_MR_DELETE:
4895                kvmppc_uvmem_memslot_delete(kvm, old);
4896                break;
4897        default:
4898                /* TODO: Handle KVM_MR_MOVE */
4899                break;
4900        }
4901}
4902
4903/*
4904 * Update LPCR values in kvm->arch and in vcores.
4905 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4906 * of kvm->arch.lpcr update).
4907 */
4908void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4909{
4910        long int i;
4911        u32 cores_done = 0;
4912
4913        if ((kvm->arch.lpcr & mask) == lpcr)
4914                return;
4915
4916        kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4917
4918        for (i = 0; i < KVM_MAX_VCORES; ++i) {
4919                struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4920                if (!vc)
4921                        continue;
4922
4923                spin_lock(&vc->lock);
4924                vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4925                verify_lpcr(kvm, vc->lpcr);
4926                spin_unlock(&vc->lock);
4927                if (++cores_done >= kvm->arch.online_vcores)
4928                        break;
4929        }
4930}
4931
4932void kvmppc_setup_partition_table(struct kvm *kvm)
4933{
4934        unsigned long dw0, dw1;
4935
4936        if (!kvm_is_radix(kvm)) {
4937                /* PS field - page size for VRMA */
4938                dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4939                        ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4940                /* HTABSIZE and HTABORG fields */
4941                dw0 |= kvm->arch.sdr1;
4942
4943                /* Second dword as set by userspace */
4944                dw1 = kvm->arch.process_table;
4945        } else {
4946                dw0 = PATB_HR | radix__get_tree_size() |
4947                        __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4948                dw1 = PATB_GR | kvm->arch.process_table;
4949        }
4950        kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4951}
4952
4953/*
4954 * Set up HPT (hashed page table) and RMA (real-mode area).
4955 * Must be called with kvm->arch.mmu_setup_lock held.
4956 */
4957static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4958{
4959        int err = 0;
4960        struct kvm *kvm = vcpu->kvm;
4961        unsigned long hva;
4962        struct kvm_memory_slot *memslot;
4963        struct vm_area_struct *vma;
4964        unsigned long lpcr = 0, senc;
4965        unsigned long psize, porder;
4966        int srcu_idx;
4967
4968        /* Allocate hashed page table (if not done already) and reset it */
4969        if (!kvm->arch.hpt.virt) {
4970                int order = KVM_DEFAULT_HPT_ORDER;
4971                struct kvm_hpt_info info;
4972
4973                err = kvmppc_allocate_hpt(&info, order);
4974                /* If we get here, it means userspace didn't specify a
4975                 * size explicitly.  So, try successively smaller
4976                 * sizes if the default failed. */
4977                while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4978                        err  = kvmppc_allocate_hpt(&info, order);
4979
4980                if (err < 0) {
4981                        pr_err("KVM: Couldn't alloc HPT\n");
4982                        goto out;
4983                }
4984
4985                kvmppc_set_hpt(kvm, &info);
4986        }
4987
4988        /* Look up the memslot for guest physical address 0 */
4989        srcu_idx = srcu_read_lock(&kvm->srcu);
4990        memslot = gfn_to_memslot(kvm, 0);
4991
4992        /* We must have some memory at 0 by now */
4993        err = -EINVAL;
4994        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4995                goto out_srcu;
4996
4997        /* Look up the VMA for the start of this memory slot */
4998        hva = memslot->userspace_addr;
4999        mmap_read_lock(kvm->mm);
5000        vma = vma_lookup(kvm->mm, hva);
5001        if (!vma || (vma->vm_flags & VM_IO))
5002                goto up_out;
5003
5004        psize = vma_kernel_pagesize(vma);
5005
5006        mmap_read_unlock(kvm->mm);
5007
5008        /* We can handle 4k, 64k or 16M pages in the VRMA */
5009        if (psize >= 0x1000000)
5010                psize = 0x1000000;
5011        else if (psize >= 0x10000)
5012                psize = 0x10000;
5013        else
5014                psize = 0x1000;
5015        porder = __ilog2(psize);
5016
5017        senc = slb_pgsize_encoding(psize);
5018        kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5019                (VRMA_VSID << SLB_VSID_SHIFT_1T);
5020        /* Create HPTEs in the hash page table for the VRMA */
5021        kvmppc_map_vrma(vcpu, memslot, porder);
5022
5023        /* Update VRMASD field in the LPCR */
5024        if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5025                /* the -4 is to account for senc values starting at 0x10 */
5026                lpcr = senc << (LPCR_VRMASD_SH - 4);
5027                kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5028        }
5029
5030        /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5031        smp_wmb();
5032        err = 0;
5033 out_srcu:
5034        srcu_read_unlock(&kvm->srcu, srcu_idx);
5035 out:
5036        return err;
5037
5038 up_out:
5039        mmap_read_unlock(kvm->mm);
5040        goto out_srcu;
5041}
5042
5043/*
5044 * Must be called with kvm->arch.mmu_setup_lock held and
5045 * mmu_ready = 0 and no vcpus running.
