linux/arch/powerpc/mm/book3s64/hash_utils.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
   4 *   {mikejc|engebret}@us.ibm.com
   5 *
   6 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   7 *
   8 * SMP scalability work:
   9 *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  10 *
  11 *    Module name: htab.c
  12 *
  13 *    Description:
  14 *      PowerPC Hashed Page Table functions
  15 */
  16
  17#undef DEBUG
  18#undef DEBUG_LOW
  19
  20#define pr_fmt(fmt) "hash-mmu: " fmt
  21#include <linux/spinlock.h>
  22#include <linux/errno.h>
  23#include <linux/sched/mm.h>
  24#include <linux/proc_fs.h>
  25#include <linux/stat.h>
  26#include <linux/sysctl.h>
  27#include <linux/export.h>
  28#include <linux/ctype.h>
  29#include <linux/cache.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/memblock.h>
  33#include <linux/context_tracking.h>
  34#include <linux/libfdt.h>
  35#include <linux/pkeys.h>
  36#include <linux/hugetlb.h>
  37#include <linux/cpu.h>
  38#include <linux/pgtable.h>
  39#include <linux/debugfs.h>
  40
  41#include <asm/interrupt.h>
  42#include <asm/processor.h>
  43#include <asm/mmu.h>
  44#include <asm/mmu_context.h>
  45#include <asm/page.h>
  46#include <asm/types.h>
  47#include <linux/uaccess.h>
  48#include <asm/machdep.h>
  49#include <asm/prom.h>
  50#include <asm/io.h>
  51#include <asm/eeh.h>
  52#include <asm/tlb.h>
  53#include <asm/cacheflush.h>
  54#include <asm/cputable.h>
  55#include <asm/sections.h>
  56#include <asm/copro.h>
  57#include <asm/udbg.h>
  58#include <asm/code-patching.h>
  59#include <asm/fadump.h>
  60#include <asm/firmware.h>
  61#include <asm/tm.h>
  62#include <asm/trace.h>
  63#include <asm/ps3.h>
  64#include <asm/pte-walk.h>
  65#include <asm/asm-prototypes.h>
  66#include <asm/ultravisor.h>
  67
  68#include <mm/mmu_decl.h>
  69
  70#include "internal.h"
  71
  72
  73#ifdef DEBUG
  74#define DBG(fmt...) udbg_printf(fmt)
  75#else
  76#define DBG(fmt...)
  77#endif
  78
  79#ifdef DEBUG_LOW
  80#define DBG_LOW(fmt...) udbg_printf(fmt)
  81#else
  82#define DBG_LOW(fmt...)
  83#endif
  84
  85#define KB (1024)
  86#define MB (1024*KB)
  87#define GB (1024L*MB)
  88
  89/*
  90 * Note:  pte   --> Linux PTE
  91 *        HPTE  --> PowerPC Hashed Page Table Entry
  92 *
  93 * Execution context:
  94 *   htab_initialize is called with the MMU off (of course), but
  95 *   the kernel has been copied down to zero so it can directly
  96 *   reference global data.  At this point it is very difficult
  97 *   to print debug info.
  98 *
  99 */
 100
 101static unsigned long _SDR1;
 102struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
 103EXPORT_SYMBOL_GPL(mmu_psize_defs);
 104
 105u8 hpte_page_sizes[1 << LP_BITS];
 106EXPORT_SYMBOL_GPL(hpte_page_sizes);
 107
 108struct hash_pte *htab_address;
 109unsigned long htab_size_bytes;
 110unsigned long htab_hash_mask;
 111EXPORT_SYMBOL_GPL(htab_hash_mask);
 112int mmu_linear_psize = MMU_PAGE_4K;
 113EXPORT_SYMBOL_GPL(mmu_linear_psize);
 114int mmu_virtual_psize = MMU_PAGE_4K;
 115int mmu_vmalloc_psize = MMU_PAGE_4K;
 116EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
 117#ifdef CONFIG_SPARSEMEM_VMEMMAP
 118int mmu_vmemmap_psize = MMU_PAGE_4K;
 119#endif
 120int mmu_io_psize = MMU_PAGE_4K;
 121int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 122EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
 123int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 124u16 mmu_slb_size = 64;
 125EXPORT_SYMBOL_GPL(mmu_slb_size);
 126#ifdef CONFIG_PPC_64K_PAGES
 127int mmu_ci_restrictions;
 128#endif
 129#ifdef CONFIG_DEBUG_PAGEALLOC
 130static u8 *linear_map_hash_slots;
 131static unsigned long linear_map_hash_count;
 132static DEFINE_SPINLOCK(linear_map_hash_lock);
 133#endif /* CONFIG_DEBUG_PAGEALLOC */
 134struct mmu_hash_ops mmu_hash_ops;
 135EXPORT_SYMBOL(mmu_hash_ops);
 136
 137/*
 138 * These are definitions of page sizes arrays to be used when none
 139 * is provided by the firmware.
 140 */
 141
 142/*
 143 * Fallback (4k pages only)
 144 */
 145static struct mmu_psize_def mmu_psize_defaults[] = {
 146        [MMU_PAGE_4K] = {
 147                .shift  = 12,
 148                .sllp   = 0,
 149                .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 150                .avpnm  = 0,
 151                .tlbiel = 0,
 152        },
 153};
 154
 155/*
 156 * POWER4, GPUL, POWER5
 157 *
 158 * Support for 16Mb large pages
 159 */
 160static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 161        [MMU_PAGE_4K] = {
 162                .shift  = 12,
 163                .sllp   = 0,
 164                .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 165                .avpnm  = 0,
 166                .tlbiel = 1,
 167        },
 168        [MMU_PAGE_16M] = {
 169                .shift  = 24,
 170                .sllp   = SLB_VSID_L,
 171                .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
 172                            [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
 173                .avpnm  = 0x1UL,
 174                .tlbiel = 0,
 175        },
 176};
 177
 178/*
 179 * 'R' and 'C' update notes:
 180 *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
 181 *     create writeable HPTEs without C set, because the hcall H_PROTECT
 182 *     that we use in that case will not update C
 183 *  - The above is however not a problem, because we also don't do that
 184 *     fancy "no flush" variant of eviction and we use H_REMOVE which will
 185 *     do the right thing and thus we don't have the race I described earlier
 186 *
 187 *    - Under bare metal,  we do have the race, so we need R and C set
 188 *    - We make sure R is always set and never lost
 189 *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
 190 */
 191unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
 192{
 193        unsigned long rflags = 0;
 194
 195        /* _PAGE_EXEC -> NOEXEC */
 196        if ((pteflags & _PAGE_EXEC) == 0)
 197                rflags |= HPTE_R_N;
 198        /*
 199         * PPP bits:
 200         * Linux uses slb key 0 for kernel and 1 for user.
 201         * kernel RW areas are mapped with PPP=0b000
 202         * User area is mapped with PPP=0b010 for read/write
 203         * or PPP=0b011 for read-only (including writeable but clean pages).
 204         */
 205        if (pteflags & _PAGE_PRIVILEGED) {
 206                /*
 207                 * Kernel read only mapped with ppp bits 0b110
 208                 */
 209                if (!(pteflags & _PAGE_WRITE)) {
 210                        if (mmu_has_feature(MMU_FTR_KERNEL_RO))
 211                                rflags |= (HPTE_R_PP0 | 0x2);
 212                        else
 213                                rflags |= 0x3;
 214                }
 215        } else {
 216                if (pteflags & _PAGE_RWX)
 217                        rflags |= 0x2;
 218                if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
 219                        rflags |= 0x1;
 220        }
 221        /*
 222         * We can't allow hardware to update hpte bits. Hence always
 223         * set 'R' bit and set 'C' if it is a write fault
 224         */
 225        rflags |=  HPTE_R_R;
 226
 227        if (pteflags & _PAGE_DIRTY)
 228                rflags |= HPTE_R_C;
 229        /*
 230         * Add in WIG bits
 231         */
 232
 233        if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
 234                rflags |= HPTE_R_I;
 235        else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
 236                rflags |= (HPTE_R_I | HPTE_R_G);
 237        else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
 238                rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
 239        else
 240                /*
 241                 * Add memory coherence if cache inhibited is not set
 242                 */
 243                rflags |= HPTE_R_M;
 244
 245        rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
 246        return rflags;
 247}
 248
 249int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 250                      unsigned long pstart, unsigned long prot,
 251                      int psize, int ssize)
 252{
 253        unsigned long vaddr, paddr;
 254        unsigned int step, shift;
 255        int ret = 0;
 256
 257        shift = mmu_psize_defs[psize].shift;
 258        step = 1 << shift;
 259
 260        prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
 261
 262        DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 263            vstart, vend, pstart, prot, psize, ssize);
 264
 265        /* Carefully map only the possible range */
 266        vaddr = ALIGN(vstart, step);
 267        paddr = ALIGN(pstart, step);
 268        vend  = ALIGN_DOWN(vend, step);
 269
 270        for (; vaddr < vend; vaddr += step, paddr += step) {
 271                unsigned long hash, hpteg;
 272                unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 273                unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
 274                unsigned long tprot = prot;
 275                bool secondary_hash = false;
 276
 277                /*
 278                 * If we hit a bad address return error.
