linux/arch/powerpc/mm/book3s64/hash_pgtable.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2005, Paul Mackerras, IBM Corporation.
   4 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
   5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
   6 */
   7
   8#include <linux/sched.h>
   9#include <linux/mm_types.h>
  10#include <linux/mm.h>
  11#include <linux/stop_machine.h>
  12
  13#include <asm/sections.h>
  14#include <asm/mmu.h>
  15#include <asm/tlb.h>
  16
  17#include <mm/mmu_decl.h>
  18
  19#define CREATE_TRACE_POINTS
  20#include <trace/events/thp.h>
  21
  22#if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
  23#warning Limited user VSID range means pagetable space is wasted
  24#endif
  25
  26#ifdef CONFIG_SPARSEMEM_VMEMMAP
  27/*
  28 * vmemmap is the starting address of the virtual address space where
  29 * struct pages are allocated for all possible PFNs present on the system
  30 * including holes and bad memory (hence sparse). These virtual struct
  31 * pages are stored in sequence in this virtual address space irrespective
  32 * of the fact whether the corresponding PFN is valid or not. This achieves
  33 * constant relationship between address of struct page and its PFN.
  34 *
  35 * During boot or memory hotplug operation when a new memory section is
  36 * added, physical memory allocation (including hash table bolting) will
  37 * be performed for the set of struct pages which are part of the memory
  38 * section. This saves memory by not allocating struct pages for PFNs
  39 * which are not valid.
  40 *
  41 *              ----------------------------------------------
  42 *              | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
  43 *              ----------------------------------------------
  44 *
  45 *         f000000000000000                  c000000000000000
  46 * vmemmap +--------------+                  +--------------+
  47 *  +      |  page struct | +--------------> |  page struct |
  48 *  |      +--------------+                  +--------------+
  49 *  |      |  page struct | +--------------> |  page struct |
  50 *  |      +--------------+ |                +--------------+
  51 *  |      |  page struct | +       +------> |  page struct |
  52 *  |      +--------------+         |        +--------------+
  53 *  |      |  page struct |         |   +--> |  page struct |
  54 *  |      +--------------+         |   |    +--------------+
  55 *  |      |  page struct |         |   |
  56 *  |      +--------------+         |   |
  57 *  |      |  page struct |         |   |
  58 *  |      +--------------+         |   |
  59 *  |      |  page struct |         |   |
  60 *  |      +--------------+         |   |
  61 *  |      |  page struct |         |   |
  62 *  |      +--------------+         |   |
  63 *  |      |  page struct | +-------+   |
  64 *  |      +--------------+             |
  65 *  |      |  page struct | +-----------+
  66 *  |      +--------------+
  67 *  |      |  page struct | No mapping
  68 *  |      +--------------+
  69 *  |      |  page struct | No mapping
  70 *  v      +--------------+
  71 *
  72 *              -----------------------------------------
  73 *              | RELATION BETWEEN STRUCT PAGES AND PFNS|
  74 *              -----------------------------------------
  75 *
  76 * vmemmap +--------------+                 +---------------+
  77 *  +      |  page struct | +-------------> |      PFN      |
  78 *  |      +--------------+                 +---------------+
  79 *  |      |  page struct | +-------------> |      PFN      |
  80 *  |      +--------------+                 +---------------+
  81 *  |      |  page struct | +-------------> |      PFN      |
  82 *  |      +--------------+                 +---------------+
  83 *  |      |  page struct | +-------------> |      PFN      |
  84 *  |      +--------------+                 +---------------+
  85 *  |      |              |
  86 *  |      +--------------+
  87 *  |      |              |
  88 *  |      +--------------+
  89 *  |      |              |
  90 *  |      +--------------+                 +---------------+
  91 *  |      |  page struct | +-------------> |      PFN      |
  92 *  |      +--------------+                 +---------------+
  93 *  |      |              |
  94 *  |      +--------------+
  95 *  |      |              |
  96 *  |      +--------------+                 +---------------+
  97 *  |      |  page struct | +-------------> |      PFN      |
  98 *  |      +--------------+                 +---------------+
  99 *  |      |  page struct | +-------------> |      PFN      |
 100 *  v      +--------------+                 +---------------+
 101 */
 102/*
 103 * On hash-based CPUs, the vmemmap is bolted in the hash table.
