linux/arch/powerpc/kvm/book3s_hv_ras.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/string.h>
   9#include <linux/kvm.h>
  10#include <linux/kvm_host.h>
  11#include <linux/kernel.h>
  12#include <asm/opal.h>
  13#include <asm/mce.h>
  14#include <asm/machdep.h>
  15#include <asm/cputhreads.h>
  16#include <asm/hmi.h>
  17#include <asm/kvm_ppc.h>
  18
  19/* SRR1 bits for machine check on POWER7 */
  20#define SRR1_MC_LDSTERR         (1ul << (63-42))
  21#define SRR1_MC_IFETCH_SH       (63-45)
  22#define SRR1_MC_IFETCH_MASK     0x7
  23#define SRR1_MC_IFETCH_SLBPAR           2       /* SLB parity error */
  24#define SRR1_MC_IFETCH_SLBMULTI         3       /* SLB multi-hit */
  25#define SRR1_MC_IFETCH_SLBPARMULTI      4       /* SLB parity + multi-hit */
  26#define SRR1_MC_IFETCH_TLBMULTI         5       /* I-TLB multi-hit */
  27
  28/* DSISR bits for machine check on POWER7 */
  29#define DSISR_MC_DERAT_MULTI    0x800           /* D-ERAT multi-hit */
  30#define DSISR_MC_TLB_MULTI      0x400           /* D-TLB multi-hit */
  31#define DSISR_MC_SLB_PARITY     0x100           /* SLB parity error */
  32#define DSISR_MC_SLB_MULTI      0x080           /* SLB multi-hit */
  33#define DSISR_MC_SLB_PARMULTI   0x040           /* SLB parity + multi-hit */
  34
  35/* POWER7 SLB flush and reload */
  36static void reload_slb(struct kvm_vcpu *vcpu)
  37{
  38        struct slb_shadow *slb;
  39        unsigned long i, n;
  40
  41        /* First clear out SLB */
  42        asm volatile("slbmte %0,%0; slbia" : : "r" (0));
  43
  44        /* Do they have an SLB shadow buffer registered? */
  45        slb = vcpu->arch.slb_shadow.pinned_addr;
  46        if (!slb)
  47                return;
  48
  49        /* Sanity check */
  50        n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
  51        if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
  52                return;
  53
  54        /* Load up the SLB from that */
  55        for (i = 0; i < n; ++i) {
  56                unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
  57                unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
  58
  59                rb = (rb & ~0xFFFul) | i;       /* insert entry number */
  60                asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
  61        }
  62}
  63
  64/*
  65 * On POWER7, see if we can handle a machine check that occurred inside
  66 * the guest in real mode, without switching to the host partition.
  67 */
  68static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
  69{
  70        unsigned long srr1 = vcpu->arch.shregs.msr;
  71        long handled = 1;
  72
  73        if (srr1 & SRR1_MC_LDSTERR) {
  74                /* error on load/store */
  75                unsigned long dsisr = vcpu->arch.shregs.dsisr;
  76
  77                if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
  78                             DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
  79                        /* flush and reload SLB; flushes D-ERAT too */
  80                        reload_slb(vcpu);
  81                        dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
  82                                   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
  83                }
  84                if (dsisr & DSISR_MC_TLB_MULTI) {
  85                        tlbiel_all_lpid(vcpu->kvm->arch.radix);
  86                        dsisr &= ~DSISR_MC_TLB_MULTI;
  87                }
  88                /* Any other errors we don't understand? */
  89                if (dsisr & 0xffffffffUL)
  90                        handled = 0;
  91        }
  92
  93        switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
  94        case 0:
  95                break;
  96        case SRR1_MC_IFETCH_SLBPAR:
  97        case SRR1_MC_IFETCH_SLBMULTI:
  98        case SRR1_MC_IFETCH_SLBPARMULTI:
  99                reload_slb(vcpu);
 100                break;
 101        case SRR1_MC_IFETCH_TLBMULTI:
 102                tlbiel_all_lpid(vcpu->kvm->arch.radix);
 103                break;
 104        default:
 105                handled = 0;
 106        }
 107
 108        return handled;
 109}
 110
 111void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
 112{
 113        struct machine_check_event mce_evt;
 114        long handled;
 115
 116        if (vcpu->kvm->arch.fwnmi_enabled) {
 117                /* FWNMI guests handle their own recovery */
 118                handled = 0;
 119        } else {
 120                handled = kvmppc_realmode_mc_power7(vcpu);
 121        }
 122
 123        /*
 124         * Now get the event and stash it in the vcpu struct so it can
 125         * be handled by the primary thread in virtual mode.  We can't
 126         * call machine_check_queue_event() here if we are running on
 127         * an offline secondary thread.
