linux/arch/powerpc/kvm/e500_mmu_host.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
   4 *
   5 * Author: Yu Liu, yu.liu@freescale.com
   6 *         Scott Wood, scottwood@freescale.com
   7 *         Ashish Kalra, ashish.kalra@freescale.com
   8 *         Varun Sethi, varun.sethi@freescale.com
   9 *         Alexander Graf, agraf@suse.de
  10 *
  11 * Description:
  12 * This file is based on arch/powerpc/kvm/44x_tlb.c,
  13 * by Hollis Blanchard <hollisb@us.ibm.com>.
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kvm.h>
  21#include <linux/kvm_host.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
  24#include <linux/uaccess.h>
  25#include <linux/sched/mm.h>
  26#include <linux/rwsem.h>
  27#include <linux/vmalloc.h>
  28#include <linux/hugetlb.h>
  29#include <asm/kvm_ppc.h>
  30#include <asm/pte-walk.h>
  31
  32#include "e500.h"
  33#include "timing.h"
  34#include "e500_mmu_host.h"
  35
  36#include "trace_booke.h"
  37
  38#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
  39
  40static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
  41
  42static inline unsigned int tlb1_max_shadow_size(void)
  43{
  44        /* reserve one entry for magic page */
  45        return host_tlb_params[1].entries - tlbcam_index - 1;
  46}
  47
  48static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
  49{
  50        /* Mask off reserved bits. */
  51        mas3 &= MAS3_ATTRIB_MASK;
  52
  53#ifndef CONFIG_KVM_BOOKE_HV
  54        if (!usermode) {
  55                /* Guest is in supervisor mode,
  56                 * so we need to translate guest
  57                 * supervisor permissions into user permissions. */
  58                mas3 &= ~E500_TLB_USER_PERM_MASK;
  59                mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
  60        }
  61        mas3 |= E500_TLB_SUPER_PERM_MASK;
  62#endif
  63        return mas3;
  64}
  65
  66/*
  67 * writing shadow tlb entry to host TLB
  68 */
  69static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
  70                                     uint32_t mas0,
  71                                     uint32_t lpid)
  72{
  73        unsigned long flags;
  74
  75        local_irq_save(flags);
  76        mtspr(SPRN_MAS0, mas0);
  77        mtspr(SPRN_MAS1, stlbe->mas1);
  78        mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
  79        mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
  80        mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
  81#ifdef CONFIG_KVM_BOOKE_HV
  82        mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
  83#endif
  84        asm volatile("isync; tlbwe" : : : "memory");
  85
  86#ifdef CONFIG_KVM_BOOKE_HV
  87        /* Must clear mas8 for other host tlbwe's */
  88        mtspr(SPRN_MAS8, 0);
  89        isync();
  90#endif
  91        local_irq_restore(flags);
  92
  93        trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
  94                                      stlbe->mas2, stlbe->mas7_3);
  95}
  96
  97/*
  98 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
  99 *
 100 * We don't care about the address we're searching for, other than that it's
 101 * in the right set and is not present in the TLB.  Using a zero PID and a
 102 * userspace address means we don't have to set and then restore MAS5, or
 103 * calculate a proper MAS6 value.