 104 *
 105 */
 106int __meminit hash__vmemmap_create_mapping(unsigned long start,
 107                                       unsigned long page_size,
 108                                       unsigned long phys)
 109{
 110        int rc;
 111
 112        if ((start + page_size) >= H_VMEMMAP_END) {
 113                pr_warn("Outside the supported range\n");
 114                return -1;
 115        }
 116
 117        rc = htab_bolt_mapping(start, start + page_size, phys,
 118                               pgprot_val(PAGE_KERNEL),
 119                               mmu_vmemmap_psize, mmu_kernel_ssize);
 120        if (rc < 0) {
 121                int rc2 = htab_remove_mapping(start, start + page_size,
 122                                              mmu_vmemmap_psize,
 123                                              mmu_kernel_ssize);
 124                BUG_ON(rc2 && (rc2 != -ENOENT));
 125        }
 126        return rc;
 127}
 128
 129#ifdef CONFIG_MEMORY_HOTPLUG
 130void hash__vmemmap_remove_mapping(unsigned long start,
 131                              unsigned long page_size)
 132{
 133        int rc = htab_remove_mapping(start, start + page_size,
 134                                     mmu_vmemmap_psize,
 135                                     mmu_kernel_ssize);
 136        BUG_ON((rc < 0) && (rc != -ENOENT));
 137        WARN_ON(rc == -ENOENT);
 138}
 139#endif
 140#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 141
 142/*
 143 * map_kernel_page currently only called by __ioremap
 144 * map_kernel_page adds an entry to the ioremap page table
 145 * and adds an entry to the HPT, possibly bolting it
 146 */
 147int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
 148{
 149        pgd_t *pgdp;
 150        p4d_t *p4dp;
 151        pud_t *pudp;
 152        pmd_t *pmdp;
 153        pte_t *ptep;
 154
 155        BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
 156        if (slab_is_available()) {
 157                pgdp = pgd_offset_k(ea);
 158                p4dp = p4d_offset(pgdp, ea);
 159                pudp = pud_alloc(&init_mm, p4dp, ea);
 160                if (!pudp)
 161                        return -ENOMEM;
 162                pmdp = pmd_alloc(&init_mm, pudp, ea);
 163                if (!pmdp)
 164                        return -ENOMEM;
 165                ptep = pte_alloc_kernel(pmdp, ea);
 166                if (!ptep)
 167                        return -ENOMEM;
 168                set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
 169        } else {
 170                /*
 171                 * If the mm subsystem is not fully up, we cannot create a
 172                 * linux page table entry for this mapping.  Simply bolt an
 173                 * entry in the hardware page table.