5046 */
5047int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5048{
5049        if (nesting_enabled(kvm))
5050                kvmhv_release_all_nested(kvm);
5051        kvmppc_rmap_reset(kvm);
5052        kvm->arch.process_table = 0;
5053        /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5054        spin_lock(&kvm->mmu_lock);
5055        kvm->arch.radix = 0;
5056        spin_unlock(&kvm->mmu_lock);
5057        kvmppc_free_radix(kvm);
5058        kvmppc_update_lpcr(kvm, LPCR_VPM1,
5059                           LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
5060        return 0;
5061}
5062
5063/*
5064 * Must be called with kvm->arch.mmu_setup_lock held and
5065 * mmu_ready = 0 and no vcpus running.
5066 */
5067int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5068{
5069        int err;
5070
5071        err = kvmppc_init_vm_radix(kvm);
5072        if (err)
5073                return err;
5074        kvmppc_rmap_reset(kvm);
5075        /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5076        spin_lock(&kvm->mmu_lock);
5077        kvm->arch.radix = 1;
5078        spin_unlock(&kvm->mmu_lock);
5079        kvmppc_free_hpt(&kvm->arch.hpt);
5080        kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
5081                           LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
5082        return 0;
5083}
5084
5085#ifdef CONFIG_KVM_XICS
5086/*
5087 * Allocate a per-core structure for managing state about which cores are
5088 * running in the host versus the guest and for exchanging data between
5089 * real mode KVM and CPU running in the host.
5090 * This is only done for the first VM.
5091 * The allocated structure stays even if all VMs have stopped.
5092 * It is only freed when the kvm-hv module is unloaded.
5093 * It's OK for this routine to fail, we just don't support host
5094 * core operations like redirecting H_IPI wakeups.
5095 */
5096void kvmppc_alloc_host_rm_ops(void)
5097{
5098        struct kvmppc_host_rm_ops *ops;
5099        unsigned long l_ops;
5100        int cpu, core;
5101        int size;
5102
5103        /* Not the first time here ? */
5104        if (kvmppc_host_rm_ops_hv != NULL)
5105                return;
5106
5107        ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5108        if (!ops)
5109                return;
5110
5111        size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5112        ops->rm_core = kzalloc(size, GFP_KERNEL);
5113
5114        if (!ops->rm_core) {
5115                kfree(ops);
5116                return;
5117        }
5118
5119        cpus_read_lock();
5120
5121        for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5122                if (!cpu_online(cpu))
5123                        continue;
5124
5125                core = cpu >> threads_shift;
5126                ops->rm_core[core].rm_state.in_host = 1;
5127        }
5128
5129        ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5130
5131        /*
5132         * Make the contents of the kvmppc_host_rm_ops structure visible
5133         * to other CPUs before we assign it to the global variable.
5134         * Do an atomic assignment (no locks used here), but if someone
5135         * beats us to it, just free our copy and return.
5136         */
5137        smp_wmb();
5138        l_ops = (unsigned long) ops;
5139
5140        if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5141                cpus_read_unlock();
5142                kfree(ops->rm_core);
5143                kfree(ops);
5144                return;
5145        }
5146
5147        cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5148                                             "ppc/kvm_book3s:prepare",
5149                                             kvmppc_set_host_core,
5150                                             kvmppc_clear_host_core);
5151        cpus_read_unlock();
5152}
5153
5154void kvmppc_free_host_rm_ops(void)
5155{
5156        if (kvmppc_host_rm_ops_hv) {
5157                cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5158                kfree(kvmppc_host_rm_ops_hv->rm_core);
5159                kfree(kvmppc_host_rm_ops_hv);
5160                kvmppc_host_rm_ops_hv = NULL;
5161        }
5162}
5163#endif
5164
5165static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5166{
5167        unsigned long lpcr, lpid;
5168        char buf[32];
5169        int ret;
5170
5171        mutex_init(&kvm->arch.uvmem_lock);
5172        INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5173        mutex_init(&kvm->arch.mmu_setup_lock);
5174
5175        /* Allocate the guest's logical partition ID */
5176
5177        lpid = kvmppc_alloc_lpid();
5178        if ((long)lpid < 0)
5179                return -ENOMEM;
5180        kvm->arch.lpid = lpid;
5181
5182        kvmppc_alloc_host_rm_ops();
5183
5184        kvmhv_vm_nested_init(kvm);
5185
5186        /*
5187         * Since we don't flush the TLB when tearing down a VM,
5188         * and this lpid might have previously been used,
5189         * make sure we flush on each core before running the new VM.
5190         * On POWER9, the tlbie in mmu_partition_table_set_entry()
5191         * does this flush for us.