 104 */
 105static u32 get_host_mas0(unsigned long eaddr)
 106{
 107        unsigned long flags;
 108        u32 mas0;
 109        u32 mas4;
 110
 111        local_irq_save(flags);
 112        mtspr(SPRN_MAS6, 0);
 113        mas4 = mfspr(SPRN_MAS4);
 114        mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
 115        asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
 116        mas0 = mfspr(SPRN_MAS0);
 117        mtspr(SPRN_MAS4, mas4);
 118        local_irq_restore(flags);
 119
 120        return mas0;
 121}
 122
 123/* sesel is for tlb1 only */
 124static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
 125                int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
 126{
 127        u32 mas0;
 128
 129        if (tlbsel == 0) {
 130                mas0 = get_host_mas0(stlbe->mas2);
 131                __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
 132        } else {
 133                __write_host_tlbe(stlbe,
 134                                  MAS0_TLBSEL(1) |
 135                                  MAS0_ESEL(to_htlb1_esel(sesel)),
 136                                  vcpu_e500->vcpu.kvm->arch.lpid);
 137        }
 138}
 139
 140/* sesel is for tlb1 only */
 141static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
 142                        struct kvm_book3e_206_tlb_entry *gtlbe,
 143                        struct kvm_book3e_206_tlb_entry *stlbe,
 144                        int stlbsel, int sesel)
 145{
 146        int stid;
 147
 148        preempt_disable();
 149        stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
 150
 151        stlbe->mas1 |= MAS1_TID(stid);
 152        write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
 153        preempt_enable();
 154}
 155
 156#ifdef CONFIG_KVM_E500V2
 157/* XXX should be a hook in the gva2hpa translation */
 158void kvmppc_map_magic(struct kvm_vcpu *vcpu)
 159{
 160        struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 161        struct kvm_book3e_206_tlb_entry magic;
 162        ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
 163        unsigned int stid;
 164        kvm_pfn_t pfn;
 165
 166        pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
 167        get_page(pfn_to_page(pfn));
 168
 169        preempt_disable();
 170        stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
 171
 172        magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
 173                     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
 174        magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
 175        magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
 176                       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
 177        magic.mas8 = 0;
 178
 179        __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
 180        preempt_enable();
 181}
 182#endif
 183
 184void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
 185                         int esel)
 186{
 187        struct kvm_book3e_206_tlb_entry *gtlbe =
 188                get_entry(vcpu_e500, tlbsel, esel);
 189        struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
 190
 191        /* Don't bother with unmapped entries */
 192        if (!(ref->flags & E500_TLB_VALID)) {
 193                WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
 194                     "%s: flags %x\n", __func__, ref->flags);
 195                WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
 196        }
 197
 198        if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
 199                u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
 200                int hw_tlb_indx;
 201                unsigned long flags;
 202
 203                local_irq_save(flags);
 204                while (tmp) {
 205                        hw_tlb_indx = __ilog2_u64(tmp & -tmp);
 206                        mtspr(SPRN_MAS0,
 207                              MAS0_TLBSEL(1) |
 208                              MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
 209                        mtspr(SPRN_MAS1, 0);
 210                        asm volatile("tlbwe");
 211                        vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
 212                        tmp &= tmp - 1;
 213                }
 214                mb();
 215                vcpu_e500->g2h_tlb1_map[esel] = 0;
 216                ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
 217                local_irq_restore(flags);
 218        }
 219
 220        if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
 221                /*
 222                 * TLB1 entry is backed by 4k pages. This should happen
 223                 * rarely and is not worth optimizing. Invalidate everything.
 224                 */
 225                kvmppc_e500_tlbil_all(vcpu_e500);
 226                ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
 227        }
 228
 229        /*
 230         * If TLB entry is still valid then it's a TLB0 entry, and thus
 231         * backed by at most one host tlbe per shadow pid
 232         */
 233        if (ref->flags & E500_TLB_VALID)
 234                kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
 235
 236        /* Mark the TLB as not backed by the host anymore */
 237        ref->flags = 0;
 238}
 239
 240static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
 241{
 242        return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
 243}
 244
 245static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
 246                                         struct kvm_book3e_206_tlb_entry *gtlbe,
 247                                         kvm_pfn_t pfn, unsigned int wimg)
 248{
