linux/arch/powerpc/mm/book3s64/pkeys.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * PowerPC Memory Protection Keys management
   4 *
   5 * Copyright 2017, Ram Pai, IBM Corporation.
   6 */
   7
   8#include <asm/mman.h>
   9#include <asm/mmu_context.h>
  10#include <asm/mmu.h>
  11#include <asm/setup.h>
  12#include <asm/smp.h>
  13
  14#include <linux/pkeys.h>
  15#include <linux/of_fdt.h>
  16
  17
  18int  num_pkey;          /* Max number of pkeys supported */
  19/*
  20 *  Keys marked in the reservation list cannot be allocated by  userspace
  21 */
  22u32 reserved_allocation_mask __ro_after_init;
  23
  24/* Bits set for the initially allocated keys */
  25static u32 initial_allocation_mask __ro_after_init;
  26
  27/*
  28 * Even if we allocate keys with sys_pkey_alloc(), we need to make sure
  29 * other thread still find the access denied using the same keys.
  30 */
  31u64 default_amr __ro_after_init  = ~0x0UL;
  32u64 default_iamr __ro_after_init = 0x5555555555555555UL;
  33u64 default_uamor __ro_after_init;
  34EXPORT_SYMBOL(default_amr);
  35/*
  36 * Key used to implement PROT_EXEC mmap. Denies READ/WRITE
  37 * We pick key 2 because 0 is special key and 1 is reserved as per ISA.
  38 */
  39static int execute_only_key = 2;
  40static bool pkey_execute_disable_supported;
  41
  42
  43#define AMR_BITS_PER_PKEY 2
  44#define AMR_RD_BIT 0x1UL
  45#define AMR_WR_BIT 0x2UL
  46#define IAMR_EX_BIT 0x1UL
  47#define PKEY_REG_BITS (sizeof(u64) * 8)
  48#define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
  49
  50static int __init dt_scan_storage_keys(unsigned long node,
  51                                       const char *uname, int depth,
  52                                       void *data)
  53{
  54        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
  55        const __be32 *prop;
  56        int *pkeys_total = (int *) data;
  57
  58        /* We are scanning "cpu" nodes only */
  59        if (type == NULL || strcmp(type, "cpu") != 0)
  60                return 0;
  61
  62        prop = of_get_flat_dt_prop(node, "ibm,processor-storage-keys", NULL);
  63        if (!prop)
  64                return 0;
  65        *pkeys_total = be32_to_cpu(prop[0]);
  66        return 1;
  67}
  68
  69static int scan_pkey_feature(void)
  70{
  71        int ret;
  72        int pkeys_total = 0;
  73
  74        /*
  75         * Pkey is not supported with Radix translation.
  76         */
  77        if (early_radix_enabled())
  78                return 0;
  79
  80        ret = of_scan_flat_dt(dt_scan_storage_keys, &pkeys_total);
  81        if (ret == 0) {
  82                /*
  83                 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
  84                 * tree. We make this exception since some version of skiboot forgot to
  85                 * expose this property on power8/9.
  86                 */
  87                if (!firmware_has_feature(FW_FEATURE_LPAR)) {
  88                        unsigned long pvr = mfspr(SPRN_PVR);
  89
  90                        if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
  91                            PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9)
  92                                pkeys_total = 32;
  93                }
  94        }
  95
  96#ifdef CONFIG_PPC_MEM_KEYS
  97        /*
  98         * Adjust the upper limit, based on the number of bits supported by
  99         * arch-neutral code.
 100         */
 101        pkeys_total = min_t(int, pkeys_total,
 102                            ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 1));
 103#endif
 104        return pkeys_total;
 105}
 106
 107void __init pkey_early_init_devtree(void)
 108{
 109        int pkeys_total, i;
 110
 111#ifdef CONFIG_PPC_MEM_KEYS
 112        /*
 113         * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
 114         * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
 115         * Ensure that the bits a distinct.
 116         */
 117        BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
 118                     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
 119
 120        /*
 121         * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
 122         * in the vmaflag. Make sure that is really the case.
 123         */
 124        BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
 125                     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
 126                                != (sizeof(u64) * BITS_PER_BYTE));
 127#endif
 128        /*
 129         * Only P7 and above supports SPRN_AMR update with MSR[PR] = 1
 130         */
 131        if (!early_cpu_has_feature(CPU_FTR_ARCH_206))
 132                return;
 133
 134        /* scan the device tree for pkey feature */
 135        pkeys_total = scan_pkey_feature();
 136        if (!pkeys_total)
 137                goto out;
 138
 139        /* Allow all keys to be modified by default */
 140        default_uamor = ~0x0UL;
 141
 142        cur_cpu_spec->mmu_features |= MMU_FTR_PKEY;
 143
 144        /*
 145         * The device tree cannot be relied to indicate support for
 146         * execute_disable support. Instead we use a PVR check.
 147         */
 148        if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
 149                pkey_execute_disable_supported = false;
 150        else
 151                pkey_execute_disable_supported = true;
 152
 153#ifdef CONFIG_PPC_4K_PAGES
 154        /*
 155         * The OS can manage only 8 pkeys due to its inability to represent them
 156         * in the Linux 4K PTE. Mark all other keys reserved.