5192         */
5193        if (!cpu_has_feature(CPU_FTR_ARCH_300))
5194                cpumask_setall(&kvm->arch.need_tlb_flush);
5195
5196        /* Start out with the default set of hcalls enabled */
5197        memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5198               sizeof(kvm->arch.enabled_hcalls));
5199
5200        if (!cpu_has_feature(CPU_FTR_ARCH_300))
5201                kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5202
5203        /* Init LPCR for virtual RMA mode */
5204        if (cpu_has_feature(CPU_FTR_HVMODE)) {
5205                kvm->arch.host_lpid = mfspr(SPRN_LPID);
5206                kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5207                lpcr &= LPCR_PECE | LPCR_LPES;
5208        } else {
5209                lpcr = 0;
5210        }
5211        lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5212                LPCR_VPM0 | LPCR_VPM1;
5213        kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5214                (VRMA_VSID << SLB_VSID_SHIFT_1T);
5215        /* On POWER8 turn on online bit to enable PURR/SPURR */
5216        if (cpu_has_feature(CPU_FTR_ARCH_207S))
5217                lpcr |= LPCR_ONL;
5218        /*
5219         * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5220         * Set HVICE bit to enable hypervisor virtualization interrupts.
5221         * Set HEIC to prevent OS interrupts to go to hypervisor (should
5222         * be unnecessary but better safe than sorry in case we re-enable
5223         * EE in HV mode with this LPCR still set)
5224         */
5225        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5226                lpcr &= ~LPCR_VPM0;
5227                lpcr |= LPCR_HVICE | LPCR_HEIC;
5228
5229                /*
5230                 * If xive is enabled, we route 0x500 interrupts directly
5231                 * to the guest.
5232                 */
5233                if (xics_on_xive())
5234                        lpcr |= LPCR_LPES;
5235        }
5236
5237        /*
5238         * If the host uses radix, the guest starts out as radix.
5239         */
5240        if (radix_enabled()) {
5241                kvm->arch.radix = 1;
5242                kvm->arch.mmu_ready = 1;
5243                lpcr &= ~LPCR_VPM1;
5244                lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5245                ret = kvmppc_init_vm_radix(kvm);
5246                if (ret) {
5247                        kvmppc_free_lpid(kvm->arch.lpid);
5248                        return ret;
5249                }
5250                kvmppc_setup_partition_table(kvm);
5251        }
5252
5253        verify_lpcr(kvm, lpcr);
5254        kvm->arch.lpcr = lpcr;
5255
5256        /* Initialization for future HPT resizes */
5257        kvm->arch.resize_hpt = NULL;
5258
5259        /*
5260         * Work out how many sets the TLB has, for the use of
5261         * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5262         */
5263        if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5264                /*
5265                 * P10 will flush all the congruence class with a single tlbiel
5266                 */
5267                kvm->arch.tlb_sets = 1;
5268        } else if (radix_enabled())
5269                kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5270        else if (cpu_has_feature(CPU_FTR_ARCH_300))
5271                kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5272        else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5273                kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5274        else
5275                kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5276
5277        /*
5278         * Track that we now have a HV mode VM active. This blocks secondary
5279         * CPU threads from coming online.
5280         */
5281        if (!cpu_has_feature(CPU_FTR_ARCH_300))
5282                kvm_hv_vm_activated();
5283
5284        /*
5285         * Initialize smt_mode depending on processor.
5286         * POWER8 and earlier have to use "strict" threading, where
5287         * all vCPUs in a vcore have to run on the same (sub)core,
5288         * whereas on POWER9 the threads can each run a different
5289         * guest.