 279                 */
 280                if (!vsid)
 281                        return -1;
 282                /* Make kernel text executable */
 283                if (overlaps_kernel_text(vaddr, vaddr + step))
 284                        tprot &= ~HPTE_R_N;
 285
 286                /*
 287                 * If relocatable, check if it overlaps interrupt vectors that
 288                 * are copied down to real 0. For relocatable kernel
 289                 * (e.g. kdump case) we copy interrupt vectors down to real
 290                 * address 0. Mark that region as executable. This is
 291                 * because on p8 system with relocation on exception feature
 292                 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
 293                 * in order to execute the interrupt handlers in virtual
 294                 * mode the vector region need to be marked as executable.
 295                 */
 296                if ((PHYSICAL_START > MEMORY_START) &&
 297                        overlaps_interrupt_vector_text(vaddr, vaddr + step))
 298                                tprot &= ~HPTE_R_N;
 299
 300                hash = hpt_hash(vpn, shift, ssize);
 301                hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 302
 303                BUG_ON(!mmu_hash_ops.hpte_insert);
 304repeat:
 305                ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
 306                                               HPTE_V_BOLTED, psize, psize,
 307                                               ssize);
 308                if (ret == -1) {
 309                        /*
 310                         * Try to to keep bolted entries in primary.
 311                         * Remove non bolted entries and try insert again
 312                         */
 313                        ret = mmu_hash_ops.hpte_remove(hpteg);
 314                        if (ret != -1)
 315                                ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
 316                                                               HPTE_V_BOLTED, psize, psize,
 317                                                               ssize);
 318                        if (ret == -1 && !secondary_hash) {
 319                                secondary_hash = true;
 320                                hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
 321                                goto repeat;
 322                        }
 323                }
 324
 325                if (ret < 0)
 326                        break;
 327
 328                cond_resched();
 329#ifdef CONFIG_DEBUG_PAGEALLOC
 330                if (debug_pagealloc_enabled() &&
 331                        (paddr >> PAGE_SHIFT) < linear_map_hash_count)
 332                        linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 333#endif /* CONFIG_DEBUG_PAGEALLOC */
 334        }
 335        return ret < 0 ? ret : 0;
 336}
 337
 338int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 339                      int psize, int ssize)
 340{
 341        unsigned long vaddr, time_limit;
 342        unsigned int step, shift;
 343        int rc;
 344        int ret = 0;
 345
 346        shift = mmu_psize_defs[psize].shift;
 347        step = 1 << shift;
 348
 349        if (!mmu_hash_ops.hpte_removebolted)
 350                return -ENODEV;
 351
 352        /* Unmap the full range specificied */
 353        vaddr = ALIGN_DOWN(vstart, step);
 354        time_limit = jiffies + HZ;
 355
 356        for (;vaddr < vend; vaddr += step) {
 357                rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
 358
 359                /*
 360                 * For large number of mappings introduce a cond_resched()
 361                 * to prevent softlockup warnings.
 362                 */
 363                if (time_after(jiffies, time_limit)) {
 364                        cond_resched();
 365                        time_limit = jiffies + HZ;
 366                }
 367                if (rc == -ENOENT) {
 368                        ret = -ENOENT;
 369                        continue;
 370                }
 371                if (rc < 0)
 372                        return rc;
 373        }
 374
 375        return ret;
 376}
 377
 378static bool disable_1tb_segments = false;
 379
 380static int __init parse_disable_1tb_segments(char *p)
 381{
 382        disable_1tb_segments = true;
 383        return 0;
 384}
 385early_param("disable_1tb_segments", parse_disable_1tb_segments);
 386
 387static int __init htab_dt_scan_seg_sizes(unsigned long node,
 388                                         const char *uname, int depth,
 389                                         void *data)
 390{
 391        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 392        const __be32 *prop;
 393        int size = 0;
 394
 395        /* We are scanning "cpu" nodes only */
 396        if (type == NULL || strcmp(type, "cpu") != 0)
 397                return 0;
 398
 399        prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
 400        if (prop == NULL)
 401                return 0;
 402        for (; size >= 4; size -= 4, ++prop) {
 403                if (be32_to_cpu(prop[0]) == 40) {
 404                        DBG("1T segment support detected\n");
 405
 406                        if (disable_1tb_segments) {
 407                                DBG("1T segments disabled by command line\n");
 408                                break;
 409                        }
 410
 411                        cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
 412                        return 1;
 413                }
 414        }
 415        cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 416        return 0;
 417}
 418
 419static int __init get_idx_from_shift(unsigned int shift)
 420{
 421        int idx = -1;
 422
 423        switch (shift) {
 424        case 0xc:
 425                idx = MMU_PAGE_4K;
 426                break;
 427        case 0x10:
 428                idx = MMU_PAGE_64K;
 429                break;
 430        case 0x14:
 431                idx = MMU_PAGE_1M;
 432                break;
 433        case 0x18:
 434                idx = MMU_PAGE_16M;
 435                break;
 436        case 0x22:
 437                idx = MMU_PAGE_16G;
 438                break;
 439        }
 440        return idx;
 441}
 442
 443static int __init htab_dt_scan_page_sizes(unsigned long node,
 444                                          const char *uname, int depth,
 445                                          void *data)
 446{
 447        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 448        const __be32 *prop;
 449        int size = 0;
 450
 451        /* We are scanning "cpu" nodes only */
 452        if (type == NULL || strcmp(type, "cpu") != 0)
 453                return 0;
 454
 455        prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
 456        if (!prop)
 457                return 0;
 458
 459        pr_info("Page sizes from device-tree:\n");
 460        size /= 4;
 461        cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
 462        while(size > 0) {
 463                unsigned int base_shift = be32_to_cpu(prop[0]);
 464                unsigned int slbenc = be32_to_cpu(prop[1]);
 465                unsigned int lpnum = be32_to_cpu(prop[2]);
 466                struct mmu_psize_def *def;
 467                int idx, base_idx;
 468
 469                size -= 3; prop += 3;
 470                base_idx = get_idx_from_shift(base_shift);
 471                if (base_idx < 0) {
 472                        /* skip the pte encoding also */
 473                        prop += lpnum * 2; size -= lpnum * 2;
 474                        continue;
 475                }
 476                def = &mmu_psize_defs[base_idx];
 477                if (base_idx == MMU_PAGE_16M)
 478                        cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
 479
 480                def->shift = base_shift;
 481                if (base_shift <= 23)
 482                        def->avpnm = 0;
 483                else
 484                        def->avpnm = (1 << (base_shift - 23)) - 1;
 485                def->sllp = slbenc;
 486                /*
 487                 * We don't know for sure what's up with tlbiel, so
 488                 * for now we only set it for 4K and 64K pages
 489                 */
 490                if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
 491                        def->tlbiel = 1;
 492                else
 493                        def->tlbiel = 0;
 494
 495                while (size > 0 && lpnum) {
 496                        unsigned int shift = be32_to_cpu(prop[0]);
 497                        int penc  = be32_to_cpu(prop[1]);
 498
 499                        prop += 2; size -= 2;
 500                        lpnum--;
 501
 502                        idx = get_idx_from_shift(shift);
 503                        if (idx < 0)
 504                                continue;
 505
 506                        if (penc == -1)
 507                                pr_err("Invalid penc for base_shift=%d "
 508                                       "shift=%d\n", base_shift, shift);
 509
 510                        def->penc[idx] = penc;
 511                        pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
 512                                " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
 513                                base_shift, shift, def->sllp,
 514                                def->avpnm, def->tlbiel, def->penc[idx]);
 515                }
 516        }
 517
 518        return 1;
 519}
 520
 521#ifdef CONFIG_HUGETLB_PAGE
 522/*
 523 * Scan for 16G memory blocks that have been set aside for huge pages
 524 * and reserve those blocks for 16G huge pages.