 128         */
 129        if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
 130                if (handled && mce_evt.version == MCE_V1)
 131                        mce_evt.disposition = MCE_DISPOSITION_RECOVERED;
 132        } else {
 133                memset(&mce_evt, 0, sizeof(mce_evt));
 134        }
 135
 136        vcpu->arch.mce_evt = mce_evt;
 137}
 138
 139/* Check if dynamic split is in force and return subcore size accordingly. */
 140static inline int kvmppc_cur_subcore_size(void)
 141{
 142        if (local_paca->kvm_hstate.kvm_split_mode)
 143                return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
 144
 145        return threads_per_subcore;
 146}
 147
 148void kvmppc_subcore_enter_guest(void)
 149{
 150        int thread_id, subcore_id;
 151
 152        thread_id = cpu_thread_in_core(local_paca->paca_index);
 153        subcore_id = thread_id / kvmppc_cur_subcore_size();
 154
 155        local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
 156}
 157EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
 158
 159void kvmppc_subcore_exit_guest(void)
 160{
 161        int thread_id, subcore_id;
 162
 163        thread_id = cpu_thread_in_core(local_paca->paca_index);
 164        subcore_id = thread_id / kvmppc_cur_subcore_size();
 165
 166        local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
 167}
 168EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
 169
 170static bool kvmppc_tb_resync_required(void)
 171{
 172        if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
 173                                &local_paca->sibling_subcore_state->flags))
 174                return false;
 175
 176        return true;
 177}
 178
 179static void kvmppc_tb_resync_done(void)
 180{
 181        clear_bit(CORE_TB_RESYNC_REQ_BIT,
 182                        &local_paca->sibling_subcore_state->flags);
 183}
 184
 185/*
 186 * kvmppc_realmode_hmi_handler() is called only by primary thread during
 187 * guest exit path.
 188 *
 189 * There are multiple reasons why HMI could occur, one of them is
 190 * Timebase (TB) error. If this HMI is due to TB error, then TB would
 191 * have been in stopped state. The opal hmi handler Will fix it and
 192 * restore the TB value with host timebase value. For HMI caused due
 193 * to non-TB errors, opal hmi handler will not touch/restore TB register
 194 * and hence there won't be any change in TB value.
 195 *
 196 * Since we are not sure about the cause of this HMI, we can't be sure
 197 * about the content of TB register whether it holds guest or host timebase
 198 * value. Hence the idea is to resync the TB on every HMI, so that we
 199 * know about the exact state of the TB value. Resync TB call will
 200 * restore TB to host timebase.
 201 *
 202 * Things to consider:
 203 * - On TB error, HMI interrupt is reported on all the threads of the core
 204 *   that has encountered TB error irrespective of split-core mode.
 205 * - The very first thread on the core that get chance to fix TB error
 206 *   would rsync the TB with local chipTOD value.
 207 * - The resync TB is a core level action i.e. it will sync all the TBs
 208 *   in that core independent of split-core mode. This means if we trigger
 209 *   TB sync from a thread from one subcore, it would affect TB values of
 210 *   sibling subcores of the same core.
 211 *
 212 * All threads need to co-ordinate before making opal hmi handler.
 213 * All threads will use sibling_subcore_state->in_guest[] (shared by all
 214 * threads in the core) in paca which holds information about whether
 215 * sibling subcores are in Guest mode or host mode. The in_guest[] array
 216 * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
 217 * subcore status. Only primary threads from each subcore is responsible
 218 * to set/unset its designated array element while entering/exiting the
 219 * guset.