 249        ref->pfn = pfn;
 250        ref->flags = E500_TLB_VALID;
 251
 252        /* Use guest supplied MAS2_G and MAS2_E */
 253        ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
 254
 255        /* Mark the page accessed */
 256        kvm_set_pfn_accessed(pfn);
 257
 258        if (tlbe_is_writable(gtlbe))
 259                kvm_set_pfn_dirty(pfn);
 260}
 261
 262static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
 263{
 264        if (ref->flags & E500_TLB_VALID) {
 265                /* FIXME: don't log bogus pfn for TLB1 */
 266                trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
 267                ref->flags = 0;
 268        }
 269}
 270
 271static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
 272{
 273        if (vcpu_e500->g2h_tlb1_map)
 274                memset(vcpu_e500->g2h_tlb1_map, 0,
 275                       sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
 276        if (vcpu_e500->h2g_tlb1_rmap)
 277                memset(vcpu_e500->h2g_tlb1_rmap, 0,
 278                       sizeof(unsigned int) * host_tlb_params[1].entries);
 279}
 280
 281static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
 282{
 283        int tlbsel;
 284        int i;
 285
 286        for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
 287                for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
 288                        struct tlbe_ref *ref =
 289                                &vcpu_e500->gtlb_priv[tlbsel][i].ref;
 290                        kvmppc_e500_ref_release(ref);
 291                }
 292        }
 293}
 294
 295void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
 296{
 297        struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 298        kvmppc_e500_tlbil_all(vcpu_e500);
 299        clear_tlb_privs(vcpu_e500);
 300        clear_tlb1_bitmap(vcpu_e500);
 301}
 302
 303/* TID must be supplied by the caller */
 304static void kvmppc_e500_setup_stlbe(
 305        struct kvm_vcpu *vcpu,
 306        struct kvm_book3e_206_tlb_entry *gtlbe,
 307        int tsize, struct tlbe_ref *ref, u64 gvaddr,
 308        struct kvm_book3e_206_tlb_entry *stlbe)
 309{
 310        kvm_pfn_t pfn = ref->pfn;
 311        u32 pr = vcpu->arch.shared->msr & MSR_PR;
 312
 313        BUG_ON(!(ref->flags & E500_TLB_VALID));
 314
 315        /* Force IPROT=0 for all guest mappings. */
 316        stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
 317        stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
 318        stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
 319                        e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
 320}
 321
 322static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
 323        u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
 324        int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
 325        struct tlbe_ref *ref)
 326{
 327        struct kvm_memory_slot *slot;
 328        unsigned long pfn = 0; /* silence GCC warning */
 329        unsigned long hva;
 330        int pfnmap = 0;
 331        int tsize = BOOK3E_PAGESZ_4K;
 332        int ret = 0;
 333        unsigned long mmu_seq;
 334        struct kvm *kvm = vcpu_e500->vcpu.kvm;
 335        unsigned long tsize_pages = 0;
 336        pte_t *ptep;
 337        unsigned int wimg = 0;
 338        pgd_t *pgdir;
 339        unsigned long flags;
 340
 341        /* used to check for invalidations in progress */
 342        mmu_seq = kvm->mmu_notifier_seq;
 343        smp_rmb();
 344
 345        /*
 346         * Translate guest physical to true physical, acquiring
 347         * a page reference if it is normal, non-reserved memory.
 348         *
 349         * gfn_to_memslot() must succeed because otherwise we wouldn't
 350         * have gotten this far.  Eventually we should just pass the slot
 351         * pointer through from the first lookup.
 352         */
 353        slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
 354        hva = gfn_to_hva_memslot(slot, gfn);
 355
 356        if (tlbsel == 1) {
 357                struct vm_area_struct *vma;
 358                mmap_read_lock(kvm->mm);
 359
 360                vma = find_vma(kvm->mm, hva);
 361                if (vma && hva >= vma->vm_start &&
 362                    (vma->vm_flags & VM_PFNMAP)) {
 363                        /*
 364                         * This VMA is a physically contiguous region (e.g.
 365                         * /dev/mem) that bypasses normal Linux page
 366                         * management.  Find the overlap between the
 367                         * vma and the memslot.
 368                         */
 369
 370                        unsigned long start, end;
 371                        unsigned long slot_start, slot_end;
 372
 373                        pfnmap = 1;
 374
 375                        start = vma->vm_pgoff;
 376                        end = start +
 377                              vma_pages(vma);
 378
 379                        pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
 380
 381                        slot_start = pfn - (gfn - slot->base_gfn);
 382                        slot_end = slot_start + slot->npages;
 383
 384                        if (start < slot_start)
 385                                start = slot_start;
 386                        if (end > slot_end)
 387                                end = slot_end;
 388
 389                        tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
 390                                MAS1_TSIZE_SHIFT;
 391
 392                        /*
 393                         * e500 doesn't implement the lowest tsize bit,
 394                         * or 1K pages.