5290         */
5291        if (!cpu_has_feature(CPU_FTR_ARCH_300))
5292                kvm->arch.smt_mode = threads_per_subcore;
5293        else
5294                kvm->arch.smt_mode = 1;
5295        kvm->arch.emul_smt_mode = 1;
5296
5297        /*
5298         * Create a debugfs directory for the VM
5299         */
5300        snprintf(buf, sizeof(buf), "vm%d", current->pid);
5301        kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5302        kvmppc_mmu_debugfs_init(kvm);
5303        if (radix_enabled())
5304                kvmhv_radix_debugfs_init(kvm);
5305
5306        return 0;
5307}
5308
5309static void kvmppc_free_vcores(struct kvm *kvm)
5310{
5311        long int i;
5312
5313        for (i = 0; i < KVM_MAX_VCORES; ++i)
5314                kfree(kvm->arch.vcores[i]);
5315        kvm->arch.online_vcores = 0;
5316}
5317
5318static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5319{
5320        debugfs_remove_recursive(kvm->arch.debugfs_dir);
5321
5322        if (!cpu_has_feature(CPU_FTR_ARCH_300))
5323                kvm_hv_vm_deactivated();
5324
5325        kvmppc_free_vcores(kvm);
5326
5327
5328        if (kvm_is_radix(kvm))
5329                kvmppc_free_radix(kvm);
5330        else
5331                kvmppc_free_hpt(&kvm->arch.hpt);
5332
5333        /* Perform global invalidation and return lpid to the pool */
5334        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5335                if (nesting_enabled(kvm))
5336                        kvmhv_release_all_nested(kvm);
5337                kvm->arch.process_table = 0;
5338                if (kvm->arch.secure_guest)
5339                        uv_svm_terminate(kvm->arch.lpid);
5340                kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5341        }
5342
5343        kvmppc_free_lpid(kvm->arch.lpid);
5344
5345        kvmppc_free_pimap(kvm);
5346}
5347
5348/* We don't need to emulate any privileged instructions or dcbz */
5349static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5350                                     unsigned int inst, int *advance)
5351{
5352        return EMULATE_FAIL;
5353}
5354
5355static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5356                                        ulong spr_val)
5357{
5358        return EMULATE_FAIL;
5359}
5360
5361static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5362                                        ulong *spr_val)
5363{
5364        return EMULATE_FAIL;
5365}
5366
5367static int kvmppc_core_check_processor_compat_hv(void)
5368{
5369        if (cpu_has_feature(CPU_FTR_HVMODE) &&
5370            cpu_has_feature(CPU_FTR_ARCH_206))
5371                return 0;
5372
5373        /* POWER9 in radix mode is capable of being a nested hypervisor. */
5374        if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5375                return 0;
5376
5377        return -EIO;
5378}
5379
5380#ifdef CONFIG_KVM_XICS
5381
5382void kvmppc_free_pimap(struct kvm *kvm)
5383{
5384        kfree(kvm->arch.pimap);
5385}
5386
5387static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5388{
5389        return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5390}
5391
5392static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5393{
5394        struct irq_desc *desc;
5395        struct kvmppc_irq_map *irq_map;
5396        struct kvmppc_passthru_irqmap *pimap;
5397        struct irq_chip *chip;
5398        int i, rc = 0;
5399        struct irq_data *host_data;
5400
5401        if (!kvm_irq_bypass)
5402                return 1;
5403
5404        desc = irq_to_desc(host_irq);
5405        if (!desc)
5406                return -EIO;
5407
5408        mutex_lock(&kvm->lock);
5409
5410        pimap = kvm->arch.pimap;
5411        if (pimap == NULL) {
5412                /* First call, allocate structure to hold IRQ map */
5413                pimap = kvmppc_alloc_pimap();
5414                if (pimap == NULL) {
5415                        mutex_unlock(&kvm->lock);
5416                        return -ENOMEM;
5417                }
5418                kvm->arch.pimap = pimap;
5419        }
5420
5421        /*
5422         * For now, we only support interrupts for which the EOI operation
5423         * is an OPAL call followed by a write to XIRR, since that's
5424         * what our real-mode EOI code does, or a XIVE interrupt
5425         */
5426        chip = irq_data_get_irq_chip(&desc->irq_data);
5427        if (!chip || !is_pnv_opal_msi(chip)) {
5428                pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5429                        host_irq, guest_gsi);
5430                mutex_unlock(&kvm->lock);
5431                return -ENOENT;
5432        }
5433
5434        /*
5435         * See if we already have an entry for this guest IRQ number.
5436         * If it's mapped to a hardware IRQ number, that's an error,
5437         * otherwise re-use this entry.
5438         */
5439        for (i = 0; i < pimap->n_mapped; i++) {
5440                if (guest_gsi == pimap->mapped[i].v_hwirq) {
5441                        if (pimap->mapped[i].r_hwirq) {
5442                                mutex_unlock(&kvm->lock);
5443                                return -EINVAL;
5444                        }
5445                        break;
5446                }
5447        }
5448
5449        if (i == KVMPPC_PIRQ_MAPPED) {
5450                mutex_unlock(&kvm->lock);
5451                return -EAGAIN;         /* table is full */
5452        }
5453
5454        irq_map = &pimap->mapped[i];
5455
5456        irq_map->v_hwirq = guest_gsi;
5457        irq_map->desc = desc;
5458
5459        /*
5460         * Order the above two stores before the next to serialize with
5461         * the KVM real mode handler.