 174                 *
 175                 */
 176                if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
 177                                      mmu_io_psize, mmu_kernel_ssize)) {
 178                        printk(KERN_ERR "Failed to do bolted mapping IO "
 179                               "memory at %016lx !\n", pa);
 180                        return -ENOMEM;
 181                }
 182        }
 183
 184        smp_wmb();
 185        return 0;
 186}
 187
 188#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 189
 190unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
 191                                    pmd_t *pmdp, unsigned long clr,
 192                                    unsigned long set)
 193{
 194        __be64 old_be, tmp;
 195        unsigned long old;
 196
 197#ifdef CONFIG_DEBUG_VM
 198        WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
 199        assert_spin_locked(pmd_lockptr(mm, pmdp));
 200#endif
 201
 202        __asm__ __volatile__(
 203        "1:     ldarx   %0,0,%3\n\
 204                and.    %1,%0,%6\n\
 205                bne-    1b \n\
 206                andc    %1,%0,%4 \n\
 207                or      %1,%1,%7\n\
 208                stdcx.  %1,0,%3 \n\
 209                bne-    1b"
 210        : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
 211        : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
 212          "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
 213        : "cc" );
 214
 215        old = be64_to_cpu(old_be);
 216
 217        trace_hugepage_update(addr, old, clr, set);
 218        if (old & H_PAGE_HASHPTE)
 219                hpte_do_hugepage_flush(mm, addr, pmdp, old);
 220        return old;
 221}
 222
 223pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
 224                            pmd_t *pmdp)
 225{
 226        pmd_t pmd;
 227
 228        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 229        VM_BUG_ON(pmd_trans_huge(*pmdp));
 230        VM_BUG_ON(pmd_devmap(*pmdp));
 231
 232        pmd = *pmdp;
 233        pmd_clear(pmdp);
 234        /*
 235         * Wait for all pending hash_page to finish. This is needed
 236         * in case of subpage collapse. When we collapse normal pages
 237         * to hugepage, we first clear the pmd, then invalidate all
 238         * the PTE entries. The assumption here is that any low level
 239         * page fault will see a none pmd and take the slow path that
 240         * will wait on mmap_lock. But we could very well be in a
 241         * hash_page with local ptep pointer value. Such a hash page
 242         * can result in adding new HPTE entries for normal subpages.
 243         * That means we could be modifying the page content as we
 244         * copy them to a huge page. So wait for parallel hash_page
 245         * to finish before invalidating HPTE entries. We can do this
 246         * by sending an IPI to all the cpus and executing a dummy
 247         * function there.
 248         */
 249        serialize_against_pte_lookup(vma->vm_mm);
 250        /*
 251         * Now invalidate the hpte entries in the range
 252         * covered by pmd. This make sure we take a
 253         * fault and will find the pmd as none, which will
 254         * result in a major fault which takes mmap_lock and
 255         * hence wait for collapse to complete. Without this
 256         * the __collapse_huge_page_copy can result in copying
 257         * the old content.
 258         */
 259        flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
 260        return pmd;
 261}
 262
 263/*
 264 * We want to put the pgtable in pmd and use pgtable for tracking
 265 * the base page size hptes
 266 */
 267void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 268                                  pgtable_t pgtable)
 269{
 270        pgtable_t *pgtable_slot;
 271
 272        assert_spin_locked(pmd_lockptr(mm, pmdp));
 273        /*
 274         * we store the pgtable in the second half of PMD
 275         */
 276        pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 277        *pgtable_slot = pgtable;
 278        /*
 279         * expose the deposited pgtable to other cpus.
 280         * before we set the hugepage PTE at pmd level
 281         * hash fault code looks at the deposted pgtable
 282         * to store hash index values.
 283         */
 284        smp_wmb();
 285}
 286
 287pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 288{
 289        pgtable_t pgtable;
 290        pgtable_t *pgtable_slot;
 291
 292        assert_spin_locked(pmd_lockptr(mm, pmdp));
 293
 294        pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 295        pgtable = *pgtable_slot;
 296        /*
 297         * Once we withdraw, mark the entry NULL.
 298         */
 299        *pgtable_slot = NULL;
 300        /*
 301         * We store HPTE information in the deposited PTE fragment.
 302         * zero out the content on withdraw.
 303         */
 304        memset(pgtable, 0, PTE_FRAG_SIZE);
 305        return pgtable;
 306}
 307
 308/*
 309 * A linux hugepage PMD was changed and the corresponding hash table entries
 310 * neesd to be flushed.