 525 */
 526static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 527                                        const char *uname, int depth,
 528                                        void *data) {
 529        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 530        const __be64 *addr_prop;
 531        const __be32 *page_count_prop;
 532        unsigned int expected_pages;
 533        long unsigned int phys_addr;
 534        long unsigned int block_size;
 535
 536        /* We are scanning "memory" nodes only */
 537        if (type == NULL || strcmp(type, "memory") != 0)
 538                return 0;
 539
 540        /*
 541         * This property is the log base 2 of the number of virtual pages that
 542         * will represent this memory block.
 543         */
 544        page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 545        if (page_count_prop == NULL)
 546                return 0;
 547        expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
 548        addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 549        if (addr_prop == NULL)
 550                return 0;
 551        phys_addr = be64_to_cpu(addr_prop[0]);
 552        block_size = be64_to_cpu(addr_prop[1]);
 553        if (block_size != (16 * GB))
 554                return 0;
 555        printk(KERN_INFO "Huge page(16GB) memory: "
 556                        "addr = 0x%lX size = 0x%lX pages = %d\n",
 557                        phys_addr, block_size, expected_pages);
 558        if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
 559                memblock_reserve(phys_addr, block_size * expected_pages);
 560                pseries_add_gpage(phys_addr, block_size, expected_pages);
 561        }
 562        return 0;
 563}
 564#endif /* CONFIG_HUGETLB_PAGE */
 565
 566static void mmu_psize_set_default_penc(void)
 567{
 568        int bpsize, apsize;
 569        for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
 570                for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
 571                        mmu_psize_defs[bpsize].penc[apsize] = -1;
 572}
 573
 574#ifdef CONFIG_PPC_64K_PAGES
 575
 576static bool might_have_hea(void)
 577{
 578        /*
 579         * The HEA ethernet adapter requires awareness of the
 580         * GX bus. Without that awareness we can easily assume
 581         * we will never see an HEA ethernet device.
 582         */
 583#ifdef CONFIG_IBMEBUS
 584        return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
 585                firmware_has_feature(FW_FEATURE_SPLPAR);
 586#else
 587        return false;
 588#endif
 589}
 590
 591#endif /* #ifdef CONFIG_PPC_64K_PAGES */
 592
 593static void __init htab_scan_page_sizes(void)
 594{
 595        int rc;
 596
 597        /* se the invalid penc to -1 */
 598        mmu_psize_set_default_penc();
 599
 600        /* Default to 4K pages only */
 601        memcpy(mmu_psize_defs, mmu_psize_defaults,
 602               sizeof(mmu_psize_defaults));
 603
 604        /*
 605         * Try to find the available page sizes in the device-tree
 606         */
 607        rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 608        if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
 609                /*
 610                 * Nothing in the device-tree, but the CPU supports 16M pages,
 611                 * so let's fallback on a known size list for 16M capable CPUs.
 612                 */
 613                memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 614                       sizeof(mmu_psize_defaults_gp));
 615        }
 616
 617#ifdef CONFIG_HUGETLB_PAGE
 618        if (!hugetlb_disabled && !early_radix_enabled() ) {
 619                /* Reserve 16G huge page memory sections for huge pages */
 620                of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 621        }
 622#endif /* CONFIG_HUGETLB_PAGE */
 623}
 624
 625/*
 626 * Fill in the hpte_page_sizes[] array.
 627 * We go through the mmu_psize_defs[] array looking for all the
 628 * supported base/actual page size combinations.  Each combination
 629 * has a unique pagesize encoding (penc) value in the low bits of
 630 * the LP field of the HPTE.  For actual page sizes less than 1MB,
 631 * some of the upper LP bits are used for RPN bits, meaning that
 632 * we need to fill in several entries in hpte_page_sizes[].
 633 *
 634 * In diagrammatic form, with r = RPN bits and z = page size bits:
 635 *        PTE LP     actual page size
 636 *    rrrr rrrz         >=8KB
 637 *    rrrr rrzz         >=16KB
 638 *    rrrr rzzz         >=32KB
 639 *    rrrr zzzz         >=64KB
 640 *    ...
 641 *
 642 * The zzzz bits are implementation-specific but are chosen so that
 643 * no encoding for a larger page size uses the same value in its
 644 * low-order N bits as the encoding for the 2^(12+N) byte page size
 645 * (if it exists).
 646 */
 647static void init_hpte_page_sizes(void)
 648{
 649        long int ap, bp;
 650        long int shift, penc;
 651
 652        for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
 653                if (!mmu_psize_defs[bp].shift)
 654                        continue;       /* not a supported page size */
 655                for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
 656                        penc = mmu_psize_defs[bp].penc[ap];
 657                        if (penc == -1 || !mmu_psize_defs[ap].shift)
 658                                continue;
 659                        shift = mmu_psize_defs[ap].shift - LP_SHIFT;
 660                        if (shift <= 0)
 661                                continue;       /* should never happen */
 662                        /*
 663                         * For page sizes less than 1MB, this loop
 664                         * replicates the entry for all possible values
 665                         * of the rrrr bits.
 666                         */
 667                        while (penc < (1 << LP_BITS)) {
 668                                hpte_page_sizes[penc] = (ap << 4) | bp;
 669                                penc += 1 << shift;
 670                        }
 671                }
 672        }
 673}
 674
 675static void __init htab_init_page_sizes(void)
 676{
 677        bool aligned = true;
 678        init_hpte_page_sizes();
 679
 680        if (!debug_pagealloc_enabled()) {
 681                /*
 682                 * Pick a size for the linear mapping. Currently, we only
 683                 * support 16M, 1M and 4K which is the default
 684                 */
 685                if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
 686                    (unsigned long)_stext % 0x1000000) {
 687                        if (mmu_psize_defs[MMU_PAGE_16M].shift)
 688                                pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
 689                        aligned = false;
 690                }
 691
 692                if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
 693                        mmu_linear_psize = MMU_PAGE_16M;
 694                else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 695                        mmu_linear_psize = MMU_PAGE_1M;
 696        }
 697
 698#ifdef CONFIG_PPC_64K_PAGES
 699        /*
 700         * Pick a size for the ordinary pages. Default is 4K, we support
 701         * 64K for user mappings and vmalloc if supported by the processor.
 702         * We only use 64k for ioremap if the processor
 703         * (and firmware) support cache-inhibited large pages.
 704         * If not, we use 4k and set mmu_ci_restrictions so that
 705         * hash_page knows to switch processes that use cache-inhibited
 706         * mappings to 4k pages.
 707         */
 708        if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 709                mmu_virtual_psize = MMU_PAGE_64K;
 710                mmu_vmalloc_psize = MMU_PAGE_64K;
 711                if (mmu_linear_psize == MMU_PAGE_4K)
 712                        mmu_linear_psize = MMU_PAGE_64K;
 713                if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
 714                        /*
 715                         * When running on pSeries using 64k pages for ioremap
 716                         * would stop us accessing the HEA ethernet. So if we
 717                         * have the chance of ever seeing one, stay at 4k.
 718                         */
 719                        if (!might_have_hea())
 720                                mmu_io_psize = MMU_PAGE_64K;
 721                } else
 722                        mmu_ci_restrictions = 1;
 723        }
 724#endif /* CONFIG_PPC_64K_PAGES */
 725
 726#ifdef CONFIG_SPARSEMEM_VMEMMAP
 727        /*
 728         * We try to use 16M pages for vmemmap if that is supported
 729         * and we have at least 1G of RAM at boot
 730         */
 731        if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 732            memblock_phys_mem_size() >= 0x40000000)
 733                mmu_vmemmap_psize = MMU_PAGE_16M;
 734        else
 735                mmu_vmemmap_psize = mmu_virtual_psize;
 736#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 737
 738        printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 739               "virtual = %d, io = %d"
 740#ifdef CONFIG_SPARSEMEM_VMEMMAP
 741               ", vmemmap = %d"
 742#endif
 743               "\n",
 744               mmu_psize_defs[mmu_linear_psize].shift,
 745               mmu_psize_defs[mmu_virtual_psize].shift,
 746               mmu_psize_defs[mmu_io_psize].shift
 747#ifdef CONFIG_SPARSEMEM_VMEMMAP
 748               ,mmu_psize_defs[mmu_vmemmap_psize].shift
 749#endif
 750               );
 751}
 752
 753static int __init htab_dt_scan_pftsize(unsigned long node,
 754                                       const char *uname, int depth,
 755                                       void *data)
 756{
 757        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 758        const __be32 *prop;
 759
 760        /* We are scanning "cpu" nodes only */
 761        if (type == NULL || strcmp(type, "cpu") != 0)
 762                return 0;
 763
 764        prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 765        if (prop != NULL) {
 766                /* pft_size[0] is the NUMA CEC cookie */
 767                ppc64_pft_size = be32_to_cpu(prop[1]);
 768                return 1;
 769        }
 770        return 0;
 771}
 772
 773unsigned htab_shift_for_mem_size(unsigned long mem_size)
 774{
 775        unsigned memshift = __ilog2(mem_size);
 776        unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
 777        unsigned pteg_shift;
 778
 779        /* round mem_size up to next power of 2 */
 780        if ((1UL << memshift) < mem_size)
 781                memshift += 1;
 782
 783        /* aim for 2 pages / pteg */
 784        pteg_shift = memshift - (pshift + 1);
 785
 786        /*
 787         * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
 788         * size permitted by the architecture.