5462         */
5463        smp_wmb();
5464
5465        /*
5466         * The 'host_irq' number is mapped in the PCI-MSI domain but
5467         * the underlying calls, which will EOI the interrupt in real
5468         * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5469         */
5470        host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5471        irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5472
5473        if (i == pimap->n_mapped)
5474                pimap->n_mapped++;
5475
5476        if (xics_on_xive())
5477                rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5478        else
5479                kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5480        if (rc)
5481                irq_map->r_hwirq = 0;
5482
5483        mutex_unlock(&kvm->lock);
5484
5485        return 0;
5486}
5487
5488static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5489{
5490        struct irq_desc *desc;
5491        struct kvmppc_passthru_irqmap *pimap;
5492        int i, rc = 0;
5493
5494        if (!kvm_irq_bypass)
5495                return 0;
5496
5497        desc = irq_to_desc(host_irq);
5498        if (!desc)
5499                return -EIO;
5500
5501        mutex_lock(&kvm->lock);
5502        if (!kvm->arch.pimap)
5503                goto unlock;
5504
5505        pimap = kvm->arch.pimap;
5506
5507        for (i = 0; i < pimap->n_mapped; i++) {
5508                if (guest_gsi == pimap->mapped[i].v_hwirq)
5509                        break;
5510        }
5511
5512        if (i == pimap->n_mapped) {
5513                mutex_unlock(&kvm->lock);
5514                return -ENODEV;
5515        }
5516
5517        if (xics_on_xive())
5518                rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5519        else
5520                kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5521
5522        /* invalidate the entry (what do do on error from the above ?) */
5523        pimap->mapped[i].r_hwirq = 0;
5524
5525        /*
5526         * We don't free this structure even when the count goes to
5527         * zero. The structure is freed when we destroy the VM.
5528         */
5529 unlock:
5530        mutex_unlock(&kvm->lock);
5531        return rc;
5532}
5533
5534static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5535                                             struct irq_bypass_producer *prod)
5536{
5537        int ret = 0;
5538        struct kvm_kernel_irqfd *irqfd =
5539                container_of(cons, struct kvm_kernel_irqfd, consumer);
5540
5541        irqfd->producer = prod;
5542
5543        ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5544        if (ret)
5545                pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5546                        prod->irq, irqfd->gsi, ret);
5547
5548        return ret;
5549}
5550
5551static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5552                                              struct irq_bypass_producer *prod)
5553{
5554        int ret;
5555        struct kvm_kernel_irqfd *irqfd =
5556                container_of(cons, struct kvm_kernel_irqfd, consumer);
5557
5558        irqfd->producer = NULL;
5559
5560        /*
5561         * When producer of consumer is unregistered, we change back to
5562         * default external interrupt handling mode - KVM real mode
5563         * will switch back to host.
5564         */
5565        ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5566        if (ret)
5567                pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5568                        prod->irq, irqfd->gsi, ret);
5569}
5570#endif
5571
5572static long kvm_arch_vm_ioctl_hv(struct file *filp,
5573                                 unsigned int ioctl, unsigned long arg)
5574{
5575        struct kvm *kvm __maybe_unused = filp->private_data;
5576        void __user *argp = (void __user *)arg;
5577        long r;
5578
5579        switch (ioctl) {
5580
5581        case KVM_PPC_ALLOCATE_HTAB: {
5582                u32 htab_order;
5583
5584                /* If we're a nested hypervisor, we currently only support radix */
5585                if (kvmhv_on_pseries()) {
5586                        r = -EOPNOTSUPP;
5587                        break;
5588                }
5589
5590                r = -EFAULT;
5591                if (get_user(htab_order, (u32 __user *)argp))
5592                        break;
5593                r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5594                if (r)
5595                        break;
5596                r = 0;
5597                break;
5598        }
5599
5600        case KVM_PPC_GET_HTAB_FD: {
5601                struct kvm_get_htab_fd ghf;
5602
5603                r = -EFAULT;
5604                if (copy_from_user(&ghf, argp, sizeof(ghf)))
5605                        break;
5606                r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5607                break;
5608        }
5609
5610        case KVM_PPC_RESIZE_HPT_PREPARE: {
5611                struct kvm_ppc_resize_hpt rhpt;
5612
5613                r = -EFAULT;
5614                if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5615                        break;
5616
5617                r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5618                break;
5619        }
5620
5621        case KVM_PPC_RESIZE_HPT_COMMIT: {
5622                struct kvm_ppc_resize_hpt rhpt;
5623
5624                r = -EFAULT;
5625                if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5626                        break;
5627
5628                r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5629                break;
5630        }
5631
5632        default:
5633                r = -ENOTTY;
5634        }
5635
5636        return r;
5637}
5638
5639/*
5640 * List of hcall numbers to enable by default.
5641 * For compatibility with old userspace, we enable by default
5642 * all hcalls that were implemented before the hcall-enabling
5643 * facility was added.  Note this list should not include H_RTAS.