 311 */
 312void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
 313                            pmd_t *pmdp, unsigned long old_pmd)
 314{
 315        int ssize;
 316        unsigned int psize;
 317        unsigned long vsid;
 318        unsigned long flags = 0;
 319
 320        /* get the base page size,vsid and segment size */
 321#ifdef CONFIG_DEBUG_VM
 322        psize = get_slice_psize(mm, addr);
 323        BUG_ON(psize == MMU_PAGE_16M);
 324#endif
 325        if (old_pmd & H_PAGE_COMBO)
 326                psize = MMU_PAGE_4K;
 327        else
 328                psize = MMU_PAGE_64K;
 329
 330        if (!is_kernel_addr(addr)) {
 331                ssize = user_segment_size(addr);
 332                vsid = get_user_vsid(&mm->context, addr, ssize);
 333                WARN_ON(vsid == 0);
 334        } else {
 335                vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
 336                ssize = mmu_kernel_ssize;
 337        }
 338
 339        if (mm_is_thread_local(mm))
 340                flags |= HPTE_LOCAL_UPDATE;
 341
 342        return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
 343}
 344
 345pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
 346                                unsigned long addr, pmd_t *pmdp)
 347{
 348        pmd_t old_pmd;
 349        pgtable_t pgtable;
 350        unsigned long old;
 351        pgtable_t *pgtable_slot;
 352
 353        old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
 354        old_pmd = __pmd(old);
 355        /*
 356         * We have pmd == none and we are holding page_table_lock.
 357         * So we can safely go and clear the pgtable hash
 358         * index info.
 359         */
 360        pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 361        pgtable = *pgtable_slot;
 362        /*
 363         * Let's zero out old valid and hash index details
 364         * hash fault look at them.
 365         */
 366        memset(pgtable, 0, PTE_FRAG_SIZE);
 367        return old_pmd;
 368}
 369
 370int hash__has_transparent_hugepage(void)
 371{
 372
 373        if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 374                return 0;
 375        /*
 376         * We support THP only if PMD_SIZE is 16MB.
 377         */
 378        if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
 379                return 0;
 380        /*
 381         * We need to make sure that we support 16MB hugepage in a segement
 382         * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
 383         * of 64K.
 384         */
 385        /*
 386         * If we have 64K HPTE, we will be using that by default
 387         */
 388        if (mmu_psize_defs[MMU_PAGE_64K].shift &&
 389            (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
 390                return 0;
 391        /*
 392         * Ok we only have 4K HPTE
 393         */
 394        if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
 395                return 0;
 396
 397        return 1;
 398}
 399EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
 400
 401#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 402
 403#ifdef CONFIG_STRICT_KERNEL_RWX
 404
 405struct change_memory_parms {
 406        unsigned long start, end, newpp;
 407        unsigned int step, nr_cpus, master_cpu;
 408        atomic_t cpu_counter;
 409};
 410
 411// We'd rather this was on the stack but it has to be in the RMO
 412static struct change_memory_parms chmem_parms;
 413
 414// And therefore we need a lock to protect it from concurrent use
 415static DEFINE_MUTEX(chmem_lock);
 416
 417static void change_memory_range(unsigned long start, unsigned long end,
 418                                unsigned int step, unsigned long newpp)
 419{
 420        unsigned long idx;
 421
 422        pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
 423                 start, end, newpp, step);
 424
 425        for (idx = start; idx < end; idx += step)
 426                /* Not sure if we can do much with the return value */
 427                mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
 428                                                        mmu_kernel_ssize);
 429}
 430