 789         */
 790        return max(pteg_shift + 7, 18U);
 791}
 792
 793static unsigned long __init htab_get_table_size(void)
 794{
 795        /*
 796         * If hash size isn't already provided by the platform, we try to
 797         * retrieve it from the device-tree. If it's not there neither, we
 798         * calculate it now based on the total RAM size
 799         */
 800        if (ppc64_pft_size == 0)
 801                of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 802        if (ppc64_pft_size)
 803                return 1UL << ppc64_pft_size;
 804
 805        return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
 806}
 807
 808#ifdef CONFIG_MEMORY_HOTPLUG
 809static int resize_hpt_for_hotplug(unsigned long new_mem_size)
 810{
 811        unsigned target_hpt_shift;
 812
 813        if (!mmu_hash_ops.resize_hpt)
 814                return 0;
 815
 816        target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
 817
 818        /*
 819         * To avoid lots of HPT resizes if memory size is fluctuating
 820         * across a boundary, we deliberately have some hysterisis
 821         * here: we immediately increase the HPT size if the target
 822         * shift exceeds the current shift, but we won't attempt to
 823         * reduce unless the target shift is at least 2 below the
 824         * current shift
 825         */
 826        if (target_hpt_shift > ppc64_pft_size ||
 827            target_hpt_shift < ppc64_pft_size - 1)
 828                return mmu_hash_ops.resize_hpt(target_hpt_shift);
 829
 830        return 0;
 831}
 832
 833int hash__create_section_mapping(unsigned long start, unsigned long end,
 834                                 int nid, pgprot_t prot)
 835{
 836        int rc;
 837
 838        if (end >= H_VMALLOC_START) {
 839                pr_warn("Outside the supported range\n");
 840                return -1;
 841        }
 842
 843        resize_hpt_for_hotplug(memblock_phys_mem_size());
 844
 845        rc = htab_bolt_mapping(start, end, __pa(start),
 846                               pgprot_val(prot), mmu_linear_psize,
 847                               mmu_kernel_ssize);
 848
 849        if (rc < 0) {
 850                int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
 851                                              mmu_kernel_ssize);
 852                BUG_ON(rc2 && (rc2 != -ENOENT));
 853        }
 854        return rc;
 855}
 856
 857int hash__remove_section_mapping(unsigned long start, unsigned long end)
 858{
 859        int rc = htab_remove_mapping(start, end, mmu_linear_psize,
 860                                     mmu_kernel_ssize);
 861
 862        if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
 863                pr_warn("Hash collision while resizing HPT\n");
 864
 865        return rc;
 866}
 867#endif /* CONFIG_MEMORY_HOTPLUG */
 868
 869static void __init hash_init_partition_table(phys_addr_t hash_table,
 870                                             unsigned long htab_size)
 871{
 872        mmu_partition_table_init();
 873
 874        /*
 875         * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
 876         * For now, UPRT is 0 and we have no segment table.
 877         */
 878        htab_size =  __ilog2(htab_size) - 18;
 879        mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
 880        pr_info("Partition table %p\n", partition_tb);
 881}
 882
 883static void __init htab_initialize(void)
 884{
 885        unsigned long table;
 886        unsigned long pteg_count;
 887        unsigned long prot;
 888        phys_addr_t base = 0, size = 0, end;
 889        u64 i;
 890
 891        DBG(" -> htab_initialize()\n");
 892
 893        if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 894                mmu_kernel_ssize = MMU_SEGSIZE_1T;
 895                mmu_highuser_ssize = MMU_SEGSIZE_1T;
 896                printk(KERN_INFO "Using 1TB segments\n");
 897        }
 898
 899        if (stress_slb_enabled)
 900                static_branch_enable(&stress_slb_key);
 901
 902        /*
 903         * Calculate the required size of the htab.  We want the number of
 904         * PTEGs to equal one half the number of real pages.
 905         */
 906        htab_size_bytes = htab_get_table_size();
 907        pteg_count = htab_size_bytes >> 7;
 908
 909        htab_hash_mask = pteg_count - 1;
 910
 911        if (firmware_has_feature(FW_FEATURE_LPAR) ||
 912            firmware_has_feature(FW_FEATURE_PS3_LV1)) {
 913                /* Using a hypervisor which owns the htab */
 914                htab_address = NULL;
 915                _SDR1 = 0;
 916#ifdef CONFIG_FA_DUMP
 917                /*
 918                 * If firmware assisted dump is active firmware preserves
 919                 * the contents of htab along with entire partition memory.
 920                 * Clear the htab if firmware assisted dump is active so
 921                 * that we dont end up using old mappings.
 922                 */
 923                if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
 924                        mmu_hash_ops.hpte_clear_all();
 925#endif
 926        } else {
 927                unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
 928
 929#ifdef CONFIG_PPC_CELL
 930                /*
 931                 * Cell may require the hash table down low when using the
 932                 * Axon IOMMU in order to fit the dynamic region over it, see
 933                 * comments in cell/iommu.c
 934                 */
 935                if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
 936                        limit = 0x80000000;
 937                        pr_info("Hash table forced below 2G for Axon IOMMU\n");
 938                }
 939#endif /* CONFIG_PPC_CELL */
 940
 941                table = memblock_phys_alloc_range(htab_size_bytes,
 942                                                  htab_size_bytes,
 943                                                  0, limit);
 944                if (!table)
 945                        panic("ERROR: Failed to allocate %pa bytes below %pa\n",
 946                              &htab_size_bytes, &limit);
 947
 948                DBG("Hash table allocated at %lx, size: %lx\n", table,
 949                    htab_size_bytes);
 950
 951                htab_address = __va(table);
 952
 953                /* htab absolute addr + encoded htabsize */
 954                _SDR1 = table + __ilog2(htab_size_bytes) - 18;
 955
 956                /* Initialize the HPT with no entries */
 957                memset((void *)table, 0, htab_size_bytes);
 958
 959                if (!cpu_has_feature(CPU_FTR_ARCH_300))
 960                        /* Set SDR1 */
 961                        mtspr(SPRN_SDR1, _SDR1);
 962                else
 963                        hash_init_partition_table(table, htab_size_bytes);
 964        }
 965
 966        prot = pgprot_val(PAGE_KERNEL);
 967
 968#ifdef CONFIG_DEBUG_PAGEALLOC
 969        if (debug_pagealloc_enabled()) {
 970                linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 971                linear_map_hash_slots = memblock_alloc_try_nid(
 972                                linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
 973                                ppc64_rma_size, NUMA_NO_NODE);
 974                if (!linear_map_hash_slots)
 975                        panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
 976                              __func__, linear_map_hash_count, &ppc64_rma_size);
 977        }
 978#endif /* CONFIG_DEBUG_PAGEALLOC */
 979
 980        /* create bolted the linear mapping in the hash table */
 981        for_each_mem_range(i, &base, &end) {
 982                size = end - base;
 983                base = (unsigned long)__va(base);
 984
 985                DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 986                    base, size, prot);
 987
 988                if ((base + size) >= H_VMALLOC_START) {
 989                        pr_warn("Outside the supported range\n");
 990                        continue;
 991                }
 992
 993                BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 994                                prot, mmu_linear_psize, mmu_kernel_ssize));
 995        }
 996        memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 997
 998        /*
 999         * If we have a memory_limit and we've allocated TCEs then we need to
1000         * explicitly map the TCE area at the top of RAM. We also cope with the
1001         * case that the TCEs start below memory_limit.
1002         * tce_alloc_start/end are 16MB aligned so the mapping should work
1003         * for either 4K or 16MB pages.