 395                         */
 396                        tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
 397
 398                        /*
 399                         * Now find the largest tsize (up to what the guest
 400                         * requested) that will cover gfn, stay within the
 401                         * range, and for which gfn and pfn are mutually
 402                         * aligned.
 403                         */
 404
 405                        for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
 406                                unsigned long gfn_start, gfn_end;
 407                                tsize_pages = 1UL << (tsize - 2);
 408
 409                                gfn_start = gfn & ~(tsize_pages - 1);
 410                                gfn_end = gfn_start + tsize_pages;
 411
 412                                if (gfn_start + pfn - gfn < start)
 413                                        continue;
 414                                if (gfn_end + pfn - gfn > end)
 415                                        continue;
 416                                if ((gfn & (tsize_pages - 1)) !=
 417                                    (pfn & (tsize_pages - 1)))
 418                                        continue;
 419
 420                                gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
 421                                pfn &= ~(tsize_pages - 1);
 422                                break;
 423                        }
 424                } else if (vma && hva >= vma->vm_start &&
 425                           is_vm_hugetlb_page(vma)) {
 426                        unsigned long psize = vma_kernel_pagesize(vma);
 427
 428                        tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
 429                                MAS1_TSIZE_SHIFT;
 430
 431                        /*
 432                         * Take the largest page size that satisfies both host
 433                         * and guest mapping
 434                         */
 435                        tsize = min(__ilog2(psize) - 10, tsize);
 436
 437                        /*
 438                         * e500 doesn't implement the lowest tsize bit,
 439                         * or 1K pages.
 440                         */
 441                        tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
 442                }
 443
 444                mmap_read_unlock(kvm->mm);
 445        }
 446
 447        if (likely(!pfnmap)) {
 448                tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
 449                pfn = gfn_to_pfn_memslot(slot, gfn);
 450                if (is_error_noslot_pfn(pfn)) {
 451                        if (printk_ratelimit())
 452                                pr_err("%s: real page not found for gfn %lx\n",
 453                                       __func__, (long)gfn);
 454                        return -EINVAL;
 455                }
 456
 457                /* Align guest and physical address to page map boundaries */
 458                pfn &= ~(tsize_pages - 1);
 459                gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
 460        }
 461
 462        spin_lock(&kvm->mmu_lock);
 463        if (mmu_notifier_retry(kvm, mmu_seq)) {
 464                ret = -EAGAIN;
 465                goto out;
 466        }
 467
 468
 469        pgdir = vcpu_e500->vcpu.arch.pgdir;
 470        /*
 471         * We are just looking at the wimg bits, so we don't
 472         * care much about the trans splitting bit.
 473         * We are holding kvm->mmu_lock so a notifier invalidate
 474         * can't run hence pfn won't change.
 475         */
 476        local_irq_save(flags);
 477        ptep = find_linux_pte(pgdir, hva, NULL, NULL);
 478        if (ptep) {
 479                pte_t pte = READ_ONCE(*ptep);
 480
 481                if (pte_present(pte)) {
 482                        wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
 483                                MAS2_WIMGE_MASK;
 484                        local_irq_restore(flags);
 485                } else {
 486                        local_irq_restore(flags);
 487                        pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
 488                                           __func__, (long)gfn, pfn);
 489                        ret = -EINVAL;
 490                        goto out;
 491                }
 492        }
 493        kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
 494
 495        kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
 496                                ref, gvaddr, stlbe);
 497
 498        /* Clear i-cache for new pages */
 499        kvmppc_mmu_flush_icache(pfn);
 500
 501out:
 502        spin_unlock(&kvm->mmu_lock);
 503
 504        /* Drop refcount on page, so that mmu notifiers can clear it */
 505        kvm_release_pfn_clean(pfn);
 506
 507        return ret;
 508}
 509
 510/* XXX only map the one-one case, for now use TLB0 */
 511static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
 512                                struct kvm_book3e_206_tlb_entry *stlbe)
 513{
 514        struct kvm_book3e_206_tlb_entry *gtlbe;
 515        struct tlbe_ref *ref;
 516        int stlbsel = 0;
 517        int sesel = 0;
 518        int r;
 519
 520        gtlbe = get_entry(vcpu_e500, 0, esel);
 521        ref = &vcpu_e500->gtlb_priv[0][esel].ref;