 431static int notrace chmem_secondary_loop(struct change_memory_parms *parms)
 432{
 433        unsigned long msr, tmp, flags;
 434        int *p;
 435
 436        p = &parms->cpu_counter.counter;
 437
 438        local_irq_save(flags);
 439        hard_irq_disable();
 440
 441        asm volatile (
 442        // Switch to real mode and leave interrupts off
 443        "mfmsr  %[msr]                  ;"
 444        "li     %[tmp], %[MSR_IR_DR]    ;"
 445        "andc   %[tmp], %[msr], %[tmp]  ;"
 446        "mtmsrd %[tmp]                  ;"
 447
 448        // Tell the master we are in real mode
 449        "1:                             "
 450        "lwarx  %[tmp], 0, %[p]         ;"
 451        "addic  %[tmp], %[tmp], -1      ;"
 452        "stwcx. %[tmp], 0, %[p]         ;"
 453        "bne-   1b                      ;"
 454
 455        // Spin until the counter goes to zero
 456        "2:                             ;"
 457        "lwz    %[tmp], 0(%[p])         ;"
 458        "cmpwi  %[tmp], 0               ;"
 459        "bne-   2b                      ;"
 460
 461        // Switch back to virtual mode
 462        "mtmsrd %[msr]                  ;"
 463
 464        : // outputs
 465          [msr] "=&r" (msr), [tmp] "=&b" (tmp), "+m" (*p)
 466        : // inputs
 467          [p] "b" (p), [MSR_IR_DR] "i" (MSR_IR | MSR_DR)
 468        : // clobbers
 469          "cc", "xer"
 470        );
 471
 472        local_irq_restore(flags);
 473
 474        return 0;
 475}
 476
 477static int change_memory_range_fn(void *data)
 478{
 479        struct change_memory_parms *parms = data;
 480
 481        if (parms->master_cpu != smp_processor_id())
 482                return chmem_secondary_loop(parms);
 483
 484        // Wait for all but one CPU (this one) to call-in
 485        while (atomic_read(&parms->cpu_counter) > 1)
 486                barrier();
 487
 488        change_memory_range(parms->start, parms->end, parms->step, parms->newpp);
 489
 490        mb();
 491
 492        // Signal the other CPUs that we're done
 493        atomic_dec(&parms->cpu_counter);
 494
 495        return 0;
 496}
 497
 498static bool hash__change_memory_range(unsigned long start, unsigned long end,
 499                                      unsigned long newpp)
 500{
 501        unsigned int step, shift;
 502
 503        shift = mmu_psize_defs[mmu_linear_psize].shift;
 504        step = 1 << shift;
 505
 506        start = ALIGN_DOWN(start, step);
 507        end = ALIGN(end, step); // aligns up
 508
 509        if (start >= end)
 510                return false;
 511
 512        if (firmware_has_feature(FW_FEATURE_LPAR)) {
 513                mutex_lock(&chmem_lock);
 514
 515                chmem_parms.start = start;
 516                chmem_parms.end = end;
 517                chmem_parms.step = step;
 518                chmem_parms.newpp = newpp;
 519                chmem_parms.master_cpu = smp_processor_id();
 520
 521                cpus_read_lock();
 522
 523                atomic_set(&chmem_parms.cpu_counter, num_online_cpus());
 524
 525                // Ensure state is consistent before we call the other CPUs
 526                mb();
 527
 528                stop_machine_cpuslocked(change_memory_range_fn, &chmem_parms,
 529                                        cpu_online_mask);
 530
 531                cpus_read_unlock();
 532                mutex_unlock(&chmem_lock);
 533        } else
 534                change_memory_range(start, end, step, newpp);
 535
 536        return true;
 537}
 538
 539void hash__mark_rodata_ro(void)
 540{
 541        unsigned long start, end, pp;
 542
 543        start = (unsigned long)_stext;
 544        end = (unsigned long)__init_begin;
 545
 546        pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL_ROX), HPTE_USE_KERNEL_KEY);
 547
 548        WARN_ON(!hash__change_memory_range(start, end, pp));
 549}
 550
 551void hash__mark_initmem_nx(void)
 552{
 553        unsigned long start, end, pp;
 554
 555        start = (unsigned long)__init_begin;
 556        end = (unsigned long)__init_end;
 557
 558        pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
 559
 560        WARN_ON(!hash__change_memory_range(start, end, pp));
 561}
 562#endif
 563