1004         */
1005        if (tce_alloc_start) {
1006                tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1007                tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1008
1009                if (base + size >= tce_alloc_start)
1010                        tce_alloc_start = base + size + 1;
1011
1012                BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1013                                         __pa(tce_alloc_start), prot,
1014                                         mmu_linear_psize, mmu_kernel_ssize));
1015        }
1016
1017
1018        DBG(" <- htab_initialize()\n");
1019}
1020#undef KB
1021#undef MB
1022
1023void __init hash__early_init_devtree(void)
1024{
1025        /* Initialize segment sizes */
1026        of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1027
1028        /* Initialize page sizes */
1029        htab_scan_page_sizes();
1030}
1031
1032static struct hash_mm_context init_hash_mm_context;
1033void __init hash__early_init_mmu(void)
1034{
1035#ifndef CONFIG_PPC_64K_PAGES
1036        /*
1037         * We have code in __hash_page_4K() and elsewhere, which assumes it can
1038         * do the following:
1039         *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1040         *
1041         * Where the slot number is between 0-15, and values of 8-15 indicate
1042         * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1043         * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1044         * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1045         * with a BUILD_BUG_ON().
1046         */
1047        BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1048#endif /* CONFIG_PPC_64K_PAGES */
1049
1050        htab_init_page_sizes();
1051
1052        /*
1053         * initialize page table size
1054         */
1055        __pte_frag_nr = H_PTE_FRAG_NR;
1056        __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1057        __pmd_frag_nr = H_PMD_FRAG_NR;
1058        __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1059
1060        __pte_index_size = H_PTE_INDEX_SIZE;
1061        __pmd_index_size = H_PMD_INDEX_SIZE;
1062        __pud_index_size = H_PUD_INDEX_SIZE;
1063        __pgd_index_size = H_PGD_INDEX_SIZE;
1064        __pud_cache_index = H_PUD_CACHE_INDEX;
1065        __pte_table_size = H_PTE_TABLE_SIZE;
1066        __pmd_table_size = H_PMD_TABLE_SIZE;
1067        __pud_table_size = H_PUD_TABLE_SIZE;
1068        __pgd_table_size = H_PGD_TABLE_SIZE;
1069        /*
1070         * 4k use hugepd format, so for hash set then to
1071         * zero
1072         */
1073        __pmd_val_bits = HASH_PMD_VAL_BITS;
1074        __pud_val_bits = HASH_PUD_VAL_BITS;
1075        __pgd_val_bits = HASH_PGD_VAL_BITS;
1076
1077        __kernel_virt_start = H_KERN_VIRT_START;
1078        __vmalloc_start = H_VMALLOC_START;
1079        __vmalloc_end = H_VMALLOC_END;
1080        __kernel_io_start = H_KERN_IO_START;
1081        __kernel_io_end = H_KERN_IO_END;
1082        vmemmap = (struct page *)H_VMEMMAP_START;
1083        ioremap_bot = IOREMAP_BASE;
1084
1085#ifdef CONFIG_PCI
1086        pci_io_base = ISA_IO_BASE;
1087#endif
1088
1089        /* Select appropriate backend */
1090        if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1091                ps3_early_mm_init();
1092        else if (firmware_has_feature(FW_FEATURE_LPAR))
1093                hpte_init_pseries();
1094        else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1095                hpte_init_native();
1096
1097        if (!mmu_hash_ops.hpte_insert)
1098                panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1099
1100        /*
1101         * Initialize the MMU Hash table and create the linear mapping
1102         * of memory. Has to be done before SLB initialization as this is
1103         * currently where the page size encoding is obtained.
1104         */
1105        htab_initialize();
1106
1107        init_mm.context.hash_context = &init_hash_mm_context;
1108        mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1109
1110        pr_info("Initializing hash mmu with SLB\n");
1111        /* Initialize SLB management */
1112        slb_initialize();
1113
1114        if (cpu_has_feature(CPU_FTR_ARCH_206)
1115                        && cpu_has_feature(CPU_FTR_HVMODE))
1116                tlbiel_all();
1117}
1118
1119#ifdef CONFIG_SMP
1120void hash__early_init_mmu_secondary(void)
1121{
1122        /* Initialize hash table for that CPU */
1123        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1124
1125                if (!cpu_has_feature(CPU_FTR_ARCH_300))
1126                        mtspr(SPRN_SDR1, _SDR1);
1127                else
1128                        set_ptcr_when_no_uv(__pa(partition_tb) |
1129                                            (PATB_SIZE_SHIFT - 12));
1130        }
1131        /* Initialize SLB */
1132        slb_initialize();
1133
1134        if (cpu_has_feature(CPU_FTR_ARCH_206)
1135                        && cpu_has_feature(CPU_FTR_HVMODE))
1136                tlbiel_all();
1137
1138#ifdef CONFIG_PPC_MEM_KEYS
1139        if (mmu_has_feature(MMU_FTR_PKEY))
1140                mtspr(SPRN_UAMOR, default_uamor);
1141#endif
1142}
1143#endif /* CONFIG_SMP */
1144
1145/*
1146 * Called by asm hashtable.S for doing lazy icache flush
1147 */
1148unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1149{
1150        struct page *page;
1151
1152        if (!pfn_valid(pte_pfn(pte)))
1153                return pp;
1154
1155        page = pte_page(pte);
1156
1157        /* page is dirty */
1158        if (!test_bit(PG_dcache_clean, &page->flags) && !PageReserved(page)) {
1159                if (trap == INTERRUPT_INST_STORAGE) {
1160                        flush_dcache_icache_page(page);
1161                        set_bit(PG_dcache_clean, &page->flags);
1162                } else
1163                        pp |= HPTE_R_N;
1164        }
1165        return pp;
1166}
1167
1168#ifdef CONFIG_PPC_MM_SLICES
1169static unsigned int get_paca_psize(unsigned long addr)
1170{
1171        unsigned char *psizes;
1172        unsigned long index, mask_index;
1173
1174        if (addr < SLICE_LOW_TOP) {
1175                psizes = get_paca()->mm_ctx_low_slices_psize;
1176                index = GET_LOW_SLICE_INDEX(addr);
1177        } else {
1178                psizes = get_paca()->mm_ctx_high_slices_psize;
1179                index = GET_HIGH_SLICE_INDEX(addr);
1180        }
1181        mask_index = index & 0x1;
1182        return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1183}
1184
1185#else
1186unsigned int get_paca_psize(unsigned long addr)
1187{
1188        return get_paca()->mm_ctx_user_psize;
1189}
1190#endif
1191
1192/*
1193 * Demote a segment to using 4k pages.
1194 * For now this makes the whole process use 4k pages.
1195 */
1196#ifdef CONFIG_PPC_64K_PAGES
1197void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1198{
1199        if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1200                return;
1201        slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1202        copro_flush_all_slbs(mm);
1203        if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1204
1205                copy_mm_to_paca(mm);
1206                slb_flush_and_restore_bolted();
1207        }
1208}
1209#endif /* CONFIG_PPC_64K_PAGES */
1210
1211#ifdef CONFIG_PPC_SUBPAGE_PROT
1212/*
1213 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1214 * Userspace sets the subpage permissions using the subpage_prot system call.
1215 *
1216 * Result is 0: full permissions, _PAGE_RW: read-only,
1217 * _PAGE_RWX: no access.
1218 */
1219static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1220{
1221        struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1222        u32 spp = 0;
1223        u32 **sbpm, *sbpp;
1224
1225        if (!spt)
1226                return 0;
1227
1228        if (ea >= spt->maxaddr)
1229                return 0;
1230        if (ea < 0x100000000UL) {
1231                /* addresses below 4GB use spt->low_prot */
1232                sbpm = spt->low_prot;
1233        } else {
1234                sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1235                if (!sbpm)
1236                        return 0;
1237        }
1238        sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1239        if (!sbpp)
1240                return 0;
1241        spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1242
1243        /* extract 2-bit bitfield for this 4k subpage */
1244        spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1245
1246        /*
1247         * 0 -> full premission
1248         * 1 -> Read only
1249         * 2 -> no access.
1250         * We return the flag that need to be cleared.