5644 */
5645static unsigned int default_hcall_list[] = {
5646        H_REMOVE,
5647        H_ENTER,
5648        H_READ,
5649        H_PROTECT,
5650        H_BULK_REMOVE,
5651#ifdef CONFIG_SPAPR_TCE_IOMMU
5652        H_GET_TCE,
5653        H_PUT_TCE,
5654#endif
5655        H_SET_DABR,
5656        H_SET_XDABR,
5657        H_CEDE,
5658        H_PROD,
5659        H_CONFER,
5660        H_REGISTER_VPA,
5661#ifdef CONFIG_KVM_XICS
5662        H_EOI,
5663        H_CPPR,
5664        H_IPI,
5665        H_IPOLL,
5666        H_XIRR,
5667        H_XIRR_X,
5668#endif
5669        0
5670};
5671
5672static void init_default_hcalls(void)
5673{
5674        int i;
5675        unsigned int hcall;
5676
5677        for (i = 0; default_hcall_list[i]; ++i) {
5678                hcall = default_hcall_list[i];
5679                WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5680                __set_bit(hcall / 4, default_enabled_hcalls);
5681        }
5682}
5683
5684static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5685{
5686        unsigned long lpcr;
5687        int radix;
5688        int err;
5689
5690        /* If not on a POWER9, reject it */
5691        if (!cpu_has_feature(CPU_FTR_ARCH_300))
5692                return -ENODEV;
5693
5694        /* If any unknown flags set, reject it */
5695        if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5696                return -EINVAL;
5697
5698        /* GR (guest radix) bit in process_table field must match */
5699        radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5700        if (!!(cfg->process_table & PATB_GR) != radix)
5701                return -EINVAL;
5702
5703        /* Process table size field must be reasonable, i.e. <= 24 */
5704        if ((cfg->process_table & PRTS_MASK) > 24)
5705                return -EINVAL;
5706
5707        /* We can change a guest to/from radix now, if the host is radix */
5708        if (radix && !radix_enabled())
5709                return -EINVAL;
5710
5711        /* If we're a nested hypervisor, we currently only support radix */
5712        if (kvmhv_on_pseries() && !radix)
5713                return -EINVAL;
5714
5715        mutex_lock(&kvm->arch.mmu_setup_lock);
5716        if (radix != kvm_is_radix(kvm)) {
5717                if (kvm->arch.mmu_ready) {
5718                        kvm->arch.mmu_ready = 0;
5719                        /* order mmu_ready vs. vcpus_running */
5720                        smp_mb();
5721                        if (atomic_read(&kvm->arch.vcpus_running)) {
5722                                kvm->arch.mmu_ready = 1;
5723                                err = -EBUSY;
5724                                goto out_unlock;
5725                        }
5726                }
5727                if (radix)
5728                        err = kvmppc_switch_mmu_to_radix(kvm);
5729                else
5730                        err = kvmppc_switch_mmu_to_hpt(kvm);
5731                if (err)
5732                        goto out_unlock;
5733        }
5734
5735        kvm->arch.process_table = cfg->process_table;
5736        kvmppc_setup_partition_table(kvm);
5737
5738        lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5739        kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5740        err = 0;
5741
5742 out_unlock:
5743        mutex_unlock(&kvm->arch.mmu_setup_lock);
5744        return err;
5745}
5746
5747static int kvmhv_enable_nested(struct kvm *kvm)
5748{
5749        if (!nested)
5750                return -EPERM;
5751        if (!cpu_has_feature(CPU_FTR_ARCH_300))
5752                return -ENODEV;
5753        if (!radix_enabled())
5754                return -ENODEV;
5755
5756        /* kvm == NULL means the caller is testing if the capability exists */
5757        if (kvm)
5758                kvm->arch.nested_enable = true;
5759        return 0;
5760}
5761
5762static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5763                                 int size)
5764{
5765        int rc = -EINVAL;
5766
5767        if (kvmhv_vcpu_is_radix(vcpu)) {
5768                rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5769
5770                if (rc > 0)
5771                        rc = -EINVAL;
5772        }
5773
5774        /* For now quadrants are the only way to access nested guest memory */
5775        if (rc && vcpu->arch.nested)
5776                rc = -EAGAIN;
5777
5778        return rc;
5779}
5780
5781static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5782                                int size)
5783{
5784        int rc = -EINVAL;
5785
5786        if (kvmhv_vcpu_is_radix(vcpu)) {
5787                rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5788
5789                if (rc > 0)
5790                        rc = -EINVAL;
5791        }
5792
5793        /* For now quadrants are the only way to access nested guest memory */
5794        if (rc && vcpu->arch.nested)
5795                rc = -EAGAIN;
5796
5797        return rc;
5798}
5799
5800static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5801{
5802        unpin_vpa(kvm, vpa);
5803        vpa->gpa = 0;
5804        vpa->pinned_addr = NULL;
5805        vpa->dirty = false;
5806        vpa->update_pending = 0;
5807}
5808
5809/*
5810 * Enable a guest to become a secure VM, or test whether
5811 * that could be enabled.
5812 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5813 * tested (kvm == NULL) or enabled (kvm != NULL).
5814 */
5815static int kvmhv_enable_svm(struct kvm *kvm)
5816{
5817        if (!kvmppc_uvmem_available())
5818                return -EINVAL;
5819        if (kvm)
5820                kvm->arch.svm_enabled = 1;
5821        return 0;
5822}
5823
5824/*
5825 *  IOCTL handler to turn off secure mode of guest
5826 *
5827 * - Release all device pages
5828 * - Issue ucall to terminate the guest on the UV side
5829 * - Unpin the VPA pages.