 157         */
 158        num_pkey = min(8, pkeys_total);
 159#else
 160        num_pkey = pkeys_total;
 161#endif
 162
 163        if (unlikely(num_pkey <= execute_only_key) || !pkey_execute_disable_supported) {
 164                /*
 165                 * Insufficient number of keys to support
 166                 * execute only key. Mark it unavailable.
 167                 */
 168                execute_only_key = -1;
 169        } else {
 170                /*
 171                 * Mark the execute_only_pkey as not available for
 172                 * user allocation via pkey_alloc.
 173                 */
 174                reserved_allocation_mask |= (0x1 << execute_only_key);
 175
 176                /*
 177                 * Deny READ/WRITE for execute_only_key.
 178                 * Allow execute in IAMR.
 179                 */
 180                default_amr  |= (0x3ul << pkeyshift(execute_only_key));
 181                default_iamr &= ~(0x1ul << pkeyshift(execute_only_key));
 182
 183                /*
 184                 * Clear the uamor bits for this key.
 185                 */
 186                default_uamor &= ~(0x3ul << pkeyshift(execute_only_key));
 187        }
 188
 189        if (unlikely(num_pkey <= 3)) {
 190                /*
 191                 * Insufficient number of keys to support
 192                 * KUAP/KUEP feature.
 193                 */
 194                disable_kuep = true;
 195                disable_kuap = true;
 196                WARN(1, "Disabling kernel user protection due to low (%d) max supported keys\n", num_pkey);
 197        } else {
 198                /*  handle key which is used by kernel for KAUP */
 199                reserved_allocation_mask |= (0x1 << 3);
 200                /*
 201                 * Mark access for kup_key in default amr so that
 202                 * we continue to operate with that AMR in
 203                 * copy_to/from_user().
 204                 */
 205                default_amr   &= ~(0x3ul << pkeyshift(3));
 206                default_iamr  &= ~(0x1ul << pkeyshift(3));
 207                default_uamor &= ~(0x3ul << pkeyshift(3));
 208        }
 209
 210        /*
 211         * Allow access for only key 0. And prevent any other modification.
 212         */
 213        default_amr   &= ~(0x3ul << pkeyshift(0));
 214        default_iamr  &= ~(0x1ul << pkeyshift(0));
 215        default_uamor &= ~(0x3ul << pkeyshift(0));
 216        /*
 217         * key 0 is special in that we want to consider it an allocated
 218         * key which is preallocated. We don't allow changing AMR bits
 219         * w.r.t key 0. But one can pkey_free(key0)
 220         */
 221        initial_allocation_mask |= (0x1 << 0);
 222
 223        /*
 224         * key 1 is recommended not to be used. PowerISA(3.0) page 1015,
 225         * programming note.
 226         */
 227        reserved_allocation_mask |= (0x1 << 1);
 228        default_uamor &= ~(0x3ul << pkeyshift(1));
 229
 230        /*
 231         * Prevent the usage of OS reserved keys. Update UAMOR
 232         * for those keys. Also mark the rest of the bits in the
 233         * 32 bit mask as reserved.
 234         */
 235        for (i = num_pkey; i < 32 ; i++) {
 236                reserved_allocation_mask |= (0x1 << i);
 237                default_uamor &= ~(0x3ul << pkeyshift(i));
 238        }
 239        /*
 240         * Prevent the allocation of reserved keys too.
 241         */
 242        initial_allocation_mask |= reserved_allocation_mask;
 243
 244        pr_info("Enabling pkeys with max key count %d\n", num_pkey);
 245out:
 246        /*
 247         * Setup uamor on boot cpu
 248         */
 249        mtspr(SPRN_UAMOR, default_uamor);
 250
 251        return;
 252}
 253
 254#ifdef CONFIG_PPC_KUEP
 255void setup_kuep(bool disabled)
 256{
 257        if (disabled)
 258                return;
 259        /*
 260         * On hash if PKEY feature is not enabled, disable KUAP too.
 261         */
 262        if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY))
 263                return;
 264
 265        if (smp_processor_id() == boot_cpuid) {
 266                pr_info("Activating Kernel Userspace Execution Prevention\n");
 267                cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUEP;
 268        }
 269
 270        /*
 271         * Radix always uses key0 of the IAMR to determine if an access is
 272         * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
 273         * fetch.
 274         */
 275        mtspr(SPRN_IAMR, AMR_KUEP_BLOCKED);
 276        isync();
 277}
 278#endif
 279
 280#ifdef CONFIG_PPC_KUAP
 281void setup_kuap(bool disabled)
 282{
 283        if (disabled)
 284                return;
 285        /*
 286         * On hash if PKEY feature is not enabled, disable KUAP too.
 287         */
 288        if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY))
 289                return;
 290
 291        if (smp_processor_id() == boot_cpuid) {
 292                pr_info("Activating Kernel Userspace Access Prevention\n");
 293                cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUAP;
 294        }
 295
 296        /*
 297         * Set the default kernel AMR values on all cpus.