1251         */
1252        spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1253        return spp;
1254}
1255
1256#else /* CONFIG_PPC_SUBPAGE_PROT */
1257static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1258{
1259        return 0;
1260}
1261#endif
1262
1263void hash_failure_debug(unsigned long ea, unsigned long access,
1264                        unsigned long vsid, unsigned long trap,
1265                        int ssize, int psize, int lpsize, unsigned long pte)
1266{
1267        if (!printk_ratelimit())
1268                return;
1269        pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1270                ea, access, current->comm);
1271        pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1272                trap, vsid, ssize, psize, lpsize, pte);
1273}
1274
1275static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1276                             int psize, bool user_region)
1277{
1278        if (user_region) {
1279                if (psize != get_paca_psize(ea)) {
1280                        copy_mm_to_paca(mm);
1281                        slb_flush_and_restore_bolted();
1282                }
1283        } else if (get_paca()->vmalloc_sllp !=
1284                   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1285                get_paca()->vmalloc_sllp =
1286                        mmu_psize_defs[mmu_vmalloc_psize].sllp;
1287                slb_vmalloc_update();
1288        }
1289}
1290
1291/*
1292 * Result code is:
1293 *  0 - handled
1294 *  1 - normal page fault
1295 * -1 - critical hash insertion error
1296 * -2 - access not permitted by subpage protection mechanism
1297 */
1298int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1299                 unsigned long access, unsigned long trap,
1300                 unsigned long flags)
1301{
1302        bool is_thp;
1303        pgd_t *pgdir;
1304        unsigned long vsid;
1305        pte_t *ptep;
1306        unsigned hugeshift;
1307        int rc, user_region = 0;
1308        int psize, ssize;
1309
1310        DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1311                ea, access, trap);
1312        trace_hash_fault(ea, access, trap);
1313
1314        /* Get region & vsid */
1315        switch (get_region_id(ea)) {
1316        case USER_REGION_ID:
1317                user_region = 1;
1318                if (! mm) {
1319                        DBG_LOW(" user region with no mm !\n");
1320                        rc = 1;
1321                        goto bail;
1322                }
1323                psize = get_slice_psize(mm, ea);
1324                ssize = user_segment_size(ea);
1325                vsid = get_user_vsid(&mm->context, ea, ssize);
1326                break;
1327        case VMALLOC_REGION_ID:
1328                vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1329                psize = mmu_vmalloc_psize;
1330                ssize = mmu_kernel_ssize;
1331                flags |= HPTE_USE_KERNEL_KEY;
1332                break;
1333
1334        case IO_REGION_ID:
1335                vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1336                psize = mmu_io_psize;
1337                ssize = mmu_kernel_ssize;
1338                flags |= HPTE_USE_KERNEL_KEY;
1339                break;
1340        default:
1341                /*
1342                 * Not a valid range
1343                 * Send the problem up to do_page_fault()
1344                 */
1345                rc = 1;
1346                goto bail;
1347        }
1348        DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1349
1350        /* Bad address. */
1351        if (!vsid) {
1352                DBG_LOW("Bad address!\n");
1353                rc = 1;
1354                goto bail;
1355        }
1356        /* Get pgdir */
1357        pgdir = mm->pgd;
1358        if (pgdir == NULL) {
1359                rc = 1;
1360                goto bail;
1361        }
1362
1363        /* Check CPU locality */
1364        if (user_region && mm_is_thread_local(mm))
1365                flags |= HPTE_LOCAL_UPDATE;
1366
1367#ifndef CONFIG_PPC_64K_PAGES
1368        /*
1369         * If we use 4K pages and our psize is not 4K, then we might
1370         * be hitting a special driver mapping, and need to align the
1371         * address before we fetch the PTE.
1372         *
1373         * It could also be a hugepage mapping, in which case this is
1374         * not necessary, but it's not harmful, either.
1375         */
1376        if (psize != MMU_PAGE_4K)
1377                ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1378#endif /* CONFIG_PPC_64K_PAGES */
1379
1380        /* Get PTE and page size from page tables */
1381        ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1382        if (ptep == NULL || !pte_present(*ptep)) {
1383                DBG_LOW(" no PTE !\n");
1384                rc = 1;
1385                goto bail;
1386        }
1387
1388        /*
1389         * Add _PAGE_PRESENT to the required access perm. If there are parallel
1390         * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1391         *
1392         * We can safely use the return pte address in rest of the function
1393         * because we do set H_PAGE_BUSY which prevents further updates to pte
1394         * from generic code.
1395         */
1396        access |= _PAGE_PRESENT | _PAGE_PTE;
1397
1398        /*
1399         * Pre-check access permissions (will be re-checked atomically
1400         * in __hash_page_XX but this pre-check is a fast path
1401         */
1402        if (!check_pte_access(access, pte_val(*ptep))) {
1403                DBG_LOW(" no access !\n");
1404                rc = 1;
1405                goto bail;
1406        }
1407
1408        if (hugeshift) {
1409                if (is_thp)
1410                        rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1411                                             trap, flags, ssize, psize);
1412#ifdef CONFIG_HUGETLB_PAGE
1413                else
1414                        rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1415                                              flags, ssize, hugeshift, psize);
1416#else
1417                else {
1418                        /*
1419                         * if we have hugeshift, and is not transhuge with
1420                         * hugetlb disabled, something is really wrong.
1421                         */
1422                        rc = 1;
1423                        WARN_ON(1);
1424                }
1425#endif
1426                if (current->mm == mm)
1427                        check_paca_psize(ea, mm, psize, user_region);
1428
1429                goto bail;
1430        }
1431
1432#ifndef CONFIG_PPC_64K_PAGES
1433        DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1434#else
1435        DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1436                pte_val(*(ptep + PTRS_PER_PTE)));
1437#endif
1438        /* Do actual hashing */
1439#ifdef CONFIG_PPC_64K_PAGES
1440        /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1441        if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1442                demote_segment_4k(mm, ea);
1443                psize = MMU_PAGE_4K;
1444        }
1445
1446        /*
1447         * If this PTE is non-cacheable and we have restrictions on
1448         * using non cacheable large pages, then we switch to 4k
1449         */
1450        if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1451                if (user_region) {
1452                        demote_segment_4k(mm, ea);
1453                        psize = MMU_PAGE_4K;
1454                } else if (ea < VMALLOC_END) {
1455                        /*
1456                         * some driver did a non-cacheable mapping
1457                         * in vmalloc space, so switch vmalloc
1458                         * to 4k pages
1459                         */
1460                        printk(KERN_ALERT "Reducing vmalloc segment "
1461                               "to 4kB pages because of "
1462                               "non-cacheable mapping\n");
1463                        psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1464                        copro_flush_all_slbs(mm);
1465                }
1466        }
1467
1468#endif /* CONFIG_PPC_64K_PAGES */
1469
1470        if (current->mm == mm)
1471                check_paca_psize(ea, mm, psize, user_region);
1472
1473#ifdef CONFIG_PPC_64K_PAGES
1474        if (psize == MMU_PAGE_64K)
1475                rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1476                                     flags, ssize);
1477        else
1478#endif /* CONFIG_PPC_64K_PAGES */
1479        {
1480                int spp = subpage_protection(mm, ea);
1481                if (access & spp)
1482                        rc = -2;
1483                else
1484                        rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1485                                            flags, ssize, spp);
1486        }
1487
1488        /*
1489         * Dump some info in case of hash insertion failure, they should
1490         * never happen so it is really useful to know if/when they do
1491         */
1492        if (rc == -1)
1493                hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1494                                   psize, pte_val(*ptep));
1495#ifndef CONFIG_PPC_64K_PAGES
1496        DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1497#else
1498        DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1499                pte_val(*(ptep + PTRS_PER_PTE)));
1500#endif
1501        DBG_LOW(" -> rc=%d\n", rc);
1502
1503bail:
1504        return rc;
1505}
1506EXPORT_SYMBOL_GPL(hash_page_mm);
1507
1508int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1509              unsigned long dsisr)
1510{
1511        unsigned long flags = 0;
1512        struct mm_struct *mm = current->mm;
1513
1514        if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1515            (get_region_id(ea) == IO_REGION_ID))
1516                mm = &init_mm;
1517
1518        if (dsisr & DSISR_NOHPTE)
1519                flags |= HPTE_NOHPTE_UPDATE;
1520
1521        return hash_page_mm(mm, ea, access, trap, flags);
1522}
1523EXPORT_SYMBOL_GPL(hash_page);
1524
1525DECLARE_INTERRUPT_HANDLER(__do_hash_fault);
1526DEFINE_INTERRUPT_HANDLER(__do_hash_fault)
1527{
1528        unsigned long ea = regs->dar;
1529        unsigned long dsisr = regs->dsisr;
1530        unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1531        unsigned long flags = 0;
1532        struct mm_struct *mm;
1533        unsigned int region_id;
1534        long err;
1535
1536        if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1537                hash__do_page_fault(regs);
1538                return;
1539        }
1540
1541        region_id = get_region_id(ea);
1542        if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1543                mm = &init_mm;
1544        else
1545                mm = current->mm;
1546
1547        if (dsisr & DSISR_NOHPTE)
1548                flags |= HPTE_NOHPTE_UPDATE;
1549
1550        if (dsisr & DSISR_ISSTORE)
1551                access |= _PAGE_WRITE;
1552        /*
1553         * We set _PAGE_PRIVILEGED only when
1554         * kernel mode access kernel space.