 522
 523        r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
 524                        get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
 525                        gtlbe, 0, stlbe, ref);
 526        if (r)
 527                return r;
 528
 529        write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
 530
 531        return 0;
 532}
 533
 534static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
 535                                     struct tlbe_ref *ref,
 536                                     int esel)
 537{
 538        unsigned int sesel = vcpu_e500->host_tlb1_nv++;
 539
 540        if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
 541                vcpu_e500->host_tlb1_nv = 0;
 542
 543        if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
 544                unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
 545                vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
 546        }
 547
 548        vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
 549        vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
 550        vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
 551        WARN_ON(!(ref->flags & E500_TLB_VALID));
 552
 553        return sesel;
 554}
 555
 556/* Caller must ensure that the specified guest TLB entry is safe to insert into
 557 * the shadow TLB. */
 558/* For both one-one and one-to-many */
 559static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
 560                u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
 561                struct kvm_book3e_206_tlb_entry *stlbe, int esel)
 562{
 563        struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
 564        int sesel;
 565        int r;
 566
 567        r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
 568                                   ref);
 569        if (r)
 570                return r;
 571
 572        /* Use TLB0 when we can only map a page with 4k */
 573        if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
 574                vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
 575                write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
 576                return 0;
 577        }
 578
 579        /* Otherwise map into TLB1 */
 580        sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
 581        write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
 582
 583        return 0;
 584}
 585
 586void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
 587                    unsigned int index)
 588{
 589        struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 590        struct tlbe_priv *priv;
 591        struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
 592        int tlbsel = tlbsel_of(index);
 593        int esel = esel_of(index);
 594
 595        gtlbe = get_entry(vcpu_e500, tlbsel, esel);
 596
 597        switch (tlbsel) {
 598        case 0:
 599                priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
 600
 601                /* Triggers after clear_tlb_privs or on initial mapping */
 602                if (!(priv->ref.flags & E500_TLB_VALID)) {
 603                        kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
 604                } else {
 605                        kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
 606                                                &priv->ref, eaddr, &stlbe);
 607                        write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
 608                }
 609                break;
 610
 611        case 1: {
 612                gfn_t gfn = gpaddr >> PAGE_SHIFT;
 613                kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
 614                                     esel);
 615                break;
 616        }
 617
 618        default:
 619                BUG();
 620                break;
 621        }
 622}
 623
 624#ifdef CONFIG_KVM_BOOKE_HV
 625int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
 626                enum instruction_fetch_type type, u32 *instr)
 627{
 628        gva_t geaddr;
 629        hpa_t addr;
 630        hfn_t pfn;
 631        hva_t eaddr;
 632        u32 mas1, mas2, mas3;
 633        u64 mas7_mas3;
 634        struct page *page;
 635        unsigned int addr_space, psize_shift;
 636        bool pr;
 637        unsigned long flags;
 638
 639        /* Search TLB for guest pc to get the real address */
 640        geaddr = kvmppc_get_pc(vcpu);
 641
 642        addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
 643
 644        local_irq_save(flags);
 645        mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
 646        mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
 647        asm volatile("tlbsx 0, %[geaddr]\n" : :
 648                     [geaddr] "r" (geaddr));
 649        mtspr(SPRN_MAS5, 0);
 650        mtspr(SPRN_MAS8, 0);
 651        mas1 = mfspr(SPRN_MAS1);
 652        mas2 = mfspr(SPRN_MAS2);
 653        mas3 = mfspr(SPRN_MAS3);
 654#ifdef CONFIG_64BIT
 655        mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
 656#else
 657        mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
 658#endif
 659        local_irq_restore(flags);
 660
 661        /*
 662         * If the TLB entry for guest pc was evicted, return to the guest.
 663         * There are high chances to find a valid TLB entry next time.