5830 * - Reinit the partition scoped page tables
5831 */
5832static int kvmhv_svm_off(struct kvm *kvm)
5833{
5834        struct kvm_vcpu *vcpu;
5835        int mmu_was_ready;
5836        int srcu_idx;
5837        int ret = 0;
5838        int i;
5839
5840        if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5841                return ret;
5842
5843        mutex_lock(&kvm->arch.mmu_setup_lock);
5844        mmu_was_ready = kvm->arch.mmu_ready;
5845        if (kvm->arch.mmu_ready) {
5846                kvm->arch.mmu_ready = 0;
5847                /* order mmu_ready vs. vcpus_running */
5848                smp_mb();
5849                if (atomic_read(&kvm->arch.vcpus_running)) {
5850                        kvm->arch.mmu_ready = 1;
5851                        ret = -EBUSY;
5852                        goto out;
5853                }
5854        }
5855
5856        srcu_idx = srcu_read_lock(&kvm->srcu);
5857        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5858                struct kvm_memory_slot *memslot;
5859                struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5860
5861                if (!slots)
5862                        continue;
5863
5864                kvm_for_each_memslot(memslot, slots) {
5865                        kvmppc_uvmem_drop_pages(memslot, kvm, true);
5866                        uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5867                }
5868        }
5869        srcu_read_unlock(&kvm->srcu, srcu_idx);
5870
5871        ret = uv_svm_terminate(kvm->arch.lpid);
5872        if (ret != U_SUCCESS) {
5873                ret = -EINVAL;
5874                goto out;
5875        }
5876
5877        /*
5878         * When secure guest is reset, all the guest pages are sent
5879         * to UV via UV_PAGE_IN before the non-boot vcpus get a
5880         * chance to run and unpin their VPA pages. Unpinning of all
5881         * VPA pages is done here explicitly so that VPA pages
5882         * can be migrated to the secure side.
5883         *
5884         * This is required to for the secure SMP guest to reboot
5885         * correctly.
5886         */
5887        kvm_for_each_vcpu(i, vcpu, kvm) {
5888                spin_lock(&vcpu->arch.vpa_update_lock);
5889                unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5890                unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5891                unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5892                spin_unlock(&vcpu->arch.vpa_update_lock);
5893        }
5894
5895        kvmppc_setup_partition_table(kvm);
5896        kvm->arch.secure_guest = 0;
5897        kvm->arch.mmu_ready = mmu_was_ready;
5898out:
5899        mutex_unlock(&kvm->arch.mmu_setup_lock);
5900        return ret;
5901}
5902
5903static int kvmhv_enable_dawr1(struct kvm *kvm)
5904{
5905        if (!cpu_has_feature(CPU_FTR_DAWR1))
5906                return -ENODEV;
5907
5908        /* kvm == NULL means the caller is testing if the capability exists */
5909        if (kvm)
5910                kvm->arch.dawr1_enabled = true;
5911        return 0;
5912}
5913
5914static bool kvmppc_hash_v3_possible(void)
5915{
5916        if (!cpu_has_feature(CPU_FTR_ARCH_300))
5917                return false;
5918
5919        if (!cpu_has_feature(CPU_FTR_HVMODE))
5920                return false;
5921
5922        /*
5923         * POWER9 chips before version 2.02 can't have some threads in
5924         * HPT mode and some in radix mode on the same core.