 220 *
 221 * After invoking opal hmi handler call, one of the thread (of entire core)
 222 * will need to resync the TB. Bit 63 from subcore state bitmap flags
 223 * (sibling_subcore_state->flags) will be used to co-ordinate between
 224 * primary threads to decide who takes up the responsibility.
 225 *
 226 * This is what we do:
 227 * - Primary thread from each subcore tries to set resync required bit[63]
 228 *   of paca->sibling_subcore_state->flags.
 229 * - The first primary thread that is able to set the flag takes the
 230 *   responsibility of TB resync. (Let us call it as thread leader)
 231 * - All other threads which are in host will call
 232 *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
 233 *   paca->sibling_subcore_state to get cleared.
 234 * - All the primary thread will clear its subcore status from subcore
 235 *   state in_guest[] array respectively.
 236 * - Once all primary threads clear in_guest[0-3], all of them will invoke
 237 *   opal hmi handler.
 238 * - Now all threads will wait for TB resync to complete by invoking
 239 *   wait_for_tb_resync() except the thread leader.
 240 * - Thread leader will do a TB resync by invoking opal_resync_timebase()
 241 *   call and the it will clear the resync required bit.
 242 * - All other threads will now come out of resync wait loop and proceed
 243 *   with individual execution.
 244 * - On return of this function, primary thread will signal all
 245 *   secondary threads to proceed.
 246 * - All secondary threads will eventually call opal hmi handler on
 247 *   their exit path.
 248 *
 249 * Returns 1 if the timebase offset should be applied, 0 if not.
 250 */
 251
 252long kvmppc_realmode_hmi_handler(void)
 253{
 254        bool resync_req;
 255
 256        local_paca->hmi_irqs++;
 257
 258        if (hmi_handle_debugtrig(NULL) >= 0)
 259                return 1;
 260
 261        /*
 262         * By now primary thread has already completed guest->host
 263         * partition switch but haven't signaled secondaries yet.
 264         * All the secondary threads on this subcore is waiting
 265         * for primary thread to signal them to go ahead.
 266         *
 267         * For threads from subcore which isn't in guest, they all will
 268         * wait until all other subcores on this core exit the guest.
 269         *
 270         * Now set the resync required bit. If you are the first to
 271         * set this bit then kvmppc_tb_resync_required() function will
 272         * return true. For rest all other subcores
 273         * kvmppc_tb_resync_required() will return false.
 274         *
 275         * If resync_req == true, then this thread is responsible to
 276         * initiate TB resync after hmi handler has completed.
 277         * All other threads on this core will wait until this thread
 278         * clears the resync required bit flag.
 279         */
 280        resync_req = kvmppc_tb_resync_required();
 281
 282        /* Reset the subcore status to indicate it has exited guest */
 283        kvmppc_subcore_exit_guest();
 284
 285        /*
 286         * Wait for other subcores on this core to exit the guest.
 287         * All the primary threads and threads from subcore that are
 288         * not in guest will wait here until all subcores are out
 289         * of guest context.
 290         */
 291        wait_for_subcore_guest_exit();
 292
 293        /*
 294         * At this point we are sure that primary threads from each
 295         * subcore on this core have completed guest->host partition
 296         * switch. Now it is safe to call HMI handler.
 297         */
 298        if (ppc_md.hmi_exception_early)
 299                ppc_md.hmi_exception_early(NULL);
 300
 301        /*
 302         * Check if this thread is responsible to resync TB.
 303         * All other threads will wait until this thread completes the
 304         * TB resync.
 305         */
 306        if (resync_req) {
 307                opal_resync_timebase();
 308                /* Reset TB resync req bit */
 309                kvmppc_tb_resync_done();
 310        } else {
 311                wait_for_tb_resync();
 312        }
 313
 314        /*
 315         * Reset tb_offset_applied so the guest exit code won't try
 316         * to subtract the previous timebase offset from the timebase.
 317         */
 318        if (local_paca->kvm_hstate.kvm_vcore)
 319                local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
 320
 321        return 0;
 322}
 323