 664         */
 665        if (!(mas1 & MAS1_VALID))
 666                return EMULATE_AGAIN;
 667
 668        /*
 669         * Another thread may rewrite the TLB entry in parallel, don't
 670         * execute from the address if the execute permission is not set
 671         */
 672        pr = vcpu->arch.shared->msr & MSR_PR;
 673        if (unlikely((pr && !(mas3 & MAS3_UX)) ||
 674                     (!pr && !(mas3 & MAS3_SX)))) {
 675                pr_err_ratelimited(
 676                        "%s: Instruction emulation from guest address %08lx without execute permission\n",
 677                        __func__, geaddr);
 678                return EMULATE_AGAIN;
 679        }
 680
 681        /*
 682         * The real address will be mapped by a cacheable, memory coherent,
 683         * write-back page. Check for mismatches when LRAT is used.
 684         */
 685        if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
 686            unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
 687                pr_err_ratelimited(
 688                        "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
 689                        __func__, geaddr);
 690                return EMULATE_AGAIN;
 691        }
 692
 693        /* Get pfn */
 694        psize_shift = MAS1_GET_TSIZE(mas1) + 10;
 695        addr = (mas7_mas3 & (~0ULL << psize_shift)) |
 696               (geaddr & ((1ULL << psize_shift) - 1ULL));
 697        pfn = addr >> PAGE_SHIFT;
 698
 699        /* Guard against emulation from devices area */
 700        if (unlikely(!page_is_ram(pfn))) {
 701                pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
 702                         __func__, addr);
 703                return EMULATE_AGAIN;
 704        }
 705
 706        /* Map a page and get guest's instruction */
 707        page = pfn_to_page(pfn);
 708        eaddr = (unsigned long)kmap_atomic(page);
 709        *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
 710        kunmap_atomic((u32 *)eaddr);
 711
 712        return EMULATE_DONE;
 713}
 714#else
 715int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
 716                enum instruction_fetch_type type, u32 *instr)
 717{
 718        return EMULATE_AGAIN;
 719}
 720#endif
 721
 722/************* MMU Notifiers *************/
 723
 724static bool kvm_e500_mmu_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 725{
 726        /*
 727         * Flush all shadow tlb entries everywhere. This is slow, but
 728         * we are 100% sure that we catch the to be unmapped page
 729         */
 730        return true;
 731}
 732
 733bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
 734{
 735        return kvm_e500_mmu_unmap_gfn(kvm, range);
 736}
 737
 738bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 739{
 740        /* XXX could be more clever ;) */
 741        return false;
 742}
 743
 744bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 745{
 746        /* XXX could be more clever ;) */
 747        return false;
 748}
 749
 750bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 751{
 752        /* The page will get remapped properly on its next fault */
 753        return kvm_e500_mmu_unmap_gfn(kvm, range);
 754}
 755
 756/*****************************************/
 757
 758int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
 759{
 760        host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
 761        host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
 762
 763        /*
 764         * This should never happen on real e500 hardware, but is
 765         * architecturally possible -- e.g. in some weird nested
 766         * virtualization case.
 767         */
 768        if (host_tlb_params[0].entries == 0 ||
 769            host_tlb_params[1].entries == 0) {
 770                pr_err("%s: need to know host tlb size\n", __func__);
 771                return -ENODEV;
 772        }
 773
 774        host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
 775                                  TLBnCFG_ASSOC_SHIFT;
 776        host_tlb_params[1].ways = host_tlb_params[1].entries;
 777
 778        if (!is_power_of_2(host_tlb_params[0].entries) ||
 779            !is_power_of_2(host_tlb_params[0].ways) ||
 780            host_tlb_params[0].entries < host_tlb_params[0].ways ||
 781            host_tlb_params[0].ways == 0) {
 782                pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
 783                       __func__, host_tlb_params[0].entries,
 784                       host_tlb_params[0].ways);
 785                return -ENODEV;
 786        }
 787
 788        host_tlb_params[0].sets =
 789                host_tlb_params[0].entries / host_tlb_params[0].ways;
 790        host_tlb_params[1].sets = 1;
 791        vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries,
 792                                           sizeof(*vcpu_e500->h2g_tlb1_rmap),
 793                                           GFP_KERNEL);
 794        if (!vcpu_e500->h2g_tlb1_rmap)
 795                return -EINVAL;
 796
 797        return 0;
 798}
 799
 800void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
 801{
 802        kfree(vcpu_e500->h2g_tlb1_rmap);
 803}
 804