 298         */
 299        mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
 300        isync();
 301}
 302#endif
 303
 304#ifdef CONFIG_PPC_MEM_KEYS
 305void pkey_mm_init(struct mm_struct *mm)
 306{
 307        if (!mmu_has_feature(MMU_FTR_PKEY))
 308                return;
 309        mm_pkey_allocation_map(mm) = initial_allocation_mask;
 310        mm->context.execute_only_pkey = execute_only_key;
 311}
 312
 313static inline void init_amr(int pkey, u8 init_bits)
 314{
 315        u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
 316        u64 old_amr = current_thread_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
 317
 318        current->thread.regs->amr = old_amr | new_amr_bits;
 319}
 320
 321static inline void init_iamr(int pkey, u8 init_bits)
 322{
 323        u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
 324        u64 old_iamr = current_thread_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
 325
 326        if (!likely(pkey_execute_disable_supported))
 327                return;
 328
 329        current->thread.regs->iamr = old_iamr | new_iamr_bits;
 330}
 331
 332/*
 333 * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
 334 * specified in @init_val.
 335 */
 336int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
 337                                unsigned long init_val)
 338{
 339        u64 new_amr_bits = 0x0ul;
 340        u64 new_iamr_bits = 0x0ul;
 341        u64 pkey_bits, uamor_pkey_bits;
 342
 343        /*
 344         * Check whether the key is disabled by UAMOR.
 345         */
 346        pkey_bits = 0x3ul << pkeyshift(pkey);
 347        uamor_pkey_bits = (default_uamor & pkey_bits);
 348
 349        /*
 350         * Both the bits in UAMOR corresponding to the key should be set
 351         */
 352        if (uamor_pkey_bits != pkey_bits)
 353                return -EINVAL;
 354
 355        if (init_val & PKEY_DISABLE_EXECUTE) {
 356                if (!pkey_execute_disable_supported)
 357                        return -EINVAL;
 358                new_iamr_bits |= IAMR_EX_BIT;
 359        }
 360        init_iamr(pkey, new_iamr_bits);
 361
 362        /* Set the bits we need in AMR: */
 363        if (init_val & PKEY_DISABLE_ACCESS)
 364                new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
 365        else if (init_val & PKEY_DISABLE_WRITE)
 366                new_amr_bits |= AMR_WR_BIT;
 367
 368        init_amr(pkey, new_amr_bits);
 369        return 0;
 370}
 371
 372int execute_only_pkey(struct mm_struct *mm)
 373{
 374        return mm->context.execute_only_pkey;
 375}
 376
 377static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
 378{
 379        /* Do this check first since the vm_flags should be hot */
 380        if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC)
 381                return false;
 382
 383        return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
 384}
 385
 386/*
 387 * This should only be called for *plain* mprotect calls.
 388 */
 389int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
 390                                  int pkey)
 391{
 392        /*
 393         * If the currently associated pkey is execute-only, but the requested
 394         * protection is not execute-only, move it back to the default pkey.
 395         */
 396        if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
 397                return 0;
 398
 399        /*
 400         * The requested protection is execute-only. Hence let's use an
 401         * execute-only pkey.
 402         */
 403        if (prot == PROT_EXEC) {
 404                pkey = execute_only_pkey(vma->vm_mm);
 405                if (pkey > 0)
 406                        return pkey;
 407        }
 408
 409        /* Nothing to override. */
 410        return vma_pkey(vma);
 411}
 412
 413static bool pkey_access_permitted(int pkey, bool write, bool execute)
 414{
 415        int pkey_shift;
 416        u64 amr;
 417
 418        pkey_shift = pkeyshift(pkey);
 419        if (execute)
 420                return !(current_thread_iamr() & (IAMR_EX_BIT << pkey_shift));
 421
 422        amr = current_thread_amr();
 423        if (write)
 424                return !(amr & (AMR_WR_BIT << pkey_shift));
 425
 426        return !(amr & (AMR_RD_BIT << pkey_shift));
 427}
 428
 429bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
 430{
 431        if (!mmu_has_feature(MMU_FTR_PKEY))
 432                return true;
 433
 434        return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
 435}
 436
 437/*
 438 * We only want to enforce protection keys on the current thread because we
 439 * effectively have no access to AMR/IAMR for other threads or any way to tell
 440 * which AMR/IAMR in a threaded process we could use.
 441 *
 442 * So do not enforce things if the VMA is not from the current mm, or if we are
 443 * in a kernel thread.
 444 */
 445bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
 446                               bool execute, bool foreign)
 447{
 448        if (!mmu_has_feature(MMU_FTR_PKEY))
 449                return true;
 450        /*
 451         * Do not enforce our key-permissions on a foreign vma.
 452         */
 453        if (foreign || vma_is_foreign(vma))
 454                return true;
 455
 456        return pkey_access_permitted(vma_pkey(vma), write, execute);
 457}
 458
 459void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
 460{
 461        if (!mmu_has_feature(MMU_FTR_PKEY))
 462                return;
 463
 464        /* Duplicate the oldmm pkey state in mm: */
 465        mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
 466        mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
 467}
 468
 469#endif /* CONFIG_PPC_MEM_KEYS */
 470