1555         *
1556         * _PAGE_PRIVILEGED is NOT set
1557         * 1) when kernel mode access user space
1558         * 2) user space access kernel space.
1559         */
1560        access |= _PAGE_PRIVILEGED;
1561        if (user_mode(regs) || (region_id == USER_REGION_ID))
1562                access &= ~_PAGE_PRIVILEGED;
1563
1564        if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1565                access |= _PAGE_EXEC;
1566
1567        err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1568        if (unlikely(err < 0)) {
1569                // failed to instert a hash PTE due to an hypervisor error
1570                if (user_mode(regs)) {
1571                        if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1572                                _exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1573                        else
1574                                _exception(SIGBUS, regs, BUS_ADRERR, ea);
1575                } else {
1576                        bad_page_fault(regs, SIGBUS);
1577                }
1578                err = 0;
1579
1580        } else if (err) {
1581                hash__do_page_fault(regs);
1582        }
1583}
1584
1585/*
1586 * The _RAW interrupt entry checks for the in_nmi() case before
1587 * running the full handler.
1588 */
1589DEFINE_INTERRUPT_HANDLER_RAW(do_hash_fault)
1590{
1591        /*
1592         * If we are in an "NMI" (e.g., an interrupt when soft-disabled), then
1593         * don't call hash_page, just fail the fault. This is required to
1594         * prevent re-entrancy problems in the hash code, namely perf
1595         * interrupts hitting while something holds H_PAGE_BUSY, and taking a
1596         * hash fault. See the comment in hash_preload().
1597         *
1598         * We come here as a result of a DSI at a point where we don't want
1599         * to call hash_page, such as when we are accessing memory (possibly
1600         * user memory) inside a PMU interrupt that occurred while interrupts
1601         * were soft-disabled.  We want to invoke the exception handler for
1602         * the access, or panic if there isn't a handler.
1603         */
1604        if (unlikely(in_nmi())) {
1605                do_bad_page_fault_segv(regs);
1606                return 0;
1607        }
1608
1609        __do_hash_fault(regs);
1610
1611        return 0;
1612}
1613
1614#ifdef CONFIG_PPC_MM_SLICES
1615static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1616{
1617        int psize = get_slice_psize(mm, ea);
1618
1619        /* We only prefault standard pages for now */
1620        if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1621                return false;
1622
1623        /*
1624         * Don't prefault if subpage protection is enabled for the EA.
1625         */
1626        if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1627                return false;
1628
1629        return true;
1630}
1631#else
1632static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1633{
1634        return true;
1635}
1636#endif
1637
1638static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1639                         bool is_exec, unsigned long trap)
1640{
1641        unsigned long vsid;
1642        pgd_t *pgdir;
1643        int rc, ssize, update_flags = 0;
1644        unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1645        unsigned long flags;
1646
1647        BUG_ON(get_region_id(ea) != USER_REGION_ID);
1648
1649        if (!should_hash_preload(mm, ea))
1650                return;
1651
1652        DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1653                " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1654
1655        /* Get Linux PTE if available */
1656        pgdir = mm->pgd;
1657        if (pgdir == NULL)
1658                return;
1659
1660        /* Get VSID */
1661        ssize = user_segment_size(ea);
1662        vsid = get_user_vsid(&mm->context, ea, ssize);
1663        if (!vsid)
1664                return;
1665
1666#ifdef CONFIG_PPC_64K_PAGES
1667        /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1668         * a 64K kernel), then we don't preload, hash_page() will take
1669         * care of it once we actually try to access the page.
1670         * That way we don't have to duplicate all of the logic for segment
1671         * page size demotion here
1672         * Called with  PTL held, hence can be sure the value won't change in
1673         * between.
1674         */
1675        if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1676                return;
1677#endif /* CONFIG_PPC_64K_PAGES */
1678
1679        /*
1680         * __hash_page_* must run with interrupts off, as it sets the
1681         * H_PAGE_BUSY bit. It's possible for perf interrupts to hit at any
1682         * time and may take a hash fault reading the user stack, see
1683         * read_user_stack_slow() in the powerpc/perf code.
1684         *
1685         * If that takes a hash fault on the same page as we lock here, it
1686         * will bail out when seeing H_PAGE_BUSY set, and retry the access
1687         * leading to an infinite loop.
1688         *
1689         * Disabling interrupts here does not prevent perf interrupts, but it
1690         * will prevent them taking hash faults (see the NMI test in
1691         * do_hash_page), then read_user_stack's copy_from_user_nofault will
1692         * fail and perf will fall back to read_user_stack_slow(), which
1693         * walks the Linux page tables.
1694         *
1695         * Interrupts must also be off for the duration of the
1696         * mm_is_thread_local test and update, to prevent preempt running the
1697         * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1698         */
1699        local_irq_save(flags);
1700
1701        /* Is that local to this CPU ? */
1702        if (mm_is_thread_local(mm))
1703                update_flags |= HPTE_LOCAL_UPDATE;
1704
1705        /* Hash it in */
1706#ifdef CONFIG_PPC_64K_PAGES
1707        if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1708                rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1709                                     update_flags, ssize);
1710        else
1711#endif /* CONFIG_PPC_64K_PAGES */
1712                rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1713                                    ssize, subpage_protection(mm, ea));
1714
1715        /* Dump some info in case of hash insertion failure, they should
1716         * never happen so it is really useful to know if/when they do
1717         */
1718        if (rc == -1)
1719                hash_failure_debug(ea, access, vsid, trap, ssize,
1720                                   mm_ctx_user_psize(&mm->context),
1721                                   mm_ctx_user_psize(&mm->context),
1722                                   pte_val(*ptep));
1723
1724        local_irq_restore(flags);
1725}
1726
1727/*
1728 * This is called at the end of handling a user page fault, when the
1729 * fault has been handled by updating a PTE in the linux page tables.
1730 * We use it to preload an HPTE into the hash table corresponding to
1731 * the updated linux PTE.
1732 *
1733 * This must always be called with the pte lock held.
1734 */
1735void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1736                      pte_t *ptep)
1737{
1738        /*
1739         * We don't need to worry about _PAGE_PRESENT here because we are
1740         * called with either mm->page_table_lock held or ptl lock held
1741         */
1742        unsigned long trap;
1743        bool is_exec;
1744
1745        if (radix_enabled())
1746                return;
1747
1748        /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1749        if (!pte_young(*ptep) || address >= TASK_SIZE)
1750                return;
1751
1752        /*
1753         * We try to figure out if we are coming from an instruction
1754         * access fault and pass that down to __hash_page so we avoid
1755         * double-faulting on execution of fresh text. We have to test
1756         * for regs NULL since init will get here first thing at boot.
1757         *
1758         * We also avoid filling the hash if not coming from a fault.
1759         */
1760
1761        trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1762        switch (trap) {
1763        case 0x300:
1764                is_exec = false;
1765                break;
1766        case 0x400:
1767                is_exec = true;
1768                break;
1769        default:
1770                return;
1771        }
1772
1773        hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1774}
1775
1776#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1777static inline void tm_flush_hash_page(int local)
1778{
1779        /*
1780         * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1781         * page back to a block device w/PIO could pick up transactional data
1782         * (bad!) so we force an abort here. Before the sync the page will be
1783         * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1784         * kernel uses a page from userspace without unmapping it first, it may
1785         * see the speculated version.
1786         */
1787        if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1788            MSR_TM_ACTIVE(current->thread.regs->msr)) {
1789                tm_enable();
1790                tm_abort(TM_CAUSE_TLBI);
1791        }
1792}
1793#else
1794static inline void tm_flush_hash_page(int local)
1795{
1796}
1797#endif
1798
1799/*
1800 * Return the global hash slot, corresponding to the given PTE, which contains
1801 * the HPTE.