5925         */
5926        if (radix_enabled()) {
5927                unsigned int pvr = mfspr(SPRN_PVR);
5928                if ((pvr >> 16) == PVR_POWER9 &&
5929                    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5930                     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5931                        return false;
5932        }
5933
5934        return true;
5935}
5936
5937static struct kvmppc_ops kvm_ops_hv = {
5938        .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5939        .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5940        .get_one_reg = kvmppc_get_one_reg_hv,
5941        .set_one_reg = kvmppc_set_one_reg_hv,
5942        .vcpu_load   = kvmppc_core_vcpu_load_hv,
5943        .vcpu_put    = kvmppc_core_vcpu_put_hv,
5944        .inject_interrupt = kvmppc_inject_interrupt_hv,
5945        .set_msr     = kvmppc_set_msr_hv,
5946        .vcpu_run    = kvmppc_vcpu_run_hv,
5947        .vcpu_create = kvmppc_core_vcpu_create_hv,
5948        .vcpu_free   = kvmppc_core_vcpu_free_hv,
5949        .check_requests = kvmppc_core_check_requests_hv,
5950        .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5951        .flush_memslot  = kvmppc_core_flush_memslot_hv,
5952        .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5953        .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5954        .unmap_gfn_range = kvm_unmap_gfn_range_hv,
5955        .age_gfn = kvm_age_gfn_hv,
5956        .test_age_gfn = kvm_test_age_gfn_hv,
5957        .set_spte_gfn = kvm_set_spte_gfn_hv,
5958        .free_memslot = kvmppc_core_free_memslot_hv,
5959        .init_vm =  kvmppc_core_init_vm_hv,
5960        .destroy_vm = kvmppc_core_destroy_vm_hv,
5961        .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5962        .emulate_op = kvmppc_core_emulate_op_hv,
5963        .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5964        .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5965        .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5966        .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5967        .hcall_implemented = kvmppc_hcall_impl_hv,
5968#ifdef CONFIG_KVM_XICS
5969        .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5970        .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5971#endif
5972        .configure_mmu = kvmhv_configure_mmu,
5973        .get_rmmu_info = kvmhv_get_rmmu_info,
5974        .set_smt_mode = kvmhv_set_smt_mode,
5975        .enable_nested = kvmhv_enable_nested,
5976        .load_from_eaddr = kvmhv_load_from_eaddr,
5977        .store_to_eaddr = kvmhv_store_to_eaddr,
5978        .enable_svm = kvmhv_enable_svm,
5979        .svm_off = kvmhv_svm_off,
5980        .enable_dawr1 = kvmhv_enable_dawr1,
5981        .hash_v3_possible = kvmppc_hash_v3_possible,
5982};
5983
5984static int kvm_init_subcore_bitmap(void)
5985{
5986        int i, j;
5987        int nr_cores = cpu_nr_cores();
5988        struct sibling_subcore_state *sibling_subcore_state;
5989
5990        for (i = 0; i < nr_cores; i++) {
5991                int first_cpu = i * threads_per_core;
5992                int node = cpu_to_node(first_cpu);
5993
5994                /* Ignore if it is already allocated. */
5995                if (paca_ptrs[first_cpu]->sibling_subcore_state)
5996                        continue;
5997
5998                sibling_subcore_state =
5999                        kzalloc_node(sizeof(struct sibling_subcore_state),
6000                                                        GFP_KERNEL, node);
6001                if (!sibling_subcore_state)
6002                        return -ENOMEM;
6003
6004
6005                for (j = 0; j < threads_per_core; j++) {
6006                        int cpu = first_cpu + j;
6007
6008                        paca_ptrs[cpu]->sibling_subcore_state =
6009                                                sibling_subcore_state;
6010                }
6011        }
6012        return 0;
6013}
6014
6015static int kvmppc_radix_possible(void)
6016{
6017        return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6018}
6019
6020static int kvmppc_book3s_init_hv(void)
6021{
6022        int r;
6023
6024        if (!tlbie_capable) {
6025                pr_err("KVM-HV: Host does not support TLBIE\n");
6026                return -ENODEV;
6027        }
6028
6029        /*
6030         * FIXME!! Do we need to check on all cpus ?
6031         */
6032        r = kvmppc_core_check_processor_compat_hv();
6033        if (r < 0)
6034                return -ENODEV;
6035
6036        r = kvmhv_nested_init();
6037        if (r)
6038                return r;
6039
6040        r = kvm_init_subcore_bitmap();
6041        if (r)
6042                return r;
6043
6044        /*
6045         * We need a way of accessing the XICS interrupt controller,
6046         * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6047         * indirectly, via OPAL.
6048         */
6049#ifdef CONFIG_SMP
6050        if (!xics_on_xive() && !kvmhv_on_pseries() &&
6051            !local_paca->kvm_hstate.xics_phys) {
6052                struct device_node *np;
6053
6054                np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6055                if (!np) {
6056                        pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6057                        return -ENODEV;
6058                }
6059                /* presence of intc confirmed - node can be dropped again */
6060                of_node_put(np);
6061        }
6062#endif
6063
6064        kvm_ops_hv.owner = THIS_MODULE;
6065        kvmppc_hv_ops = &kvm_ops_hv;
6066
6067        init_default_hcalls();
6068
6069        init_vcore_lists();
6070
6071        r = kvmppc_mmu_hv_init();
6072        if (r)
6073                return r;
6074
6075        if (kvmppc_radix_possible())
6076                r = kvmppc_radix_init();
6077
6078        r = kvmppc_uvmem_init();
6079        if (r < 0)
6080                pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6081
6082        return r;
6083}
6084
6085static void kvmppc_book3s_exit_hv(void)
6086{
6087        kvmppc_uvmem_free();
6088        kvmppc_free_host_rm_ops();
6089        if (kvmppc_radix_possible())
6090                kvmppc_radix_exit();
6091        kvmppc_hv_ops = NULL;
6092        kvmhv_nested_exit();
6093}
6094
6095module_init(kvmppc_book3s_init_hv);
6096module_exit(kvmppc_book3s_exit_hv);
6097MODULE_LICENSE("GPL");
6098MODULE_ALIAS_MISCDEV(KVM_MINOR);
6099MODULE_ALIAS("devname:kvm");
6100