1802 */
1803unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1804                int ssize, real_pte_t rpte, unsigned int subpg_index)
1805{
1806        unsigned long hash, gslot, hidx;
1807
1808        hash = hpt_hash(vpn, shift, ssize);
1809        hidx = __rpte_to_hidx(rpte, subpg_index);
1810        if (hidx & _PTEIDX_SECONDARY)
1811                hash = ~hash;
1812        gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1813        gslot += hidx & _PTEIDX_GROUP_IX;
1814        return gslot;
1815}
1816
1817void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1818                     unsigned long flags)
1819{
1820        unsigned long index, shift, gslot;
1821        int local = flags & HPTE_LOCAL_UPDATE;
1822
1823        DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1824        pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1825                gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1826                DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1827                /*
1828                 * We use same base page size and actual psize, because we don't
1829                 * use these functions for hugepage
1830                 */
1831                mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1832                                             ssize, local);
1833        } pte_iterate_hashed_end();
1834
1835        tm_flush_hash_page(local);
1836}
1837
1838#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1839void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1840                         pmd_t *pmdp, unsigned int psize, int ssize,
1841                         unsigned long flags)
1842{
1843        int i, max_hpte_count, valid;
1844        unsigned long s_addr;
1845        unsigned char *hpte_slot_array;
1846        unsigned long hidx, shift, vpn, hash, slot;
1847        int local = flags & HPTE_LOCAL_UPDATE;
1848
1849        s_addr = addr & HPAGE_PMD_MASK;
1850        hpte_slot_array = get_hpte_slot_array(pmdp);
1851        /*
1852         * IF we try to do a HUGE PTE update after a withdraw is done.
1853         * we will find the below NULL. This happens when we do
1854         * split_huge_pmd
1855         */
1856        if (!hpte_slot_array)
1857                return;
1858
1859        if (mmu_hash_ops.hugepage_invalidate) {
1860                mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1861                                                 psize, ssize, local);
1862                goto tm_abort;
1863        }
1864        /*
1865         * No bluk hpte removal support, invalidate each entry
1866         */
1867        shift = mmu_psize_defs[psize].shift;
1868        max_hpte_count = HPAGE_PMD_SIZE >> shift;
1869        for (i = 0; i < max_hpte_count; i++) {
1870                /*
1871                 * 8 bits per each hpte entries
1872                 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1873                 */
1874                valid = hpte_valid(hpte_slot_array, i);
1875                if (!valid)
1876                        continue;
1877                hidx =  hpte_hash_index(hpte_slot_array, i);
1878
1879                /* get the vpn */
1880                addr = s_addr + (i * (1ul << shift));
1881                vpn = hpt_vpn(addr, vsid, ssize);
1882                hash = hpt_hash(vpn, shift, ssize);
1883                if (hidx & _PTEIDX_SECONDARY)
1884                        hash = ~hash;
1885
1886                slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1887                slot += hidx & _PTEIDX_GROUP_IX;
1888                mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1889                                             MMU_PAGE_16M, ssize, local);
1890        }
1891tm_abort:
1892        tm_flush_hash_page(local);
1893}
1894#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1895
1896void flush_hash_range(unsigned long number, int local)
1897{
1898        if (mmu_hash_ops.flush_hash_range)
1899                mmu_hash_ops.flush_hash_range(number, local);
1900        else {
1901                int i;
1902                struct ppc64_tlb_batch *batch =
1903                        this_cpu_ptr(&ppc64_tlb_batch);
1904
1905                for (i = 0; i < number; i++)
1906                        flush_hash_page(batch->vpn[i], batch->pte[i],
1907                                        batch->psize, batch->ssize, local);
1908        }
1909}
1910
1911long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1912                           unsigned long pa, unsigned long rflags,
1913                           unsigned long vflags, int psize, int ssize)
1914{
1915        unsigned long hpte_group;
1916        long slot;
1917
1918repeat:
1919        hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1920
1921        /* Insert into the hash table, primary slot */
1922        slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1923                                        psize, psize, ssize);
1924
1925        /* Primary is full, try the secondary */
1926        if (unlikely(slot == -1)) {
1927                hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1928                slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1929                                                vflags | HPTE_V_SECONDARY,
1930                                                psize, psize, ssize);
1931                if (slot == -1) {
1932                        if (mftb() & 0x1)
1933                                hpte_group = (hash & htab_hash_mask) *
1934                                                HPTES_PER_GROUP;
1935
1936                        mmu_hash_ops.hpte_remove(hpte_group);
1937                        goto repeat;
1938                }
1939        }
1940
1941        return slot;
1942}
1943
1944#ifdef CONFIG_DEBUG_PAGEALLOC
1945static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1946{
1947        unsigned long hash;
1948        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1949        unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1950        unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
1951        long ret;
1952
1953        hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1954
1955        /* Don't create HPTE entries for bad address */
1956        if (!vsid)
1957                return;
1958
1959        ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1960                                    HPTE_V_BOLTED,
1961                                    mmu_linear_psize, mmu_kernel_ssize);
1962
1963        BUG_ON (ret < 0);
1964        spin_lock(&linear_map_hash_lock);
1965        BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1966        linear_map_hash_slots[lmi] = ret | 0x80;
1967        spin_unlock(&linear_map_hash_lock);
1968}
1969
1970static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1971{
1972        unsigned long hash, hidx, slot;
1973        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1974        unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1975
1976        hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1977        spin_lock(&linear_map_hash_lock);
1978        BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1979        hidx = linear_map_hash_slots[lmi] & 0x7f;
1980        linear_map_hash_slots[lmi] = 0;
1981        spin_unlock(&linear_map_hash_lock);
1982        if (hidx & _PTEIDX_SECONDARY)
1983                hash = ~hash;
1984        slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1985        slot += hidx & _PTEIDX_GROUP_IX;
1986        mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1987                                     mmu_linear_psize,
1988                                     mmu_kernel_ssize, 0);
1989}
1990
1991void __kernel_map_pages(struct page *page, int numpages, int enable)
1992{
1993        unsigned long flags, vaddr, lmi;
1994        int i;
1995
1996        local_irq_save(flags);
1997        for (i = 0; i < numpages; i++, page++) {
1998                vaddr = (unsigned long)page_address(page);
1999                lmi = __pa(vaddr) >> PAGE_SHIFT;
2000                if (lmi >= linear_map_hash_count)
2001                        continue;
2002                if (enable)
2003                        kernel_map_linear_page(vaddr, lmi);
2004                else
2005                        kernel_unmap_linear_page(vaddr, lmi);
2006        }
2007        local_irq_restore(flags);
2008}
2009#endif /* CONFIG_DEBUG_PAGEALLOC */
2010
2011void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2012                                phys_addr_t first_memblock_size)
2013{
2014        /*
2015         * We don't currently support the first MEMBLOCK not mapping 0
2016         * physical on those processors
2017         */
2018        BUG_ON(first_memblock_base != 0);
2019
2020        /*
2021         * On virtualized systems the first entry is our RMA region aka VRMA,
2022         * non-virtualized 64-bit hash MMU systems don't have a limitation
2023         * on real mode access.
2024         *
2025         * For guests on platforms before POWER9, we clamp the it limit to 1G
2026         * to avoid some funky things such as RTAS bugs etc...
2027         *
2028         * On POWER9 we limit to 1TB in case the host erroneously told us that
2029         * the RMA was >1TB. Effective address bits 0:23 are treated as zero
2030         * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2031         * for virtual real mode addressing and so it doesn't make sense to
2032         * have an area larger than 1TB as it can't be addressed.
2033         */
2034        if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2035                ppc64_rma_size = first_memblock_size;
2036                if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2037                        ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2038                else
2039                        ppc64_rma_size = min_t(u64, ppc64_rma_size,
2040                                               1UL << SID_SHIFT_1T);
2041
2042                /* Finally limit subsequent allocations */
2043                memblock_set_current_limit(ppc64_rma_size);
2044        } else {
2045                ppc64_rma_size = ULONG_MAX;
2046        }
2047}
2048
2049#ifdef CONFIG_DEBUG_FS
2050
2051static int hpt_order_get(void *data, u64 *val)
2052{
2053        *val = ppc64_pft_size;
2054        return 0;
2055}
2056
2057static int hpt_order_set(void *data, u64 val)
2058{
2059        int ret;
2060
2061        if (!mmu_hash_ops.resize_hpt)
2062                return -ENODEV;
2063
2064        cpus_read_lock();
2065        ret = mmu_hash_ops.resize_hpt(val);
2066        cpus_read_unlock();
2067
2068        return ret;
2069}
2070
2071DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2072
2073static int __init hash64_debugfs(void)
2074{
2075        debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL,
2076                            &fops_hpt_order);
2077        return 0;
2078}
2079machine_device_initcall(pseries, hash64_debugfs);
2080#endif /* CONFIG_DEBUG_FS */
2081
2082void __init print_system_hash_info(void)
2083{
2084        pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2085
2086        if (htab_hash_mask)
2087                pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2088}
2089